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Ultralight Bosons

and Superradiance



Ultralight Bosons

−1

2
∇µa∇µa− 1

4
BµνBµν + LEH(H)− V (Ψ), Ψ = a, φ,Bµ and Hµν .

I Axion: hypothetical pseudoscalar motivated by strong CP problem.

I Prediction from fundamental theories with extra dimensions:

e.g. gMN(5D)→ gµν(4D) + Bµ(4D), BM(5D)→ Bµ(4D) + a(4D).

String axiverse/photiverse: logarithmic mass window, mΨ ∝ e−V6D .

I Coherent wave dark matter candidates when mΨ < 1 eV:

Ψ(xµ) ' Ψ0(x) cosωt; Ψ0 '
√
ρ

mΨ
; ω ' mΨ.



Superradiant Gravitational Atoms

I Gravitational atom between BH and boson cloud:

BL coordinate: ΨGA(xµ) = e−iωte imφS`m(θ)R`m(r).

Fine-structure constant: α ≡ GNMBHmΨ, Bohr radius: rg/α
2.

BH horizon → ω ' mΨ + iΓ.

I Superradiance [Penrose, Zeldovichi, Starobinsky, Damour et al, Brito et al review]:
boson cloud exponentially extracting BH rotation energy when

Compton wavelength λc ' gravitational radius rg .

mΨ ∼ 10−12 eV ↔ MBH ∼ 10M�.

I ΨGA
max ≡ Ψ0 approaches Mpl

when Mcloud ≤ 10%MBH:

Mcloud
MBH

≈
{

0.5%
(

Ψ0
1016 GeV

)2 ( 0.4
α

)4
for scalar,

0.8%
(

Ψ0
1017 GeV

)2 ( 0.4
α

)4
for vector.

I Black holes are powerful transducers for ultralight bosons.

` = 1

m = 1

Local dark matter field:
Ψ�0 ≈ 2GeV

(
10−12 eV

mΨ

)



Superradiant Saturating Cloud

I Self interaction or matter interaction triggers cloud energy leakage,
balancing SR, invalidating spin constraints.
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I Two examples for axion:

• Ionized axion waves for Ψ0 ∼ fa < 1016 GeV [Yoshino et al 12’, Baryakht et al 20’].

• γ production for gaγΨ0 ∼ 1 [Rosa et al 17’, Ikeda et al 18’, Spieksma et al 23’].

I Strong field frontier: similar to preheating and strong field QED.

I Saturated Mcloud is determined by interaction strength.



Black Holes as

Neutrino Factories



Black Holes as Neutrino Factories [YC, Xue, Cardoso, arXiv:2308.00741]

I Scalar neutrino coupling: gφνφνLνL.

ω2
ν = k2 + m2

eff , meff = mν + gφνφ0 cosµt.

ϕ

V(ϕ) = μ2ϕ2/2
ϕ = ϕ0 cos μt ·ων

ω2
ν

≫ 1
νLνL

gϕνϕνLνL

I Periodic Fermi-sphere generation: Γφν ≈ (gφνφ0)3/2µ5/2/(48π3).

I Further neutrino acceleration under scalar cloud background:

dpαν
dt

= − 1
p0
ν

Γακβp
κ
ν p

β
ν− 1

2p0
ν
∇αm2

eff .← scalar force [Uzan et al 20’]

I Schwinger pair production and acceleration from vector clouds.

I Multi-messenger observation:

• GW and EM searches for BHs. • Neutrino and boosted dark matter.



Probing Particle Physics

with Event Horizon Telescope



EHT and ngEHT for new physics

Event Horizon Telescope: best-ever spatial resolution from VLBI.

Bound solutions of Kerr null
geodesics: photons propagating
multiple times around BH enhance
intensity on the image plane.

→ Precise test of general relativity.

I Astrometry for new physics?

Linear polarization from synchrotron
radiation reveals magnetic field
structure.

Four days’ observations show slight
difference.

I New interactions?

