Horizontal gauge symmetries and

flavour transfers

Pl @gﬁm
= Luc Darmé
gueene
; ,,2 3 P21 — UCBL 22
LES IMFINISS 24/01/2024 w

Based on 2307.09595, 2211.05796, 2102.05055

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Sktodowska-Curie grant agreement No 101028626




Gauge groups and (accidental symmetries)

sm
a : I
da

- Tree-level baryon
and lepton number
conservation

- No Majorana mass
terms

— Custodial
symmetry



Gauge groups and (accidental symmetries)

sm
- ~  The SM has a large global U(3)°
Q symmetry group
New symmetries in flavour space —>broken by the Yukawa interactions

+1/2

4 )
¢ ) * New « horizontal gauge
O - . symmetries », acting mostly in
N J

flavour space

- Will likely adds new structures,
both in the fermion and scalar sector
% of the UV theory

-

- Tree-level baryon
and lepton number
conservation

- No Majorana mass
terms

- Custodial
symmetry



Gauge groups and (accidental symmetries)

sm
-~ DY  The SM has a large global U(3)°
Q symmetry group
New symmetries in flavour space —>broken by the Yukawa interactions
+1/2 4 N
¢ i * New « horizontal gauge
| . symmetries », acting mostly in
i 9 y flavour space
- Will likely adds new structures,
both in the fermion and scalar sector
L J of the UV theory
- Tree-level baryon
and lepton number o ——— = ——
conservation j Texture and flavour: the :
: -k I
- No Majorana mass | _ WeTknowh exampe_
terms
_ Structure in the scalar Structure for NP processes
> Custodial sector and axion (flavour transfers)
symmetry

\ -



Musing around with rectangular
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Rectangular gauge groups

e Semi-simple gauge groups of the form SU(M) X
SU(N), withM > N

—> Invariance under such gauge groups is very
constraining on effective operators in the scalar sector

« bi-fundamental »
field linking the two
gauge groups
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Rectangular gauge groups held linking, he oo

gauge groups

e Semi-simple gauge groups of the form SU(M) X

NP _
Y,
SU(N), with M > N Q Q

- Invariance under such gauge groups is very
constraining on effective operators in the scalar sector

* The scalar fields are rectangular matrices T =Tr (YY)
— The hermitian terms are quite simple with a structure 9 5
close to the SM Higgs one VY)=k(T—-py) +2A Ty ="Tr (YTY)
—> Automatically invariants global re-phasing U (1) symmetries A= %(Tg_ﬂl)
=> Such U(1) are only broken by operators which are non- N

hermitians TY)=> v, AY)=> vl

i=1 i<j
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gauge groups

e Semi-simple gauge groups of the form SU(M) X

NP _
Y,
SU(N), with M > N Q Q

- Invariance under such gauge groups is very
constraining on effective operators in the scalar sector

* The scalar fields are rectangular matrices T=Tr (YY)
— The hermitian terms are quite simple with a structure 9 | £9
close to the SM Higgs one VY)=k(T—-py) +2A Ty =Tr (YY)
—> Automatically invariants global re-phasing U (1) symmetries A= %(Tg_ﬂl)
=> Such U(1) are only broken by operators which are non- N )
hermitians TY)=) v, AY)=) vy

i=1 i<j

* Non-hermitian operators are also very constrained

—>Form « cycles » or/and are constructed from e-tensors, which have a strong tendency to
vanish
Always vanishes when M>N since it must have two

redundant | indices (there are only N possibilities, but we
must have M>N indices...)
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A first use: flavour symmetries and axions

w

* The axion is only a solution to the strong CP V(a,7%) = —mZ2 f2 cos (f_) - +(PQ breaking terms)

problem insofar as its potential does not lead to
a mass larger than the one generated by the L1 mamg mofp o, (1) Lo (f)
QCD anoma|y 2 (g, +ma)®  f2 fx fa

