New (amplitude) relations between gluons and scalars

Quentin Bonnefoy IPHC & U. of Strasbourg

RPP 2024 25/01/2024

Based on 2310.13041 [hep-th] w/ G. Durieux and J. Roosmale Nepveu

Motivations

Why scattering amplitudes?

Old topic (60s)

(Close to) Physical objects

Why scattering amplitudes?

Old topic (60s)

(Close to) Physical objects

- Challenging objects from a **technical perspective**Ex: precision for collider processes or gravitational waves—
recursion relations, generalized unitarity, ...

Why scattering amplitudes?

Old topic (60s)

(Close to) Physical objects

- Challenging objects from a **technical perspective**Ex: precision for collider processes or gravitational waves—
 recursion relations, generalized unitarity, ...
- Interesting objects from a **conceptual perspective** *Ex*: bootstrap, soft theorems, geometry, ... and **some universal behaviors**

Algebraic relations... ... realized on building blocks

Algebraic relations...

$$c_s = f^{abe} f^{ecd}$$
, $c_t = \dots$

Algebraic relations...

Algebraic relations...

$$c_s + c_t + c_u = 0$$

$$c_s = f^{abe} f^{ecd}$$
, $c_t = \dots$

Algebraic relations...

At four points,

$$c_s + c_t + c_u = 0$$

$$\begin{cases} c_s = f^{abe} f^{ecd}, c_t = \dots \\ n_s(p^{\mu}, \epsilon_p), n_t \end{cases}$$

Algebraic relations...

At four points,

$$c_s + c_t + c_u = 0$$

$$\begin{cases} c_s = f^{abe} f^{ecd}, c_t = \dots \\ n_s(p^{\mu}, \epsilon_p), n_t \end{cases}$$

$$A_{YM} = \sum_{s_i = s, t, u} \frac{c_i n_i(\epsilon, p)}{s_i}$$

Algebraic relations...

At four points,

$$c_s + c_t + c_u = 0$$

... realized on building blocks

$$\begin{cases} c_s = f^{abe} f^{ecd}, c_t = \dots \\ n_s(p^{\mu}, \epsilon_p), n_t \end{cases}$$

$$A_{YM} = \sum_{s_i = s, t, u} \frac{c_i n_i(\epsilon, p)}{s_i}$$

Color-kinematics duality and double copy

[Bern/Carrasco/Johansson '09,'10]

Algebraic relations...

At four points,

$$c_s + c_t + c_u = 0$$

$$A_{\text{BAS}} = \sum_{s_i = s, t, u} \frac{c_i^2}{s_i}$$

$$A_{\text{GR}} = \sum_{s_i = s, t, u} \frac{n_i(\epsilon, p)^2}{s_i}$$

... realized on building blocks

$$\begin{cases} c_s = f^{abe} f^{ecd}, c_t = \dots \\ n_s(p^{\mu}, \epsilon_p), n_t \end{cases}$$

$$A_{YM} = \sum_{s_i = s, t, u} \frac{c_i n_i(\epsilon, p)}{s_i}$$

Color-kinematics duality and double copy

[Bern/Carrasco/Johansson '09,'10]

Algebraic relations...

At four points,

$$c_s + c_t + c_u = 0$$

$$A_{\text{BAS}} = \sum_{s_i = s, t, u} \frac{c_i^2}{s_i}$$

$$A_{\text{GR}} = \sum_{s_i = s, t, u} \frac{n_i(\epsilon, p)^2}{s_i}$$

... realized on building blocks

$$\begin{cases} c_s = f^{abe} f^{ecd}, c_t = \dots \\ n_s(p^{\mu}, \epsilon_p), n_t \end{cases}$$

$$A_{YM} = \sum_{s_i = s, t, u} \frac{c_i n_i(\epsilon, p)}{s_i}$$

Color-kinematics duality and double copy

[Bern/Carrasco/Johansson '09,'10]

(beyond 4pts, loops also,...)

A large **web of theories**! Pions, galileons, BI photons, SYM/SUGRA, charged matter ...

A large **web of theories**! Pions, galileons, BI photons, SYM/SUGRA, charged matter ...

How large? Which fundamental principles? Which rules?

A large **web of theories**! Pions, galileons, BI photons, SYM/SUGRA, charged matter ...

How large? Which fundamental principles? Which rules?

String theories: deformed algebras and building blocks

$$A_{\text{open superstring}} = \sum_{s_i=s,t,u} \frac{c_i(p)n_i(\epsilon,p)}{s_i}$$

[Broedel/Schlotterer/Stieberger '13]

A large **web of theories**! Pions, galileons, BI photons, SYM/SUGRA, charged matter ...

How large? Which fundamental principles? Which rules?

String theories: deformed algebras and building blocks

$$A_{\text{open superstring}} = \sum_{s_i = s, t, u} \frac{c_i(p)n_i(\epsilon, p)}{s_i}$$

[Broedel/Schlotterer/Stieberger '13]

What about effective field theories in general?

[Broedel/Dixon '12, ...,

QB/Durieux/Grojean/Machado/RoosmaleNepveu '21, ...]

