Horizontal gauge symmetries and

flavour transfers

Luc Darmé IP2I – UCBL

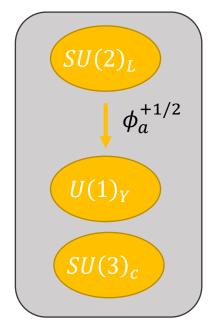
24/01/2024

Based on 2307.09595, 2211.05796, 2102.05055

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101028626

Gauge groups and (accidental symmetries)

SM



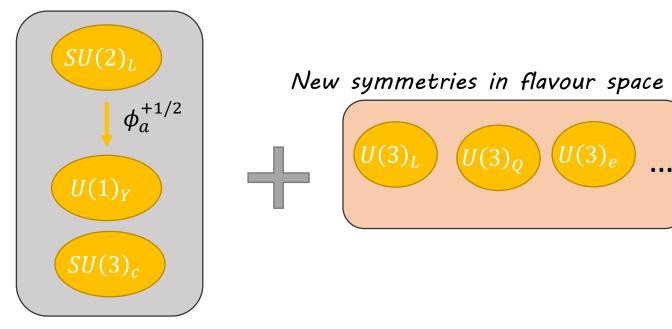
→ Tree-level baryon and lepton number conservation

→ No Majorana mass terms

 \rightarrow Custodial symmetry

Gauge groups and (accidental symmetries)

SM



 The SM has a large global U(3)⁵ symmetry group

 \rightarrow broken by the Yukawa interactions

 New « horizontal gauge symmetries », acting mostly in flavour space

> → Will likely adds new structures, both in the fermion and scalar sector of the UV theory

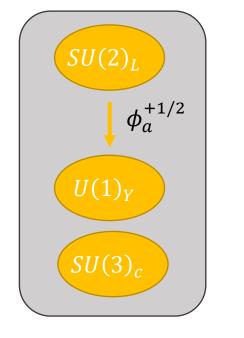
→ Tree-level baryon and lepton number conservation

→ No Majorana mass terms

→ Custodial symmetry

Gauge groups and (accidental symmetries)

SM



New symmetries in flavour space $U(3)_L$ $U(3)_Q$ $U(3)_e$...

 The SM has a large global U(3)⁵ symmetry group

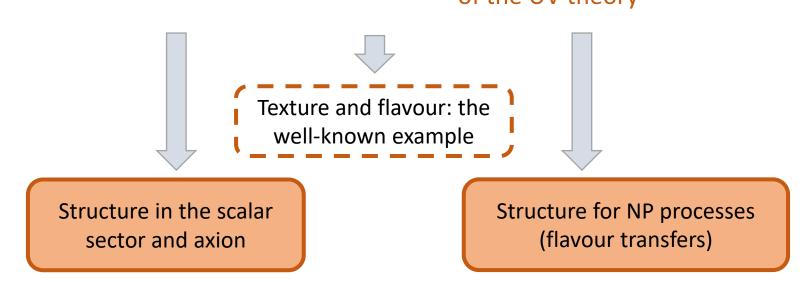
 \rightarrow broken by the Yukawa interactions

- New « horizontal gauge symmetries », acting mostly in flavour space
 - → Will likely adds new structures, both in the fermion and scalar sector of the UV theory

→ Tree-level baryon and lepton number conservation

→ No Majorana mass terms

→ Custodial symmetry



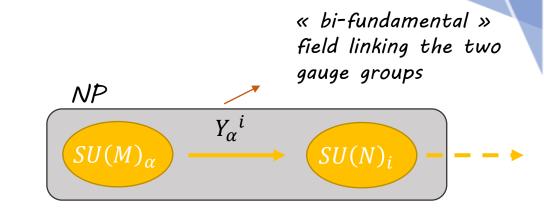
Musing around with rectangular symmetries

Based on 2211.05796, 2102.05055 with E. Nardi and C. Smarra

Rectangular gauge groups

• Semi-simple gauge groups of the form $SU(M) \times SU(N)$, with M > N

→ Invariance under such gauge groups is very constraining on effective operators in the scalar sector

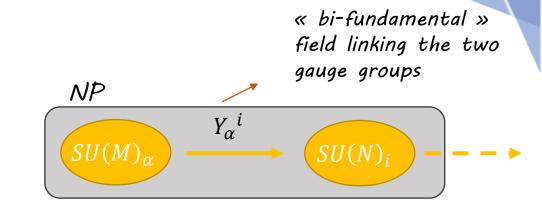


Rectangular gauge groups

 Semi-simple gauge groups of the form SU(M) × SU(N), with M > N

→ Invariance under such gauge groups is very constraining on effective operators in the scalar sector

- The scalar fields are rectangular matrices
 - The hermitian terms are quite simple with a structure close to the SM Higgs one
 - \rightarrow Automatically invariants global re-phasing U(1) symmetries
 - → Such U(1) are only broken by operators which are non-hermitians



$$T \equiv \operatorname{Tr} (Y^{\dagger}Y)$$

$$V(Y) = \kappa (T - \mu_Y^2)^2 + \lambda A$$

$$T_4 \equiv \operatorname{Tr} (Y^{\dagger}Y)^2$$

$$A = \frac{1}{2}(T^2 - T_4)$$

$$T(\hat{Y}) = \sum_{i=1}^N y_i^2, \quad A(\hat{Y}) = \sum_{i < j} y_i^2 y_j^2.$$

Rectangular gauge groups

 Semi-simple gauge groups of the form SU(M) × SU(N), with M > N

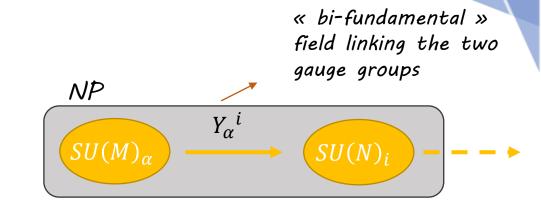
→ Invariance under such gauge groups is very constraining on effective operators in the scalar sector

- The scalar fields are rectangular matrices
 - The hermitian terms are quite simple with a structure close to the SM Higgs one
 - \rightarrow Automatically invariants global re-phasing U(1) symmetries
 - → Such U(1) are only broken by operators which are non-hermitians
- Non-hermitian operators are also very constrained

 \rightarrow Form « cycles » or/and are constructed from ϵ -tensors, which have a strong tendency to vanish

$$\epsilon^{\alpha_1\dots\alpha_M}Y_{\alpha_1,i_1}\dots Y_{\alpha_M,i_M} \equiv (\epsilon_M Y^M)_{i_1\dots i_M}$$