—> Stringent criterium on the Peccei-Quinn symmetry (PQ): it must be endow with a U(l)pQ X SU(3)2
anomaly, while being protected in effective operators up to dimension ~10
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* The axion is only a solution to the strong CP V(a,7*) = —m2 f2 cos (f_) - +(PQ breaking terms)

problem insofar as its potential does not lead to
a mass larger than the one generated by the L1 mamg mofp o, (1) Lo (f)
QCD anomaly 2 (g, +ma)®  f2 fx fa

> Stringent criterium on the Peccei-Quinn symmetry (PQ): it must be endow with a U(1)po X SU(3)?
anomaly, while being protected in effective operators up to dimension ~10

* The PQ « quality problem » thus requires an very-well protected global symmetry

—>We can use a rectangular gauge group to do the job !
—>That means charging quarks under the rectangular gauge groups, leading to two main problems

Avoid anomalies (we must be careful Fully break the horizontal gauge group = must
with the quarks representations) include more scalar fields, thus leading to more

possible non-hermitian terms
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An explicit example

e Goal : Build an horizontal gauge group model reproducing the SM fermion mass
hierarchies AND preserving a high-quality accidental PQ, global symmetry solving the
strong CP problem




An explicit example
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Goal : Build an horizontal gauge group model reproducing the SM fermion mass

hierarchies AND preserving a high-quality accidental PQ, global symmetry solving the
strong CP problem

—> Extra U(1) needed to ensure simultaneously a

- Need new VL pairs for the quark mass generations
QCD anomaly and non-zero quark masses

- Standard 2HDM Higgs structure to generate the axion

i
Y, urp ur th Up Ur U QR
(0 0O 0 v 0 zl\ qr,

0
. 0 0 0 0 v 0 291 qp
x i 10 0 0 0 0 v =23 |qL
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An explicit example

Goal : Build an horizontal gauge group model reproducing the SM fermion mass

hierarchies AND preserving a high-quality accidental PQ, global symmetry solving the
strong CP problem

—> Extra U(1) needed to ensure simultaneously a

- Need new VL pairs for the quark mass generations
QCD anomaly and non-zero quark masses

- Standard 2HDM Higgs structure to generate the axion

i
Y, up up tp Up Up Urp Qg
(0 0O 0 v 0 251\ qr,

0
0O 0 0 0 v 0 29 qr.
X l . 0 0 0 0 0 o 23 qr,
KaqK,Zan dx My = 0 0 v 0 0 0 M|Q
A 0 2ty 0 0 0 |0
0 Ay 25 0 y3 0 0 | UL
\:1.'1 To Ay 2] 23 2} v / Ty,
s It works ! Several new fields
_ . . % required, including
\/ VEVs hierarchies arise « redundant » scalar
naturally from the structure fields
\ of the potential ) \_ -




Another possibility: creating clockworks

. . . . y,
e Start from a theory with long « quiver-like » chains of Q Lats
gauge groups _
—>The scalar sector link each gauge groups together ) al; “ .
— The renormalisable non-hermitian part of scalar potential is Q 2,02
extremely constrained with only terms of the form:

i
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Another possibility: creating clockworks

: : : . y i
e Start from a theory with long « quiver-like » chains of Q Loy
gauge groups '
Z l1 a1

—>The scalar sector link each gauge groups together a;

| " . Y,
— The renormalisable non-hermitian part of scalar potential is Q 2,02
extremely constrained with only terms of the form:

i

2 Qpip
E :(E3E?Yp—lEP) Y}:-apz';;

p=2
ﬁe VEVs of each fields can decrease\ / The residual PQ symmetry,
as a power-law since each gear in present typical clockwork-like
Y;_iinduces a linear term for Y,, charges
(€362Y 1 2p) " 7Yy, .. Xy, = (=2)? Xz =0

L\ RN Y,




Flavoured horizontal symmetries

& flavour transfers

. the consequences of adding SU(2) of flavour

Based on 2307.09595 with A. Deandrea and N. Mahmoudi



SU(2) flavour gauge groups

 Starting point: add a new SU(Z)f gauge group in the SM, acting on flavour space
- The « charged» SM fermion can be either part of a doublets or a triplet
— Only the mixed SU(Z)]Zc X U(1)y anomaly is non-zero