Result

Equation of motion of \leftarrow Equations of motion of $\mathcal{L}_{\text{YM}+\phi^{aA}}$ EFT(\equiv GBAS EFT)

Equation of motion of $\mathcal{L}_{YM \; EFT}$

Equations of motion of $\mathcal{L}_{YM+\phi^{aA} \text{ EFT}(\equiv \text{GBAS EFT})}$

$$A_{\rm YM~EFT}[{\rm gluons}] = \sum_{\beta} A_{\rm GBAS~EFT}[{\rm gluons~in~} \beta \rightarrow {\rm scalars}] \times T(p_{\beta}, \epsilon_{p_{\beta}})$$

Equation of motion of \leftarrow Equations of motion of $\mathcal{L}_{YM+\phi^{aA}}$ EFT GBAS EFT)

$$A_{\rm YM~EFT}[{\rm gluons}] = \sum_{\beta} A_{\rm GBAS~EFT}[{\rm gluons~in~}\beta \to {\rm scalars}] \times T(p_{\beta}, \epsilon_{p_{\beta}})$$

Our work

Minimal YM: covariant CK duality

[Cheung/Mangan '21]

$$D^{\mu} F^{a}_{\mu\nu} = -J^{a}_{\nu}$$
 \(\bigcup D^{2} F^{a}_{\mu\nu} + g f^{abc} F^{b}_{\rho[\mu} F^{c\rho}_{\nu]} = -D_{[\mu} J^{a}_{\nu]} \)

$$D^{\mu}F^{a}_{\mu\nu} = -J^{a}_{\nu}$$

$$D + \text{Bianchi}$$

$$D^{2}F^{a}_{\mu\nu} + g f^{abc}F^{b}_{\rho[\mu}F^{c\rho}_{\nu]} = -D_{[\mu}J^{a}_{\nu]}$$

$$\Phi^{a}_{A} \qquad f^{ABC}\Phi^{b}_{B}\Phi^{c}_{C} \qquad J^{a}_{A}$$

$$D^{\mu}F^{a}_{\mu\nu} = -J^{a}_{\nu}$$

$$D + \text{Bianchi}$$

$$\Phi^{a}_{A} \qquad f^{ABC}\Phi^{b}_{B}\Phi^{c}_{C} \qquad J^{a}_{A}$$

GBAS theory! Same algebra for color and spacetime

$$D^{\mu}F^{a}_{\mu\nu} = -J^{a}_{\nu}$$

$$D + \text{Bianchi}$$

$$D^{2}F^{a}_{\mu\nu} + g f^{abc}F^{b}_{\rho[\mu}F^{c\rho}_{\nu]} = -D_{[\mu}J^{a}_{\nu]}$$

$$\Phi^{a}_{A} \qquad f^{ABC}\Phi^{b}_{B}\Phi^{c}_{C} \qquad J^{a}_{A}$$

GBAS theory! Same algebra for color and spacetime

$$D^{\mu}F^{a}_{\mu\nu} = -J^{a}_{\nu}$$

$$D + \text{Bianchi}$$

$$D^{2}F^{a}_{\mu\nu} + g f^{abc}F^{b}_{\rho[\mu}F^{c\rho}_{\nu]} = -D_{[\mu}J^{a}_{\nu]}$$

$$\Phi^{a}_{A} \qquad f^{ABC}\Phi^{b}_{B}\Phi^{c}_{C} \qquad J^{a}_{A}$$

GBAS theory! Same algebra for color and spacetime

$$A_{\rm YM}(gggg) = \frac{\epsilon}{p} \left[A_{\rm GBAS}(\Phi\Phi\Phi\Phi)(\epsilon p)^3 + A_{\rm GBAS}(\Phi\Phi\Phi g)(\epsilon p)^2 + A_{\rm GBAS}(\Phi ggg)(\epsilon p) \right]$$

$$D^{\mu}F^{a}_{\mu\nu} = -J^{a}_{\nu}$$

$$D + \text{Bianchi}$$

$$D^{2}F^{a}_{\mu\nu} + g f^{abc}F^{b}_{\rho[\mu}F^{c\rho}_{\nu]} = -D_{[\mu}J^{a}_{\nu]}$$

$$\Phi^{a}_{A} \qquad f^{ABC}\Phi^{b}_{B}\Phi^{c}_{C} \qquad J^{a}_{A}$$

GBAS theory! Same algebra for color and spacetime

$$A_{\rm YM} = \frac{\epsilon}{p} \sum A_{\rm GBAS}(\text{at least one scalar})(\epsilon p)^{\#}$$

Works at all multiplicities

$$D^{\mu}F^{a}_{\mu\nu} = -J^{a}_{\nu}$$

$$D + \text{Bianchi}$$

$$D^{2}F^{a}_{\mu\nu} + g f^{abc}F^{b}_{\rho[\mu}F^{c\rho}_{\nu]} = -D_{[\mu}J^{a}_{\nu]}$$

$$\Phi^{a}_{A} \qquad f^{ABC}\Phi^{b}_{B}\Phi^{c}_{C} \qquad J^{a}_{A}$$

GBAS theory! Same algebra for color and spacetime

$$A_{\rm YM} = \frac{\epsilon}{p} \sum A_{\rm GBAS}(\text{at least one scalar})(\epsilon p)^{\#}$$