[Fundamental Physics Opportunities with the ngEHT, Ayzenberg et al, 2312.02130]

Photon
orbits
[KGEO]

Stokes Q,U
EVPA χ ≡
arg(Q + i U)/2
[EHT 21’]



Photon Ring Astrometry for Gravitational Atoms

I Superradiant clouds generate local oscillatory metric perturbations
gµν ' gK

µν + εhµν that deflect geodesics xµ ' xµ(0) + εxµ(1):

Scalar cloud

Vector/Tensor cloud

I Axion/scalar cloud mainly causes time delay [Khmelnitsky, Rubakov 13’].

I Polarized vector or tensor cloud contribute to both time delay and
spatial deflection.

I Photon ring autocorrelations [Hadar et al 20’] probe Mcloud/MBH to 10−3 for
vector and 10−7 for tensor.

` = 1,m = 1

` = 0,m = 1 or 2

[YC, Xue, Brito, Cardoso, PRL. 130 (2023) no.11, 111401]



Axion Cloud Induced Birefringence

I Axion-induced Birefringence: rotation of linear polarization:

gaγaFµν F̃µν/2→ ∆χ = gaγ [a(tobs, xobs)− a(temit, xemit)].

I Extended sources, plasma and curved space-time?

Covariant radiative transfer [IPOLE simulation]

with an accretion flow model outside SMBH:
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[YC, Li, Liu, Lu, Mizuno, Shu, Xue, Yuan, Zhao, Zhou,
PRL 124 (2020) no.6, 061102, Nature Astron. 6 (2022) no.5, 592-598, JCAP 09 (2022), 073]

[Strominger 19’]

→ axion photon coupling c ≡ 2πgaγ fa



Black Hole Inner Shadow [Chael, Johnson, Lupsasca 21’]

I Best-fit GRMHD model (MAD) from EHT observation:

• Jet region: strong B and low ne .

• Geometric thin emissions near equator, extending to BH horizon,

→ Inner shadow: lensed contour of equatorial BH horizon.
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[Mizuno]



Illuminating Black Hole Shadow with Dark Matter Annihilation

I Particle DM density can be significant
outside SMBHs [Gondolo, Silk 99’].

I Annihilation into e+/e− contribute to
synchrotron radiation [Lacroix et al 18’].

I Inner shadow can be illuminated,
setting stringent constraints:
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[YC, Ding, Liu, Mizuno, Shu, Yu, Zeng, to appear]
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Summary

I Rotating black holes are powerful transducers for
ultralight bosons due to superradiance.

I Strong field frontier:

• Parametric particle production and acceleration.

I Multi-messenger correlation:

GW/EM observation ↔ neutrino/dark matter detection.

I Event Horizon Telescope:

• Photon geodesics deflection.

• Linear polarization rotation.

• Dark matter illuminating
the inner shadow.
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Thank you!



Appendix



Cavity as Indirect Detection

for Axion Dark Matter



Superconducting Radio-Frequency (SRF) Cavity

I SRF cavities with significant Q0 > 1010 are widely used for accelerators.

I 1-cell niobium elliptical cavity and TM010 mode at 1.3 GHz:

I First scan search for dark photon dark matter with SRF using a
mechanical turner.

0 500 1150
Scan step i

4

2

0

2

4

i≡
(P

fi 0
P)

/
P

60 120
Counts

Standard Normal 
 Distribution

[Tang et al, 2305.09711]



Galactic Dark Photon from Axion Dark Matter

Indirect detection of axion dark matter?

Two-body decay (e.g., a→ γγ) will typically either exponentially deplete axion
due to Bose-enhancement, or render too small fluxes.

Alternative production mechanisms:

I Four-body cascade decay
from standard halo.
[ADMX Dror et al 23’]

I Two-body parametric decay
from axion clump surrounded
by miniclusters.

Polarization-dependent production:

I Longitudinal mode
from a dark higgs.