Always vanishes when M>N since it must have two redundant i indices (there are only N possibilities, but we must have M>N indices...)



$$T \equiv \operatorname{Tr} (Y^{\dagger}Y)$$

$$V(Y) = \kappa (T - \mu_Y^2)^2 + \lambda A$$

$$T_4 \equiv \operatorname{Tr} (Y^{\dagger}Y)^2$$

$$A = \frac{1}{2}(T^2 - T_4)$$

$$T(\hat{Y}) = \sum_{i=1}^N y_i^2, \quad A(\hat{Y}) = \sum_{i < j} y_i^2 y_j^2.$$

A first use: flavour symmetries and axions

 The axion is only a solution to the strong CP problem insofar as its potential does not lead to a mass larger than the one generated by the QCD anomaly

$$V(a,\pi^{a}) = -m_{\pi}^{2} f_{\pi}^{2} \cos\left(\frac{\pi}{f_{\pi}}\right) + (PQ \text{ breaking terms})$$
$$+ \frac{1}{2} \frac{m_{u} m_{d}}{(m_{u} + m_{d})^{2}} \frac{m_{\pi}^{2} f_{\pi}^{2}}{f_{a}^{2}} a^{2} \cos\left(\frac{\pi}{f_{\pi}}\right) + \mathcal{O}\left(\frac{a^{3}}{f_{a}^{3}}\right)$$

→ Stringent criterium on the Peccei-Quinn symmetry (PQ): it must be endow with a $U(1)_{PQ} \times SU(3)_c^2$ anomaly, while being protected in effective operators up to dimension ~10

A first use: flavour symmetries and axions

 The axion is only a solution to the strong CP problem insofar as its potential does not lead to a mass larger than the one generated by the QCD anomaly

$$V(a,\pi^{a}) = -m_{\pi}^{2} f_{\pi}^{2} \cos\left(\frac{\pi}{f_{\pi}}\right) + (PQ \text{ breaking terms})$$
$$+ \frac{1}{2} \frac{m_{u} m_{d}}{(m_{u} + m_{d})^{2}} \frac{m_{\pi}^{2} f_{\pi}^{2}}{f_{a}^{2}} a^{2} \cos\left(\frac{\pi}{f_{\pi}}\right) + \mathcal{O}\left(\frac{a^{3}}{f_{a}^{3}}\right)$$

→ Stringent criterium on the Peccei-Quinn symmetry (PQ): it must be endow with a $U(1)_{PQ} \times SU(3)_c^2$ anomaly, while being protected in effective operators up to dimension ~10

• The PQ « quality problem » thus requires an very-well protected global symmetry

 \rightarrow We can use a rectangular gauge group to do the job !

 \rightarrow That means charging quarks under the rectangular gauge groups, leading to two main problems

Avoid anomalies (we must be careful with the quarks representations)

Fully break the horizontal gauge group → must include more scalar fields, thus leading to more possible non-hermitian terms Based on 2211.05796

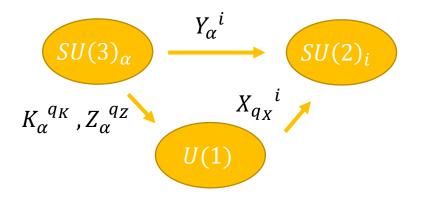
An explicit example

 Goal : Build an horizontal gauge group model reproducing the SM fermion mass hierarchies AND preserving a high-quality accidental PQ global symmetry solving the strong CP problem

An explicit example

 Goal : Build an horizontal gauge group model reproducing the SM fermion mass hierarchies AND preserving a high-quality accidental PQ global symmetry solving the strong CP problem

 \rightarrow Extra U(1) needed to ensure simultaneously a QCD anomaly and non-zero quark masses



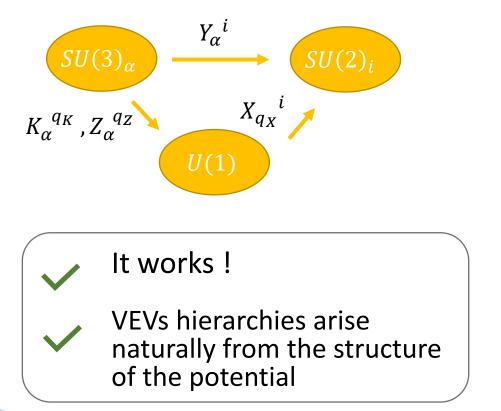
→ Need new VL pairs for the quark mass generations
 → Standard 2HDM Higgs structure to generate the axion

$$\mathcal{M}_{u}=egin{array}{ccccccccccc} u_{R} \; u_{R} \; u_{R} \; U_{R} \; U_{R} \; U_{R} \; Q_{R} & Q_{L} & Q$$

An explicit example

 Goal : Build an horizontal gauge group model reproducing the SM fermion mass hierarchies AND preserving a high-quality accidental PQ global symmetry solving the strong CP problem

 \rightarrow Extra U(1) needed to ensure simultaneously a QCD anomaly and non-zero quark masses



→ Need new VL pairs for the quark mass generations
 → Standard 2HDM Higgs structure to generate the axion

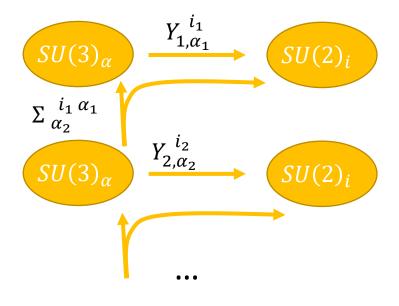
$$\mathcal{M}_{u} = \begin{pmatrix} u_{R} \ u_{R} \ t_{R} \ U_{R} \ U_{R} \ U_{R} \ Q_{R} \\ 0 \ 0 \ 0 \ v \ 0 \ 0 \ z_{1} \\ 0 \ 0 \ 0 \ v \ 0 \ z_{2} \\ 0 \ 0 \ 0 \ v \ 0 \ 0 \ z_{3} \\ 0 \ 0 \ v \ 0 \ 0 \ 0 \ M \\ \Lambda_{u} \ 0 \ x_{1}^{*} \ y_{1}^{*} \ 0 \ 0 \ 0 \\ \Lambda_{u} \ x_{2}^{*} \ 0 \ y_{2}^{*} \ 0 \ 0 \\ x_{1} \ x_{2} \ \Lambda_{t} \ z_{1}^{*} \ z_{2}^{*} \ z_{3}^{*} \ v \end{pmatrix} \begin{pmatrix} q_{L} \\ q_{L} \\ q_{L} \\ Q_{L} \\ U_{L} \\ U_{L} \\ T_{L} \\ , \end{pmatrix}$$