Works at all multiplicities: new closed-form YM amplitudes

YM EFTs: covariant CK duality?

$$\mathcal{L}_{\rm YM~EFT} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} - \frac{g}{3\Lambda^2} f^{abc} F^a_{\ \mu}{}^{\nu} F^b_{\ \nu}{}^{\rho} F^c_{\ \rho}{}^{\mu} + \mathcal{O}\left(1/\Lambda^4\right) + A^a_{\mu} J^{a\ \mu}_A$$

Equation of motion:

$$D^{\mu}F^{a}_{\mu\nu} + \frac{g}{\Lambda^{2}} f^{abc} F^{b}_{\mu\rho} D_{\nu}F^{c\,\mu\rho} = -J^{a}_{\nu}$$

Gluon field strengths still propagate as scalars

$$\mathcal{L}_{\rm YM~EFT} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} - \frac{g}{3\Lambda^2} f^{abc} F^a_{\ \mu}{}^{\nu} F^b_{\ \nu}{}^{\rho} F^c_{\ \rho}{}^{\mu} + \mathcal{O}\left(1/\Lambda^4\right) + A^a_{\mu} J^{a\ \mu}_A$$

Equation of motion:

$$D^{\mu} F^{a}_{\mu\nu} + \frac{g}{\Lambda^{2}} f^{abc} F^{b}_{\mu\rho} D_{\nu} F^{c\,\mu\rho} = -J^{a}_{\nu}$$

$$\mathcal{O}(\Lambda^{-2}) \qquad \mathcal{O}(\Lambda^{0})$$

Gluon field strengths still propagate as scalars

$$\mathcal{L}_{\rm YM~EFT} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} - \frac{g}{3\Lambda^2} f^{abc} F^a_{\ \mu}{}^{\nu} F^b_{\ \nu}{}^{\rho} F^c_{\ \rho}{}^{\mu} + \mathcal{O}\left(1/\Lambda^4\right) + A^a_{\mu} J^{a\ \mu}_A$$

Equation of motion:

$$D^{\mu} F^{a}_{\mu\nu} + \frac{g}{\Lambda^{2}} f^{abc} F^{b}_{\mu\rho} D_{\nu} F^{c\,\mu\rho} = -J^{a}_{\nu}$$

$$\mathcal{O}(\Lambda^{-2}) \qquad \qquad \mathcal{O}(\Lambda^{0}) \longrightarrow \text{scalar !}$$

$$D^{\mu}F^{a}_{\mu\nu} + g f^{abc} \Phi^{bA} D_{\nu} \Phi^{cA} = -J^{a}_{\nu}$$

Gluon field strengths still propagate as scalars

$$\mathcal{L}_{\rm YM~EFT} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} - \frac{g}{3\Lambda^{2}} f^{abc} F^{a~\nu}_{~\mu} F^{b~\rho}_{~\nu} F^{c~\mu}_{~\rho} + \mathcal{O}\left(1/\Lambda^{4}\right) + A^{a}_{\mu} J^{a~\mu}_{A}$$

Equation of motion:

$$D^{\mu} F^{a}_{\mu\nu} + \frac{g}{\Lambda^{2}} f^{abc} F^{b}_{\mu\rho} D_{\nu} F^{c \mu\rho} = -J^{a}_{\nu}$$

$$\mathcal{O}(\Lambda^{-2}) \qquad \mathcal{O}(\Lambda^{0}) \longrightarrow \text{scalar }!$$

$$D^{\mu}F^{a}_{\mu\nu} + g f^{abc} \Phi^{bA} D_{\nu} \Phi^{cA} = -J^{a}_{\nu}$$

Renormalizable YM:

$$A_{\rm YM} = \frac{\epsilon}{p} \sum A_{\rm GBAS}({\rm at\ least\ one\ scalar})(\epsilon p)^{\#}$$

Dim-6 YM:

$$A_{\text{dim-6 YM}} = \sum A_{\text{GBAS}}(\text{at least one gluon and one scalar})(\epsilon p)^{\#}$$

Also for dim-8 YM:
$$A_{\text{dim-8 YM}} = \sum_{\text{all}} A_{\text{GBAS}}(\epsilon p)^{\#}$$

the double copy of the heterotic and bosonic strings

Summary and outlook

Surprises in the tree level scattering of gluons!

Surprises in the tree level scattering of gluons!

Dynamics related to that of colored bi-adjoint scalars, all-multiplicity relations between amplitudes, all-multiplicity results for YM EFT amplitudes

Surprises in the tree level scattering of gluons!

Dynamics related to that of colored bi-adjoint scalars, all-multiplicity relations between amplitudes, all-multiplicity results for YM EFT amplitudes

Many leftover questions:

- Why are the CK-dual theories relevant here? Are they the only ones?
- What do we learn about the kinematic algebra of YM EFTs?
- Why is dimension reduction relevant here? How does it act on the YM+(DF)^2 theories?
- Gravity, pions, ...?

-