A= ([C(Qi) — C(Li)] = [2C(ur,i) — C(dr,i) — Clers)])

In absence of new low-enerqgy fermions, there is a finite (and quite small) number of possible combination !
LH, RH ; L, B ; and mi, M2

* Note that SU(2) - may be part of a larger (global) group for flavour texture
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— Only the mixed SU(Z)]Zc X U(1)y anomaly is non-zero

A= ([C(Qi) — C(Li)] = [2C(ur,i) — C(dr,i) — Clers)])

In absence of new low-enerqgy fermions, there is a finite (and quite small) number of possible combination !
LH, RH ; L, B ; and mi, M2

* Note that SU(2) - may be part of a larger (global) group for flavour texture

* Gauge boson masses are free parameters!
- Even with a Iarge V!EV, smz?ll gauge couplings required M2 = M2 = M2 = %f S 02
by flavour constraints imply light new states p

Flavour gauge groups are not part of big unification theories like SO(10) > no reason to believe
they should be of the same interaction strength as the EW or strong interactions



Bottom-up approach

* Philosophy : we do not try to generate textures but focus rather on the
possible phenomenological consequences (in particular on the presence of
the new flavour gauge bosons) |

Greljo et al. 2309.11547, 2311.09288 and before last year

- U(2) models of flavour a well charted path 2009.10437,1909.02519 etc...
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* Philosophy : we do not try to generate textures but focus rather on the
possible phenomenological consequences (in particular on the presence of
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Greljo et al. 2309.11547, 2311.09288 and before last year

- U(2) models of flavour a well charted path 2009.10437,1909.02519 etc...

Leptons Left Quarks Left

* In the following : left-handed scenario with
Interactions

- Both LH leptons and LH quarks part of a flavour ' = (Qua Qes) |
doublets ' ' '

* Three new gauge bosons with mass My, gauge coupling g«

1 0 0 0 1 0 0 0 0 The corresponding
V3 ) Vp, Vm < > (() —1 0) (() 0 ()) (1 0 0> generators in
0O 0 O 0 0 O 0 o o/ flavour space




Flavour transfer

.\

* The key point: new flavour gauge bosons do not « break » flavour,
they only transfer it from one fermionic sector to another

Leptons Left

Quarks Left

For instance, the «W-like» flavour
bosons carry a « flavour-charge »

W (T vve +5y,d)
+VpEyvu +dvys)
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Flavour transfer

* The key point: new flavour gauge bosons do not « break » flavour,
they only transfer it from one fermionic sector to another

Leptons Left Quarks Left

For instance, the «W-like» flavour
bosons carry a « flavour-charge »

W (T vve +5y,d)
+VpEyvu +dvys)

/ Different predictions than MFV like patterns
= Particularly for My, = My,

_ = My,, in the gauge basis we have

2 —_—

Lo > = D reytz QI 1528 (T 1) (Tiow 1)

/ﬂ(f:f'L_. v \ \ AF -+ AF r =10
Flavour diagonal f f
KSymmetry factor Flavour transfer ! /

\ -

___'I




Moving to the mass basis

* Since we did not focused on a particular flavour texture mechanism,
the rotation matrices are « a priori » free

— Of course in most actual models, the rotation matrices will be hierarchical as
a by-product of the hierarchy in the fermion masses

Greljo et al. 2309.11547

— H=z
1 Mg Zgz Mg Zg3 Vi = 2V, V.V,
ms 241 mp 241
Ly~ _ Mg Zg2 1 m, Yd3 00 O
o :umsﬁ zdl * * mb ydﬁ — —_— 5y
md (yd:azdg . ﬂ) __mgs Yaa 1 VdL:I: 1 + 0 0 €93
mp Yd22d1 Zd1l mp Yd2