Several new fields required, including « redundant » scalar fields

Another possibility: creating clockworks

- Start from a theory with long « quiver-like » chains of gauge groups
 - \rightarrow The scalar sector link each gauge groups together
 - \rightarrow The renormalisable non-hermitian part of scalar potential is extremely constrained with only terms of the form :

$$\sum_{p=2}^{n} (\epsilon_3 \epsilon_2 Y_{p-1}^2 \Sigma_p)^{\alpha_p i_p} Y_{p_{\alpha_p i_p}}$$



Another possibility: creating clockworks

- Start from a theory with long « quiver-like » chains of gauge groups
 - \rightarrow The scalar sector link each gauge groups together
 - \rightarrow The renormalisable non-hermitian part of scalar potential is extremely constrained with only terms of the form :

 $\sum (\epsilon_3 \epsilon_2 Y_{p-1}^2 \Sigma_p)^{\alpha_p i_p} Y_{p_{\alpha_p i_p}}$

$$SU(3)_{\alpha} \xrightarrow{Y_{1,\alpha_{1}}^{i_{1}}} SU(2)_{i}$$

$$\Sigma_{\alpha_{2}}^{i_{1}\alpha_{1}} \xrightarrow{Y_{2,\alpha_{2}}^{i_{2}}} SU(2)_{i}$$

$$SU(3)_{\alpha} \xrightarrow{Y_{2,\alpha_{2}}^{i_{2}}} SU(2)_{i}$$

The VEVs of each fields can decrease as a power-law since each gear in Y_{p-1}^2 induces a linear term for Y_p

 $(\epsilon_3 \epsilon_2 Y_{p-1}^2 \Sigma_p)^{\alpha_p i_p} Y_{p_{\alpha_p i_p}}$

The residual PQ symmetry, present typical clockwork-like charges

$$\widetilde{\mathcal{X}}_{Y_p} = (-2)^p \qquad \widetilde{\mathcal{X}}_{\Sigma} = 0$$

Flavoured horizontal symmetries & flavour transfers

... the consequences of adding SU(2) of flavour

Based on 2307.09595 with A. Deandrea and N. Mahmoudi

SU(2) flavour gauge groups

- Starting point: add a new $SU(2)_f$ gauge group in the SM, acting on flavour space
 - \rightarrow The « charged» SM fermion can be either part of a doublets or a triplet
 - \rightarrow Only the mixed $SU(2)_f^2 \times U(1)_Y$ anomaly is non-zero

 $\mathcal{A} = ([C(Q_i) - C(L_i)] - [2C(u_{R,i}) - C(d_{R,i}) - C(e_{Ri})])$

In absence of new low-energy fermions, there is a finite (and quite small) number of possible combination ! LH, RH ; L, B ; and M1, M2

• Note that $SU(2)_f$ may be part of a larger (global) group for flavour texture

SU(2) flavour gauge groups

- Starting point: add a new $SU(2)_f$ gauge group in the SM, acting on flavour space
 - \rightarrow The « charged» SM fermion can be either part of a doublets or a triplet
 - \rightarrow Only the mixed $SU(2)_f^2 \times U(1)_Y$ anomaly is non-zero

 $\mathcal{A} = ([C(Q_i) - C(L_i)] - [2C(u_{R,i}) - C(d_{R,i}) - C(e_{Ri})])$

In absence of new low-energy fermions, there is a finite (and quite small) number of possible combination ! LH, RH ; L, B ; and M1, M2

- Note that $SU(2)_f$ may be part of a larger (global) group for flavour texture
- Gauge boson masses are free parameters!

→ Even with a large VEV, small gauge couplings required by flavour constraints imply light new states

$$M_{V_1}^2 = M_{V_2}^2 = M_{V_3}^2 = \frac{g_f}{2} \sum_i v_\phi^2$$

Flavour gauge groups are not part of big unification theories like $SO(10) \rightarrow$ no reason to believe they should be of the same interaction strength as the EW or strong interactions

Bottom-up approach

 Philosophy : we do not try to generate textures but focus rather on the possible phenomenological consequences (in particular on the presence of the new flavour gauge bosons)

 \rightarrow U(2) models of flavour a well charted path

Greljo et al. 2309.11547, 2311.09288 and before last year 2009.10437,1909.02519 etc...

Bottom-up approach

• Philosophy : we do not try to generate textures but focus rather on the possible phenomenological consequences (in particular on the presence of the new flavour gauge bosons)

 \rightarrow U(2) models of flavour a well charted path

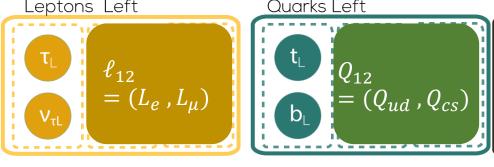
- In the following : left-handed scenario with interactions
 - \rightarrow Both LH leptons and LH quarks part of a flavour doublets

Leptons Left Quarks Left ℓ_{12} Q_{12} $= (L_e, L_\mu)$ $(Q_{ud}$, $Q_{cs})$

• Three new gauge bosons with mass M_V gauge coupling g_f

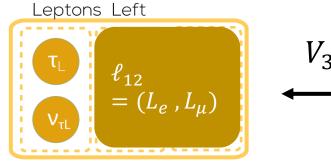
$$V_{3}, V_{p}, V_{m} \qquad \longleftrightarrow \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad The \ corresponding \ generators \ in \ flavour \ space$$

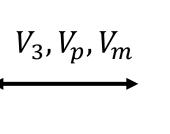
Greljo et al. 2309.11547, 2311.09288 and before last year 2009.10437,1909.02519 etc...