I Transverse mode
from axion-photon-type coupling.

a → A′ A′ 

ϕ → aa →
A′ A′ A′ A′ 



Diurnal Modulation from Earth Rotation

I Angular-dependent response to relativistic dark photon characterized by
overlapping form factor CP(θ). [ADMX Dror et al 23’ for galactic axion]

I Detector is rest at Earth frame while
Earth is rotating in galactic frame.

I Diurnal modulation of the signals
in cavity.

I Longitudinal and transverse modes
show opposite variation.
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SRF Constraints for Galactic Dark Photons

Same dataset as dark photon
dark matter searches:

I Total scan range of ∼ 1 MHz:

within bandwidth of

galactic dark photon.

I Total experimental time of

∼ 100 hours:

diurnal modulation tests.

I Decay rate constraint requires

ρA′ ≤ 1000 ργ on Earth.

I Constraints for longitudinal
modes are more stringent
due to its |~A′L| = ωA′/mA′ � 1.
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Superradiance for Boson with Negligible Interaction

I For bosons with negligible interaction, superradiance stops after BH spins
down and Mcloud takes up to 10%MBH.
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I High spin excludes boson mass in SR range with reasonable τBH.
[Arvanitaki, Brito, Davoudiasl, Denton, Stott, Unal, Saha et al]

I GW from boson annihilation and transition slowly decreases Mcloud.
[Yoshino, Brito, Isi, Siemonsen, Sun, Palomba, Zhu, Tsukada, Yuan, LVK et al]



Neutrino Acceleration

I Neutrino propagation under majoron cloud background:

dpαν
dt

= − 1
p0
ν

Γακβp
κ
ν p

β
ν− 1

2p0
ν
∇αm2

eff .← scalar force [Uzan et al 20’]

I Two parts of scalar force:

−~∇m2
eff ∝ α2 r̂− 2 rg

r cos(αt−φ) sin θ
n̂⊥ + · · ·

• Outer region: pure radial acceleration.

• Inner region: polar trapping.

I Both spatial and temporal variation
are necessary for acceleration.



Cosmic Ray and Neutrino Fluxes

I ν decay to charged leptons and π± once meff reaches 0.1 GeV.

ν and e± expected at ∼ 0.1 GeV.

I ν pair production and acceleration from a vector cloud.

Point-like sources surpass atmospheric
neutrino background at ∼ TeV.

I Boosted dark matter from boson clouds.

I Multi-messenger observation:

• GW and EM searches for BHs.

• Neutrinos, cosmic rays and BDM.



Gravitational Atom-induced Geodesics Deflections

Backward ray-tracing:
x (

1)
μ

/
r g

960 980 998

0

1

α=0.2 Tensor
t(1) x(1) y(1) z(1)

α=0.2 Vector
t(1) x(1) y(1) z(1)

1000 1002 1004

0

80

λ/rg

Two phases of evolution:

• Perturbative generation of oscillatory deviations;

• Photon ring instability leads to exponential growth of the oscillatory
deviations between two sequential crossing the equatorial plane.



Astrometrical Photon Ring Autocorrelations

A photon pair executing different half orbits number N:

I Intensity fluctuation correlation: 〈∆I (t, ϕ)∆I (t+T , ϕ+Φ)〉,
peaks at T ≈ Nτ0 and Φ ≈ Nδ0 [Hadar, Johnson, Lupsasca, Wong 20’] .

δ0

T/
r g

-� 0 �
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20

40

�
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e−γ0C0
τ0

δ0

2ΦN10

2ΦN20

Observables: ∆ΦN = ΦN
0 cos (ωt + δ) for N = 1 and 2.

I Probe Mcloud/MBH to 10−3 for vector and 10−7 for tensor.

[Chael Palumbo]

Equatorial plane emissions



Axion Cloud Induced Birefringence

I Axion-induced Birefringence: rotation of linear polarization:

gaγaFµν F̃µν/2→ ∆χ = gaγ [a(tobs, xobs)− a(temit, xemit)].