U €923 U



Moving to the mass basis

* Since we did not focused on a particular flavour texture mechanism,
the rotation matrices are « a priori » free

— Of course in most actual models, the rotation matrices will be hierarchical as
a by-product of the hierarchy in the fermion masses

Greljo et al. 2309.11547

- Z
1 Mg Zi2 M4 Zd3 Vi = 2V, V.V,
Ms Zd1 mp 241
Ly~ _ Mg Zg2 1 m, Yd3 00 O
o :umsﬁ zdl * * mb ydﬁ — —_— 5y
mgq (’Hdazdg _ ﬂ) __ms Y43 1 VdL:[: 1+10 O €923
mp \Yd22d1 Zdl mp Yd2 U €93 []

= Numerically : scan full parameter space

— Analytical result : use a small spurion approach, allowing for different
flavour alignment for the SU(2) doublets (e.g (12),(12),,)



An example: kaonic decays

* With the above choice of flavour doublets, 1, V;, bosons trigger the decays
of kaons

BR(Kj, — pret) < 4.7 x 10712

In particular the process

5 KL—>e,u,butK+—>T[+€[,lis
also similarly un-suppressed




An example: kaonic decays

* With the above choice of flavour doublets, 1, V;, bosons trigger the decays
of kaons

BR(Kj, — pret) < 4.7 x 10712

In particular the process

A KL—>e,u,butK+—>T[+€/,lis
also similarly un-suppressed

‘ 3/2
_ 1 MKIE - & m‘a
BR(KL e ) = [ — o & 0 Gl mmgﬁ( -2
I

(|6;dpe +63deu*|2 n |C.lgg,u,e _|_Csde,u.*|2)

* The corresponding limit is at the 250 TeV level

100 TeV\ 4 1 for (12
BR(KL%piei)zl_z.m—l”( 00 "'V) K{ or (12),

My /g5 67,, for (13),
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Superlso implementation
Constraints Refs. (12)0(12),  (23)Q(23)¢ (12)(13),
2 B — Kee (Cy) / —bqa3 +0¢120013 —0qas3
1 B — Kpp (C +0g2: — 0Oy 0
* Interface between the y“ routines pn (Co) /
K — mee ((jg) / +0p10 0 +0p13
of Superlso and BSMArt (usin Y / gy —toan il
P g BRAT, i <13x1071 [32, 82] 1 0 02
Mu |t| N est) BRATY, L <66x1071  [32, 8] 0 0 0
(NA62) e 0,41 —10 )¢ 2
Br = 1.061041 x 10710 [29] 1 0 1
. K+t—atuve —0.35 212
-> 212 observables Included, (~ 180 of B- BR, N, <47 x 10712 [20] 1 0 02,
: BR B*Pa) 16 x 1070 95 202, + 02, 1 202, + 62,
physics, ~ 15 of Kaons, ~ 15 of leptons Rttty <162 [95 Q1a + O G1a + O
BRI <64x1070 (18] 0215 02, 0
BR ) o <28x 1075 [119] 0 1 0
K oscillations (C) [120] 0 0315 0
D oscillations (C) [120] 0313 1 — 802 0313
By oscillations (C) [120] 92}13 92213 9613
B; oscillations (Ch) [120] 92223 0 6’%23
BR, e M < 1.0 10712 [105] 0 0 02,
BR, 5 < 2.1.10°8 [106] 02, 0 0
BELLE .
BR,PEMP) 33,1078 [106] 02, 0 0
BRMEY < 42.10 13 100, 101] 0 02 02
pH—rey . 3 12 £13
BR ) < 32.10% [110] 0 0 1
Belle ‘ . P
BR " <7.0-10°8 [110] 02, 021 02,
CR S OROMAD 71013 21, 103, 112] | 1+ 20045 025 002(2:3002 — Op3)
pé — efi oscillations (Cy) (117] 0 03,5 07,5




Superlso implementation

* Interface between the y? routines
of Superlso and BSMArt (using

MultiNest)

-> 212 observables included, (~ 180 of B-
physics, ~ 15 of Kaons, ~ 15 of leptons

 Flavour transfer observables lead to
strong bounds even for small mixing
angles.