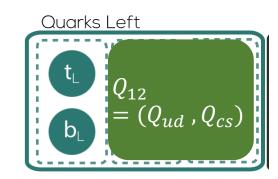


Flavour transfer

• The key point: new flavour gauge bosons do not « break » flavour, they only transfer it from one fermionic sector to another





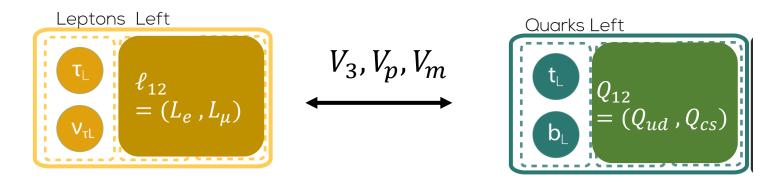


For instance, the «W-like» flavour bosons carry a « flavour-charge »

$$V_{p}^{\nu} (\overline{\mu} \gamma_{\nu} e + \overline{s} \gamma_{\nu} d) + V_{m}^{\nu} (\overline{e} \gamma_{\nu} \mu + \overline{d} \gamma_{\nu} s)$$

Flavour transfer

• The key point: new flavour gauge bosons do not « break » flavour, they only transfer it from one fermionic sector to another



For instance, the «W-like» flavour bosons carry a « flavour-charge »

$$V_{p}^{\nu} (\overline{\mu} \gamma_{\nu} e + \overline{s} \gamma_{\nu} d) + V_{m}^{\nu} (\overline{e} \gamma_{\nu} \mu + \overline{d} \gamma_{\nu} s)$$

Different predictions than MFV like patterns

→ Particularly for $M_{V_1} = M_{V_2} = M_{V_3}$, in the gauge basis we have

$$\mathcal{L}_{\text{eff}} \supset -\sum_{\substack{a,f,f'}} \frac{g_f^2}{8M_V^2} (2\delta^{il}\delta^{jk} - \delta^{ij}\delta^{kl}) \left(\overline{f}_i\gamma^{\mu}f_j\right) \left(\overline{f}'_k\gamma_{\mu}f'_l\right)$$
Flavour diagonal

Symmetry factor Fla

Flavour transfer !

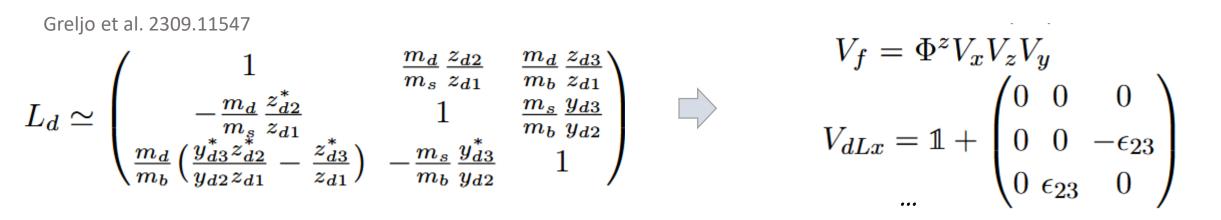
d V_p $e^ \bar{s}$ (b) μ^+

 $\Delta F_f + \Delta F_{f'} = 0$

Moving to the mass basis

• Since we did not focused on a particular flavour texture mechanism, the rotation matrices are « a priori » free

→ Of course in most actual models, the rotation matrices will be hierarchical as a by-product of the hierarchy in the fermion masses



Moving to the mass basis

• Since we did not focused on a particular flavour texture mechanism, the rotation matrices are « a priori » free

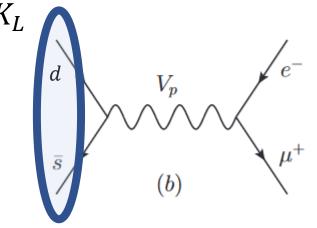
→ Of course in most actual models, the rotation matrices will be hierarchical as a by-product of the hierarchy in the fermion masses

→ Numerically : scan full parameter space

→ Analytical result : use a small spurion approach, allowing for different flavour alignment for the SU(2) doublets (e.g $(12)_{\ell}(12)_{Q_L})$)

An example: kaonic decays

• With the above choice of flavour doublets, V_p , V_m bosons trigger the decays of kaons



 $BR(K_L \to \mu^{\pm} e^{\mp}) < 4.7 \times 10^{-12}$

In particular the process $K_L \rightarrow e \ \mu$, but $K_+ \rightarrow \pi_+ \ e \ \mu$ is also similarly un-suppressed

An example: kaonic decays

• With the above choice of flavour doublets, V_p , V_m bosons trigger the decays of kaons

 K_{L} d V_{p} e^{-} μ^{+} (b) (b) (b) $K_{L} \rightarrow \mu^{+}e^{-}) = \frac{1}{\Gamma_{K_{L}}} \frac{M_{K}f_{K}^{2}}{128\pi^{3}} \alpha_{em}^{2}G_{F}^{2}|V_{td}^{*}V_{ts}|^{2}$

 $BR(K_L \to \mu^{\pm} e^{\mp}) < 4.7 \times 10^{-12}$

In particular the process $K_L \rightarrow e \mu$, but $K_+ \rightarrow \pi_+ e \mu$ is also similarly un-suppressed

$$BR(K_L \to \mu^+ e^-) = \frac{1}{\Gamma_{K_L}} \frac{M_K f_K^2}{128\pi^3} \alpha_{em}^2 G_F^2 |V_{td}^* V_{ts}|^2 \left(1 - \frac{m_\mu^2}{M_K^2}\right)^{3/2} \\ \times \left(|C_9^{sd\mu e} + C_9^{sde\mu *}|^2 + |C_{10}^{sd\mu e} + C_{10}^{sde\mu *}|^2\right)$$

• The corresponding limit is at the 250 TeV level

$$BR(K_L \to \mu^{\pm} e^{\pm}) = 1.2 \cdot 10^{-10} \left(\frac{100 \text{ TeV}}{M_V/g_f}\right)^4 \times \begin{cases} 1 & \text{for } (12)_\ell \\ \theta_{\ell 23}^2 & \text{for } (13)_\ell \end{cases}$$

SuperIso implementation

• Interface between the χ^2 routines of SuperIso and BSMArt (using MultiNest)