I Extended sources, plasma and curved space-time effects?

Covariant radiative transfer [IPOLE simulation]

with an accretion flow model outside SMBH: [Strominger 19’]



Stringent Constraints on Axion-Photon Coupling

I Uncertainty of azimuthal EVPA in [EHT 21’]:

→ axion photon coupling c ≡ 2πgaγ fa:
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I Next-generation EHT is expected to significantly increase sensitivity.

[YC, Li, Liu, Lu, Mizuno, Shu, Xue, Yuan, Zhao, Zhou,
PRL 124 (2020) no.6, 061102, Nature Astron. 6 (2022) no.5, 592-598, JCAP 09 (2022), 073]

April 5 April 11

ϕ [EHT 21’]



Scan Search with Mechanical Tuning

I The cavity and amplifier line are positioned
in liquid helium at T ' 2 K.

I Mechanical turner scans resonant frequency f0.

I Each scan is followed by calibration of f0
and its stability range ∆f0.

I Frequency drift δfd ≤ 1.5 Hz and microphonics effect σf0 ≈ 4 Hz.
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Data Analysis and Constraints

I Total 1150 scan steps with each 100 s integration time.

I Group every 50 adjacent bins and perform a constant fit to address
small helium pressure fluctuation.

I Normal power excess shows Gaussian distribution:

0 500 1150
Scan step i
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/
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60 120
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Standard Normal 
 Distribution

I First scan search with SRF and most stringent constraints in most
exclusion space.



Weakly Saturating Axion Cloud

I Strong self-interaction region aGA ' fa happens when fa < 1016 GeV:

V (a) = m2
af

2
a

(
1− cos

a

fa

)
=

m2
aa

2

2
− m2

aa
4

24f 2
a

+ ...;

I A quasi-equilibruim phase where superradiance and non-linear
interaction induced emission balance each other with aGA

max ' O(1) fa.

[Yoshino, Kodama 12’ 15’, Baryakht et al 20’]



Event Horizon Telescope: an Earth-sized Telescope

I For single telescope with diameter D, the angular resolution for photon of
wavelength λ is around λ

D
;

I VLBI: for multiple radio telescopes, the effective D becomes the
maximum separation between the telescopes.

I As good as being able to see on the moon from the Earth.



Supermassive Black Hole (SMBH) M87? [EHT 19’ 21’]

Event Horizon Telescope: best-ever spatial resolution from VLBI.

I First-time: shadow and the ring;

I Ring size determines 6.5× 109M�;

I Polarization map reveals magnetic field structure.

I Four days’ observations show slight difference.

From other observations:

I Nearly extreme Kerr black hole: aJ > 0.8;

I Almost face-on disk with a 17◦ inclination angle;

I Rich information under strong gravity, what else can we learn?

Total
intensity I

Linear
polarization Q,U
EVPA χ ≡
arg(Q + i U)/2



Axion Cloud and Birefringence

I Axion cloud saturates fa due to self-interactions:

aGA(xµ) ' R11(x) cos [mat − φ] sin θ; aGA
max ' O(1) fa; ω ' ma.

I gaγaFµν F̃
µν → achromatic birefringence to EVPA χ ≡ arg(Q + i U)/2:

Local frame :
d(Q + i U)

ds
= jQ + i jU + i

(
ρFR
V − 2gaγ

daGA

ds

)
(Q+ i U).

I ∆〈χ(ϕ)〉: propagating wave along ϕ on the sky plane

aGA ∝ cos [mat − φ]→ ∆〈χ(ϕ)〉 ∝ A(ϕ) cos [mat + ϕ+ δ(ϕ)].

rgma ≈ O(1)

Intensity weighted
∆〈χ(ϕ)〉

ϕ

BL coordinate:

EVPA shift for
each photon:
∆χ ≈ gaγ×
aGA(xµemit)



Axion Birefringence for RIAF around M87? (IPOLE simulation)

∆〈χ(ϕ)〉 = A(ϕ) cos [mat + ϕ+ δ(ϕ)].