AFf-I-AFfr =0

= Typical limits on My, /g at the 100 TeV
scale

SU(2)s flavour alignment
Constraints Refs. (12)0(12),  (23)Q(23)¢ (12)(13),
B — Kee (Cy) Flavour —0¢23 +0e126013 —0q23
B — Kpyu (Cq) . . +0¢23 —0Op23 0
K — mee (Cg) unive allty +0p19 0 +0p13
K — mpp (Cy) violation —0p12 +012 0120423
865 =
BRAT O, e <13 x 10710 | [32, 82] 1 0 02,5
BRATY, . <66x107" | [32,82] 0 0 0
NA62 041 -
Ig"‘—nr?"w? = 1061535 < 107! FRdvour 1 Oz 1
(BNL) —12 2
BRKL‘H"‘--"P»_ < 4.7 x 10 t‘?é]nsfer 1 0 €£23
(BaBar) 2 2 2 2
BR?L'HET,)' w <1610 1 diikervablgdan + 0o ! 26013+ 9023
BRUMY, L <64x10° | [11§] 0314 04 0
BR o) o <28x 1075 | [119] 0 1 0
K oscillations (Cy) [120] 0 0812 0
D oscillations (C) [120] 92213 1 —80g12 6%13
By oscillations (C)) 20 AF = 2 9(2213 9(2213 962213
B; oscillations (C4) [120] 962323 0 9(%,23
BR,SINDRUM) 1 0. 10-12 [105] 0 0 02,
BELLE _ ,
BR, 5 < 2.1.10°8 [106] LV 02, 0 0
BELLE :
BR,PEMP) 33,1078 [106] 02, 0 0
BR,Mey? < 4.2.1013 100, 101] 0 02, 02,5
BR ) < 32.10% [TT0] 0 0 T
BR " <7.0-10°8 [110] 02, 0215 02,
CR ﬁ{ﬂﬂ?um'ﬂ) <7-10713 [21, 103, 112] ‘ 1+ 200419 02 0r12(2.30012 — Opa3)
pe — efi oscillations (C1) [117] 0 03,5 07,5




On LHC constraints

* When M, < few TeV, direct production at LHC becomes possible

* LHC is « perfect » for the flavour transfer processes since NP candidate can
be produced from quark (or gluon) fusion, but decay leptonically to ensure
detection.

u, d

?

pp >V + X,V > £L

i, d
— Standard searches for Z’: di-leptons and di-jets h

* Searches using LFV final states are extremely attractive

— The proton contains enough sea-quarks to produce
the off-diagonal flavour boson

- Lepton flavour violation in the final states
limit the QED background

\ -




LHC limits and flavour: LH - (12),(12),

LFV searches for new scalar + recast of

e Use the (LH) scenario 101 the side bands of LFV H and Z decays
—>Assume that 1st and 2d

generations of left- 0
. 10 010"-
handed fermions are part juses AR
of a flavour doublets il
. . -1
- Production at LHC is 10 e
huge ! B
uge 6 10-2 - "Iﬂi&&ﬁ?‘
LHC ##
10_3'; - ATLAS Z-eu
g CMS H—eu
4 1 CMS ey
* Limits from Kaonic and muon 107" 4k amouzyscenario o
102 103 104

conversion in nuclei dominate, but

LHC constraints are close
Rw

My [GEV]




LFV decays of H and Z

* The best constraints arise from )
the recasting of LFV H and Z 1077 grmm——
decays -- ATLAS H—ep

-= CMS H—eu
- Z - ey, et, ut and 20 paints
h — eu,et,ut
—>We calibrate the signal on the Z
and H one for the efficiency, then %1073

uses the side-band data to put a
limit

* There is a ~ 30 anomay in the CMS g orio
data set, ATLAS data not precise 6x100  1(2
enough to call... for now My [GeV]

10~

lL

2% 10?