-> 212 observables included, (~ 180 of B-physics, ~ 15 of Kaons, ~ 15 of leptons

		$SU(2)_f$ flavour alignment			
Constraints	Refs.	$(12)_Q(12)_\ell$	$(23)_Q(23)_\ell$	$(12)_Q(13)_\ell$	
$B \to Kee \ (C_9)$	/	$- heta_{Q23}$	$+ heta_{\ell 12} heta_{\ell 13}$	$- heta_{Q23}$	
$B o K \mu \mu \ (C_9)$	/	$+ heta_{Q23}$	$- heta_{\ell 23}$	0	
$K \to \pi ee~(C_9)$	/	$+ heta_{\ell 12}$	0	$+ heta_{\ell 13}$	
$K o \pi \mu \mu \left(C_9 ight)$	/	$- heta_{\ell 12}$	$+ heta_{Q12}$	$ heta_{\ell 12} heta_{\ell 23}$	
$\mathrm{BR}_{K^+\to\pi^+\mu^+e^-}^{(\mathrm{E865})} < 1.3\times10^{-11}$	[32, 82]	1	0	$ heta_{\ell 23}^2$	
$\mathrm{BR}^{(\mathrm{E865})}_{K^+\to\pi^+\mu^-e^+} < 6.6\times10^{-11}$	[32, 82]	0	0	0	
$\mathrm{Br}_{K^+ \to \pi^+ \nu \bar{\nu}}^{(\mathrm{NA62})} = 1.06^{+0.41}_{-0.35} \times 10^{-10}$	[22]	1	$ heta_{Q12}^2$	1	
${\rm BR}_{K_L o \mu^+ e^-}^{({\rm BNL})} < 4.7 \times 10^{-12}$	[20]	1	0	$ heta_{\ell 23}^2$	
${ m BR}^{({ m BaBar})}_{B^+ o K^+ u u} < 1.6 imes 10^{-5}$	[95]	$2\theta_{Q13}^2+\theta_{Q23}^2$	1	$2\theta_{Q13}^2+\theta_{Q23}^2$	
${\rm BR}^{\rm (LHCb)}_{B^+\to K^+e^-\mu^+} < 6.4\times 10^{-9}$	[118]	$ heta_{Q13}^2$	$ heta_{\ell 13}^2$	0	
${\rm BR}_{B^+\to K^+\mu^-\tau^+}^{\rm (BaBar)} < 2.8\times 10^{-5}$	[119]	0	1	0	
K oscillations (C_1)	[120]	0	$ heta_{Q12}^2$	0	
D oscillations (C_1)	[120]	$ heta_{Q13}^2$	$1 - 8\theta_{Q12}$	$ heta_{Q13}^2$	
B_d oscillations (C_1)	[120]	$ heta_{Q13}^2$	$ heta_{Q13}^2$	$ heta_{Q13}^2$	
B_s oscillations (C_1)	[120]	$ heta_{Q23}^2$	0	$ heta_{Q23}^2$	
$\mathrm{BR}_{\mu \to e \bar{e} e}^{(\mathrm{SINDRUM})} < 1.0 \cdot 10^{-12}$	[105]	0	0	$ heta_{\ell 23}^2$	
$\mathrm{BR}^{(\mathrm{BELLE})}_{\tau\to 3\mu} < 2.1\cdot 10^{-8}$	[106]	$ heta_{\ell 23}^2$	0	0	
$\mathrm{BR}_{\tau \to 3e}^{(\mathrm{BELLE})} < 3.3 \cdot 10^{-8}$	[106]	$ heta_{\ell 13}^2$	0	0	
$\mathrm{BR}^{(\mathrm{MEG})}_{\mu \to e \gamma} < 4.2 \cdot 10^{-13}$	[100, 101]	0	$ heta_{\ell 12}^2$	$ heta_{\ell 13}^2$	
$\mathrm{BR}_{\tau \to e\bar{K^*}}^{(\mathrm{Belle})} < 3.2 \cdot 10^{-8}$	[110]	0	0	1	
$\mathrm{BR}_{\tau \to \mu \bar{K}^*}^{(\mathrm{Belle})} < 7.0 \cdot 10^{-8}$	[110]	$ heta_{\ell 13}^2$	$ heta_{Q13}^2$	$ heta_{\ell 12}^2$	
$\operatorname{CR}_{Au,\mu \to e}^{(\text{SINDRUM-II})} < 7 \cdot 10^{-13}$	[21, 103, 112]	$1+20\theta_{\ell 12}$	$ heta_{\ell 12}^2$	$\theta_{\ell 12}(2.3\theta_{\ell 12}-\theta_{\ell 23})$	
$\mu \bar{e} \rightarrow e \bar{\mu}$ oscillations (C ₁)	[117]	0	$ heta_{\ell 12}^2$	$ heta_{\ell 12}^2$	

SuperIso implementation

• Interface between the χ^2 routines of SuperIso and BSMArt (using MultiNest)

-> 212 observables included, (~ 180 of B-physics, ~ 15 of Kaons, ~ 15 of leptons

• Flavour transfer observables lead to strong bounds even for small mixing angles.