I Scan axion mass: α ≡ rgma ∈ [0.10, 0.44] with period [5, 20] days.
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Axion Birefringence for RIAF around M87? (IPOLE simulation)

∆〈χ(ϕ)〉 = A(ϕ) cos [mat + ϕ+ δ(ϕ)].

I Scan axion mass: α ≡ rgma ∈ [0.10, 0.44] with period [5, 20] days.
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Lensed Photon Washout

I The ratio between linear polarization from lensed photon and direct
emissions vary from RIAF models, giving different washout effects.

0 /2 3/2 2
0.0

0.2

0.4

0.6

0.8

1.0
Ilp L

(
)/I

L(
)

H=0.3
= 5 rg

VERTICAL, sub-Kep
VERTICAL, Kep
VERTICAL, free-fall
TOROIDAL, sub-Kep
RADIAL, sub-Kep

0.4

0.2

0.0

0.2

0.4

(
)/(

2
)

IWA, H = 0.3

VERTICAL, sub-Kep
VERTICAL, Kep
VERTICAL, free-fall
TOROIDAL, sub-Kep
RADIAL, sub-Kep

0 /2 3/2 2
0.0

0.2

0.4

0.6

0.8

1.0

(
)/g

a
a m

ax

I Universal birefringence signals for direct emission only:

Direct emission 
a0 cos(ωt)

Lensed photon 
a0 cos(ωt + δ12)

remove 
lensed 
photon

0.4

0.2

0.0

0.2

0.4

(
)/(

2
)

IWA, H = 0.3 
 no lensed photon

VERTICAL, sub-Kep
VERTICAL, Kep
VERTICAL, free-fall
TOROIDAL, sub-Kep
RADIAL, sub-Kep

0 /2 3/2 2
0.0

0.2

0.4

0.6

0.8

1.0

(
)/g

a
a m

ax

remove
lensed
photon
→



Prospect for next-generation EHT

I Next-generation EHT is expected to significantly increase sensitivity.
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Recent updates:

I Constraints from EVPAs on the whole image.

I Closure traces for EVPA variations with specific patterns [Broderick et al].



Prospect for next-generation EHT

I Correlation between ∆χ at different radius and frequency.

At 86 GHz, lensed photon is suppressed due to higher optical thickness.

I Longer and sequential observations.

I Better resolution of EVPA.

I Better understanding of accretion flow and jet.
Intrinsic variations of EVPA from GRMHD simulation?



Prospect for next-generation EHT

I Correlation between ∆χ at different radius and frequency.

At 86 GHz, lensed photon is suppressed due to higher optical thickness.
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I Longer and sequential observations.

I Better resolution of EVPA.

I Better understanding of accretion flow and jet.
Intrinsic variations of EVPA from GRMHD simulation?



Birefringence from Soliton Core Dark Matter

I Ultralight axion dark matter forms soliton core in the galaxy center.
Quantum pressure balences gravitational interactions a ∼ 1010 GeV.

I Linearly polarized photon from pulsar. [Liu et al 19’ Caputo et al 19’]

I Polarized radiation from Sgr A?.[Yuan, Xia, YC, Yuan et al 20’]

I Coherent signals at each pixel increase the sensitivity.



Axion QED: Achromatic Birefringence [Carroll, Field, Jackiw 90’]

L = −1

4
FµνF

µν − 1

2
gaγaFµν F̃

µν +
1

2
∂µa∂µa− V (a),

I Chiral dispersions for photons propragating under axion background:

[∂2
t −∇2]AL,R = ∓ 2gaγn

µ∂µa k AL,R , ωL,R ∼ k∓gaγnµ∂µa.

I Rotation of electric vector position angle of linear polarization:

∆χ = gaγ

∫ obs

emit

nµ∂µa dl

= gaγ [a(tobs, xobs)− a(temit, xemit)].