3% 102



Another flavour alighement L

e Corresponds to a « muon 101
as a third generation e
lepton » scenario 100 S
B
. 101
* Now the strongest limits
arise from Kaonic %
neutrino decays (since 10
do not depend on the L ¥ LHC oe
neutrino flavour) 1077~ HEE R i
* LHC constraints are also 4 T
weakened 1077 ameqsyscenario M
102 10° 104

My [GEV]

A




Future prospects

e LHC contraints (and most
importantly the recasting
of H>epandZ - e u 10°
limits) are close or
overlapping with the 1071
flavour constraints

e HL-LHC could probe even 1077
deeper, as would

aammns E . (02

. _ -= ATLAS Z-eu
dedicated resonance 103 - CMS Heep
searches around and TEr

e 20 points

below the 100 GeV range 104 W3 scenatio
102 103 10%
\ My [GEV]

\ -
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Conclusion

* New horizontal gauge symmetries are a great model building tool !
— Create and protect new accidental symmetries
- Generate textures

—> Shape the scalar potential (clockwork structures ...) and the vacuum structure of the
theory (create hierarchical VEVs)

* They can have significant phenomenological consequences

- Non-abelian flavour gauge symmetries can naturally lead to GeV to TeV new vectors
for small couplings

- LHC has an important role to play for new vectors at and below the TeV

* Flavour transfer processes lead to very specific signatures and form an
interesting category of observables (nice classification tool!)
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Non-zero mass quarks

* Hard to protect the PQ symmetry while maintaining a mass for all quarks

det M = Ei1i2---inQ Ejljz---an Mﬁ'ljl Mizjz s

!

—>The operator corresponding to the
determinant of the quark masses breaks PQ

—=>We would need at least 10 pairs of chiral
quarks with the same electric charge (as the

final mass matrix is diagonal by block)

Zg

ZQLE me XQp, — ZQRT Ny XQp, = A #+ 0

Qr

*

Dg




Horizontal flavour gauge groups

* The SM has a large global U(3)> Leptons Left Quarks Left SU@)

symmetry group
—>broken by the Yukawa interactions o @ e
Qe o

Ly = -YIQL ¢pd; — Y2 QL, ed™uf; + hec.,

* We can gauge a subset of this L -
eptons Right
group ? e N

> U(1) case: Frogatt-Nielsen e @ @

constructions, L, — L, flavons, etc... ——————————

- The non-abelian case has been
sparsely studied.

Down quarks Right ~— U(Dy

* We can also consider larger gauge
groups by adding fermions

lL
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1071 101

l."B?;"::".-

& et o %
10~° e ! 107
—— LHC ¥
10-3 <= ATLAS Zoap 103 ATLAS Z—vep
i - CMSHaae | 0 o rETEgNY == CMS Hep
B — CMS ey 1= — CMS &
-4 ] 11 . -4 | A1 "
10 1H ﬂZ]q-[lI]z scenarno LHC lu RH Hz]q (12, scenario LHE.EI'
102 103 104 102 103 104
My [GeV] My, [GeV]
(a) (b)
10! 101
10° 10°
107" 1071
'.@3‘5‘5"""
] =t %
1072 102
—— LHC ¢##
102 s ATLAS Z—su 103
----- CMS Hesen
- —— CMS o
4] - . -4 ] h
10 M1 (1215 (12} Scenario LI 10 M2 (1235 (12), scenario LHC j
10° 10° 104 107 107 104

My [GeV] My [GeV]




Some scan results

600 -
3.01 . Agreementwith SMat 10 °
500 2.5-
L A00 § 20'
w i}
:__' £1.5_ o d® -
-300 3
=
1.0-
+ 200
0.5-
100 0.0 Points with y/ 85,3+ 60, <74 .
10 20 50 100 200

Myigs [TeV]

* First generations couplings are avoided as much as possible of course ...
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