 $\Delta F_f + \Delta F_{f'} = 0$

→ Typical limits on M_V / g_f at the 100 TeV scale

			$SU(2)_f$ flavour alignment		
Constraints	Refs.		$(12)_Q(12)_\ell$	$(23)_Q(23)_\ell$	$(12)_Q(13)_\ell$
$B \to Kee \ (C_9)$ $B \to K\mu\mu \ (C_9)$ $K \to \pi ee \ (C_9)$	Flavour universality		$\begin{array}{c} -\theta_{Q23} \\ +\theta_{Q23} \\ +\theta_{\ell 12} \end{array}$	$\begin{array}{c} +\theta_{\ell 12}\theta_{\ell 13} \\ -\theta_{\ell 23} \\ 0 \end{array}$	$egin{array}{c} - heta_{Q23} \ 0 \ + heta_{\ell 13} \end{array}$
$K \to \pi \mu \mu \ (C_9)$	violation		$- heta_{\ell 12}$	$+ heta_{Q12}$	$ heta_{\ell 12} heta_{\ell 23}$
${\rm BR}_{K^+\to\pi^+\mu^+e^-}^{\rm (E865)} < 1.3$	$\times 10^{-11}$	[32, 82]	1	0	$ heta_{\ell 2 3}^2$
${\rm BR}_{K^+\to\pi^+\mu^-e^+}^{\rm (E865)} < 6.6$	$ imes 10^{-11}$	[32, 82]	0	0	0
$\text{Br}_{K^+ \to \pi^+ \nu \bar{\nu}}^{(\text{NA62})} = 1.06^{+0.5}_{-0.5}$	$^{41}_{35} \times 10^{-10}$	Flavour	1	$ heta_{Q12}^2$	1
$\mathrm{BR}^{\mathrm{(BNL)}}_{K_L o \mu^+ e^-} < 4.7 imes 1$		transfer	1	0	$ heta_{\ell 23}^2$
${\rm BR}^{\rm (BaBar)}_{B^+\to K^+\nu\nu} < 1.6 \times$	10^{-5}	observabl	$2\theta_{Q13}^2 + \theta_{Q23}^2$	1	$2\theta_{Q13}^2+\theta_{Q23}^2$
$\mathrm{BR}^{\mathrm{(LHCb)}}_{B^+\to K^+e^-\mu^+} < 6.4$	$ imes 10^{-9}$	[118]	$ heta_{Q13}^2$	$ heta_{\ell 13}^2$	0
${\rm BR}_{B^+\to K^+\mu^-\tau^+}^{\rm (BaBar)} < 2.8\times 10^{-5}$		[119]	0	1	0
K oscillations (C_1)		[120]	0	$ heta_{Q12}^2$	0
D oscillations (C_1)		[120]	θ_{Q13}^2	$1 - 8\theta_{Q12}$	θ_{Q13}^2
B_d oscillations (C_1)		$\begin{bmatrix} 120 \end{bmatrix} \Delta \mathbf{F} =$	$2 \theta_{Q13}^2$	$ heta_{Q13}^2$	$ heta_{Q13}^2$
B_s oscillations (C_1)		[120]	$ heta_{Q23}^2$	0	$ heta_{Q23}^2$
$\mathrm{BR}_{\mu \to e\bar{e}e}^{(\mathrm{SINDRUM})} < 1.0 \cdot 1$	0^{-12}	[105]	0	0	$ heta_{\ell 23}^2$
$\mathrm{BR}_{\tau \to 3\mu}^{(\mathrm{BELLE})} < 2.1 \cdot 10^{-8}$		^[106] LFV	$ heta_{\ell 23}^2$	0	0
${ m BR}^{({ m BELLE})}_{ au ightarrow 3e} < 3.3 \cdot 10^{-1}$	8	[106]	$ heta_{\ell 13}^2$	0	0
$\mathrm{BR}_{\mu \to e\gamma}^{(\mathrm{MEG})} < 4.2 \cdot 10^{-13}$	3	[100, 101]	0	$ heta_{\ell 12}^2$	$ heta_{\ell 13}^2$
$\mathrm{BR}_{\tau \to e\bar{K}^*}^{(\mathrm{Belle})} < 3.2 \cdot 10^{-8}$	Γ	[110]	0	0	1
${ m BR}^{({ m Belle})}_{ au ightarrow \muar{K}^*} < 7.0\cdot 10^{-8}$		[110]	$ heta_{\ell 13}^2$	$ heta_{Q13}^2$	$ heta_{\ell 12}^2$
$CR_{Au,\mu \to e}^{\text{(SINDRUM-II)}} < 7 \cdot 1$	10^{-13}	[21, 103, 112]	$1+20 heta_{\ell 12}$	$ heta_{\ell 12}^2$	$\theta_{\ell 12}(2.3\theta_{\ell 12}-\theta_{\ell 23})$
$\mu \bar{e} \rightarrow e \bar{\mu}$ oscillations (6)	C ₁)	[117]	0	$ heta_{\ell 12}^2$	$ heta_{\ell 12}^2$

On LHC constraints

- When $M_V \leq$ few TeV, direct production at LHC becomes possible
- LHC is « perfect » for the flavour transfer processes since NP candidate can be produced from quark (or gluon) fusion, but decay leptonically to ensure detection.

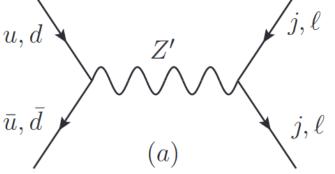
$$pp \to V + X, V \to \ell \ell$$

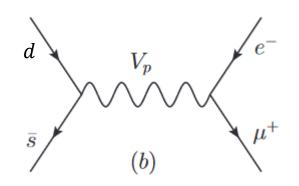
 \rightarrow Standard searches for Z': di-leptons and di-jets

• Searches using LFV final states are extremely attractive

→ The proton contains enough sea-quarks to produce the off-diagonal flavour boson

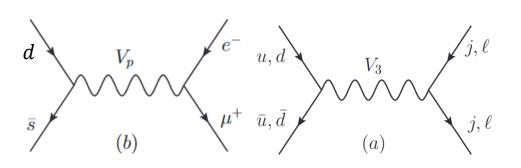
→ Lepton flavour violation in the final states limit the QED background



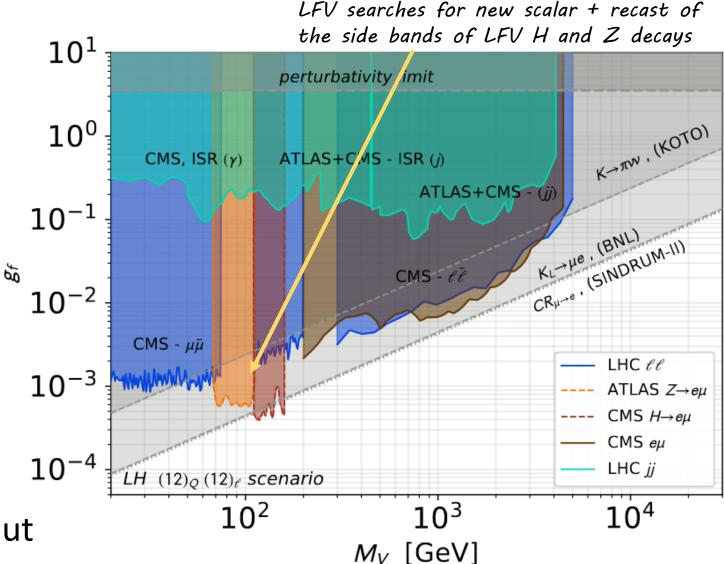


LHC limits and flavour: LH - $(12)_{\ell}(12)_Q$

- Use the (LH) scenario
 - →Assume that 1st and 2d generations of lefthanded fermions are part of a flavour doublets
 - → Production at LHC is huge !