I Topological effect for each photon: only a(xµemit) and a(xµobs) dependent.

nµ: unit directional vector



Accretion Flow around M87?

I EHT polarimetric measurements prefer Magnetically Arrested Disk with
vertical ~B around M87?.

I Analytic model: sub-Kep radiatively inefficient accretion flow:

ne : [Pu,Broderick 18’]

I Dimensionless thickness parameter H = 0.05 and 0.3 as benchmark.



EHT Polarization Data Characterization

I Four days’ polarization map with slight difference on sequential days:

[EHT 21’]

I Uncertainty of the azimuthal bin EVPA from polsolve:

[EHT 21’]

ranging from ±3◦ to ±15◦ for the bins used.



Landscape of SMBH and Accretion Flow (IPOLE simulation)

I Horizon scale SMBH landscape with nnngEHT (space, L2):

Broader range of axion mass: 10−22 eV to 10−17 eV.

I Universal birefringence signals for direct emission only:
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[Nagar ngEHT21]

Direct emission 
a0 cos(ωt)

Lensed photon 
a0 cos(ωt + δ12)

remove 
lensed 
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Photon Ring Autocorrelations as Astrometry

I Photon ring autocorrelation exclusion criteria: ∆ΦN > `φ ≈ 4.3◦ or
ngEHT’s smearing kernel for ϕ: 10◦.

I A tensor with linear coupling to stress tensors is more sensitive than a
vector with quadratic couplings.

I N = 2 correlation peak can probe large unexplored parameter space of
cloud mass.

I Sources with shorter correlation time, e.g., hotspots or pulsars can
significantly increase the sensitivity.



Superradiant evolution of

the shadow and photon ring of Sgr A?

based on
arxiv: 2205.06238, Phys. Rev. D 106 (2022) no.4, 043021.

YC, Rittick Roy, Sunny Vagnozzi, and Luca Visinelli.



Superradiant Evolution for Bosons

I Superradiant evolution for scalar, vector or tensor → spin decreases:
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I Superradiant timescale ∝ MBH , and is shorter for vector or tensor due to
l = 0 and j = m = 1 or 2 from intrinsic spin.
∼ O(10) yrs for vector or tensor outside SgrA?.



Large Inclination Angle: Shadow Drift

I Center of the shadow contour drifts ∼ O(1)rg once the spin decreases.
The drift is more manifest at large inclination angles.

I Resolution to the shadow center benefits from long observation time
∼ O(1) yr.



Low Inclination Angle: Azimuthal Lapse

I At low inclination angles,

photon ring autocorrelation for intensity fluctuations:

C(T , ϕ) ≡
∫∫

drdr ′r r ′ 〈∆I (t, r , φ)∆I (t+T , r ′, φ+ϕ)〉
peaks at T = τ0 and ϕ = δ0,
where δ0 is the azimuthal lapse.

I δ0 is sensitive to spin evolution due to frame dragging.

δ0

[Chael Palumbo]



Fate of Superradiance

Axion cloud can’t keep growing exponentially. What’s the fate of it?

I Self interaction of axion becomes important for fa < 1016 GeV.

[Yoshino, Kodama 12’, Baryakht et al 20’]

I Black hole spins down until the superradiance condition is violated
for fa > 1016 GeV. [Arvanitakia, Dubovsky 10’]

I Formation of a binary system leads to the decay/transition of the
bound state. [Chia et al 18’]

I Electromagnetic blast for strong (large field value) axion-photon
coupling. [Boskovic et al 18’]



Black Hole Spin Measurements [Arvanitakia et al 10’ 14’]

I Comparing the timescale between the superradiance and
BH accretion, a BH with large spin can typically exclude
axion with fa > 1016 GeV.



Gravitational Collider [Chia et al 18’]

I Resonant transition from one bound state to another happens
when orbital frequency Ω matches the energy gap.

I Due to the GW emission of the binary system, Ω(t) slowly
increases and scan the spectrum.

I Orbits could float or shrink dependent on the transition.
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