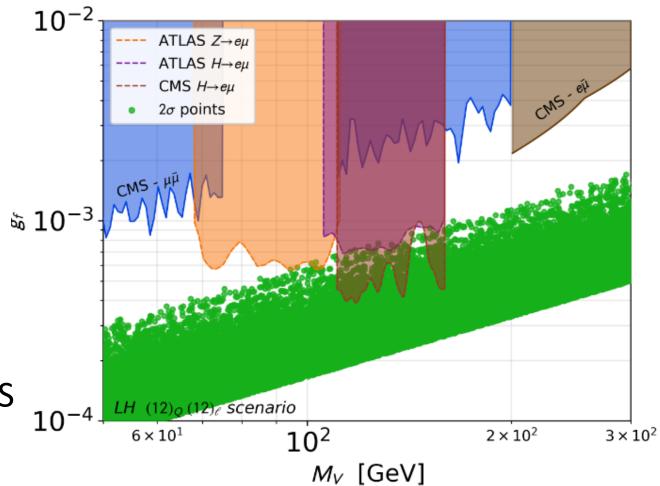


 Limits from Kaonic and muon conversion in nuclei dominate, but LHC constraints are close



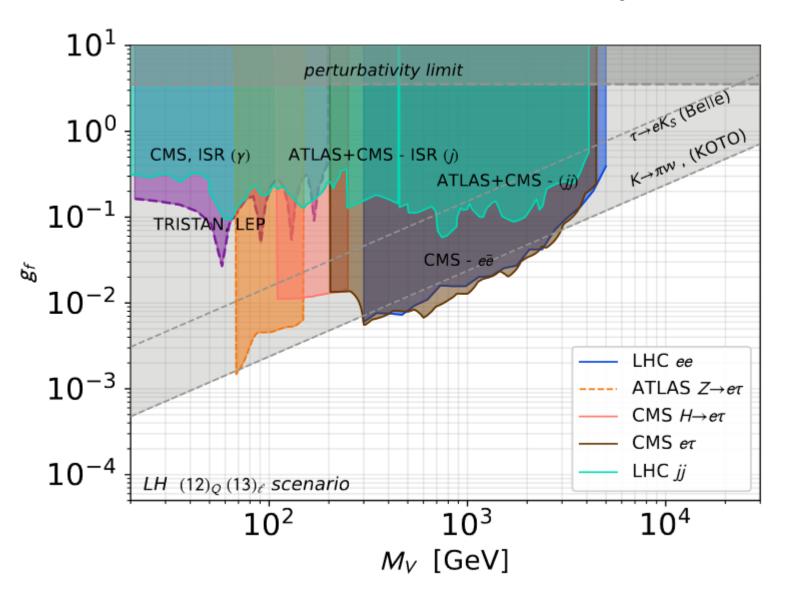
LFV decays of H and Z

- The best constraints arise from the recasting of LFV H and Z decays
 - $\overrightarrow{} Z \to e\mu, e\tau, \mu\tau \text{ and } \\ h \to e\mu, e\tau, \mu\tau$
 - →We calibrate the signal on the Z and H one for the efficiency, then uses the side-band data to put a limit
- There is a $\sim 3\sigma$ anomay in the CMS data set, ATLAS data not precise enough to call... for now



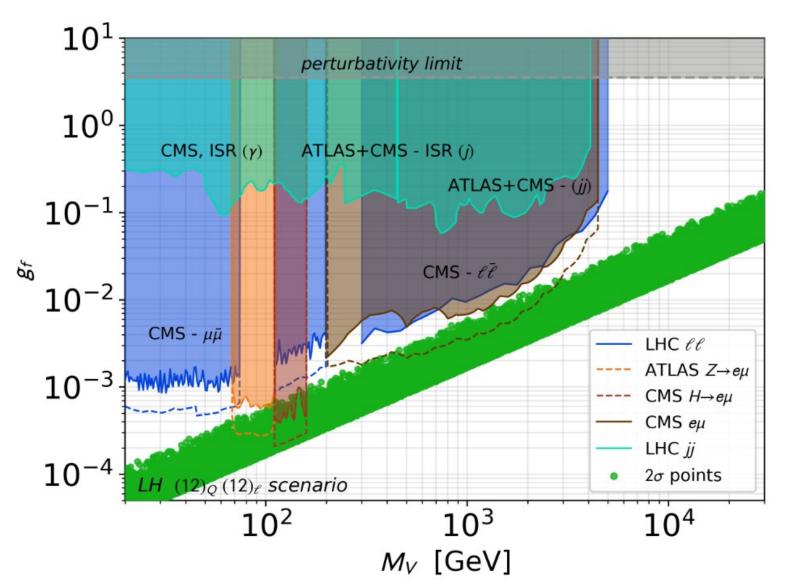
Another flavour alignement LH - $(13)_{\ell}(12)_Q$

- Corresponds to a « muon as a third generation lepton » scenario
- Now the strongest limits arise from Kaonic neutrino decays (since do not depend on the neutrino flavour)
- LHC constraints are also weakened



Future prospects

- LHC contraints (and most importantly the recasting of $H \rightarrow e \mu$ and $Z \rightarrow e \mu$ limits) are close or overlapping with the flavour constraints
- HL-LHC could probe even deeper, as would dedicated resonance searches around and below the 100 GeV range



Conclusion

Conclusion

- New horizontal gauge symmetries are a great model building tool !
 - \rightarrow Create and protect new accidental symmetries
 - \rightarrow Generate textures
 - → Shape the scalar potential (clockwork structures ...) and the vacuum structure of the theory (create hierarchical VEVs)
- They can have significant phenomenological consequences

→ Non-abelian flavour gauge symmetries can naturally lead to GeV to TeV new vectors for small couplings

- \rightarrow LHC has an important role to play for new vectors at and below the TeV
- Flavour transfer processes lead to very specific signatures and form an interesting category of observables (nice classification tool!)

Backup

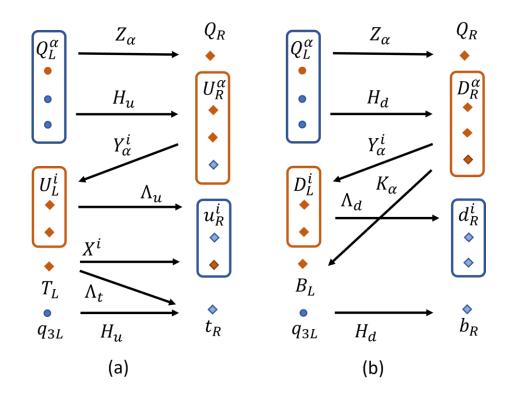
Non-zero mass quarks

• Hard to protect the PQ symmetry while maintaining a mass for all quarks

$$\det \mathcal{M} = \epsilon_{i_1 i_2 \dots i_{n_Q}} \epsilon_{j_1 j_2 \dots j_{n_Q}} \mathcal{M}_{i_1 j_1} \mathcal{M}_{i_2 j_2} \dots \mathcal{M}_{i_{n_Q} j_{n_Q}} \neq 0$$

$$\sum_{Q_{L\ell}} m_\ell \mathcal{X}_{Q_{L\ell}} - \sum_{Q_{Rr}} n_r \mathcal{X}_{Q_{Rr}} = \mathcal{A} \neq 0$$

- The operator corresponding to the determinant of the quark masses breaks PQ
- →We would need at least 10 pairs of chiral quarks with the same electric charge (as the final mass matrix is diagonal by block)

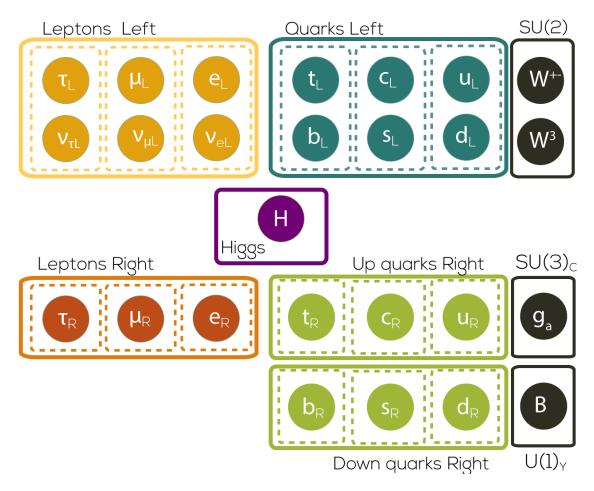


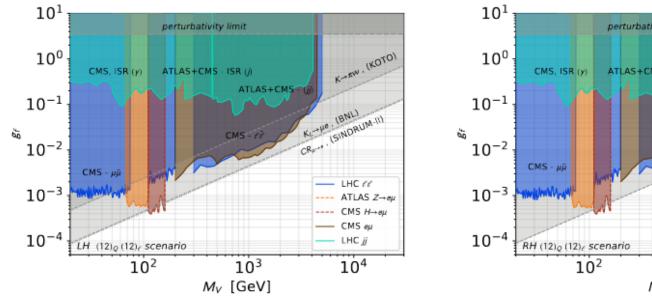
Horizontal flavour gauge groups

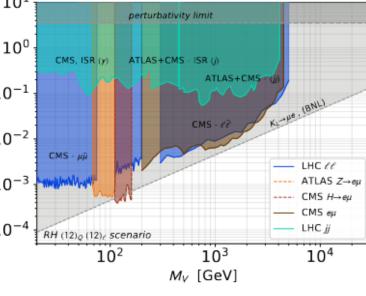
- The SM has a large global $U(3)^5$ symmetry group
 - \rightarrow broken by the Yukawa interactions

 $\mathcal{L}_Y = -Y_{ij}^d \,\overline{Q_{Li}^I} \,\phi \, d_{Rj}^I - Y_{ij}^u \,\overline{Q_{Li}^I} \,\epsilon \,\phi^* u_{Rj}^I + \text{h.c.},$

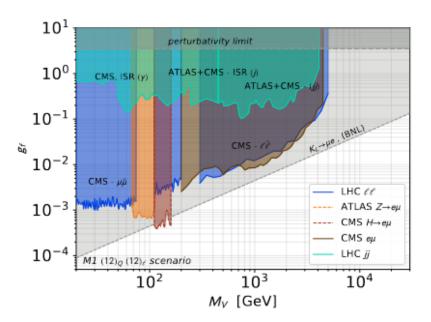
- We can gauge a subset of this group ?
 - →U(1) case: Frogatt-Nielsen constructions, $L_{\mu} - L_{\tau}$, flavons, etc...
 - → The non-abelian case has been sparsely studied.
- We can also consider larger gauge groups by adding fermions

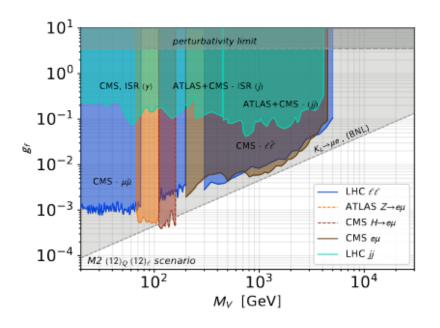




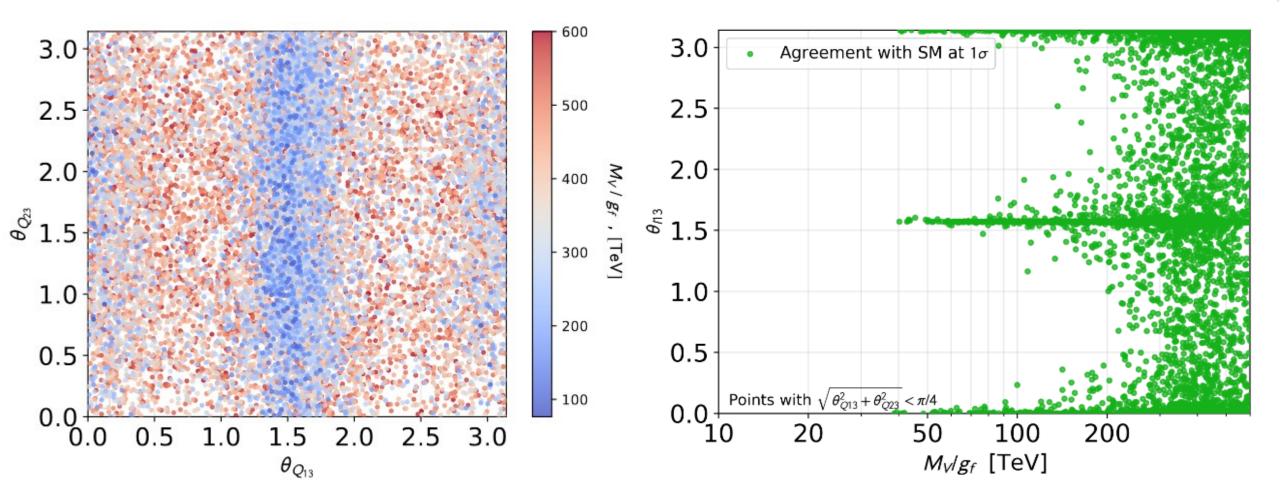


(a)





Some scan results



• First generations couplings are avoided as much as possible of course ...