

High-energy, high-density and hot QCD

Cyrille Marquet

Centre de Physique Théorique Ecole Polytechnique & CNRS

Outline

High-energy QCD

study of hadronic and nuclear wave functions at small values of *x*, using perturbation theory in the presence of strong color fields
establish a long-distance/short-distance factorization framework in the strong field regime

Hot QCD

- study of QCD at finite temperature, using perturbative methods and lattice QCD

- characterization of the quark-gluon plasma created in relativistic heavy-ion collisions

Dense QCD

- study of QCD at finite baryon density, using non-perturbative methods and effective models

- explore the QCD phase diagram, investigate confinement and chiral symmetry breaking

high-energy QCD

From independent partons...

the parton content of high-energy hadrons:

when a hadron is a dilute system of partons, they interact incoherently during a collision

transverse view of the hadron

 $1/k_T \sim$ parton transverse size

 $\ln(k_T^2/\Lambda_{QCD}^2)$

From independent partons...

the parton content of high-energy hadrons:

when a hadron is a dilute system of partons, they interact incoherently during a collision

standard QCD evolution: as k_T increases, the hadron gets more dilute

standard QCD factorization: probabilistic sum of partonic cross-sections

$$d\sigma_{AB\to X} = \sum_{ij} \int dx_1 dx_2 \ f_{i/A}(x_1, \mu^2) f_{j/B}(x_2, \mu'^2) \ d\hat{\sigma}_{ij\to X} + \mathcal{O}\left(\Lambda_{QCD}^2 / M_5^2\right) \int dx_1 dx_2 \ f_{i/A}(x_1, \mu^2) f_{j/B}(x_2, \mu'^2) \ d\hat{\sigma}_{ij\to X} + \mathcal{O}\left(\Lambda_{QCD}^2 / M_5^2\right) d\hat{\sigma}_{ij\to X} + \mathcal{O}\left(\Lambda_{QCD$$

...to collective behavior

when x gets smaller and smaller, the hadron is no longer dilute, the partons start interacting coherently

the Λ^2_{QCD}/M^2 power corrections get enhanced by $\,x^{-\lambda}$

for heavy-nuclei, those density effect are further amplified by $A^{1/3}$

...to collective behavior

when x gets smaller and smaller, the hadron is no longer dilute, the partons start interacting coherently

the Λ^2_{QCD}/M^2 power corrections get enhanced by $\,x^{-\lambda}$

for heavy-nuclei, those density effect are further amplified by $A^{1/3}$

an alternate long-distance/short-distance factorization scheme is needed

it involves effective degrees of freedom (Wilson lines, Reggeized gluons, ...), new operators governed by an effective action (Color Glass Condensate, Lipatov's action, ...)

 \rightarrow an approximation of QCD suited to describe physics at large parton densities 7

The saturation scale

The saturation scale $Q_s(x)$ is the momentum scale which characterizes the transition between the dilute and dense regimes

at small-x, the typical gluon transverse momentum is no more Λ_{QCD} , it is instead $Q_S(x)$

the dynamics is non-linear, but the theory stays weakly coupled $\ lpha_s(Q_s)\ll 1$

Future Prospects

the field of high-energy QCD has recently entered the NLO era: higher-order corrections of several kinds to be computed

• next to leading order in α_s : essential to prove factorization and assess robustness of predictions

in most cases, perturbation theory must be done in conjunction with all-order resummations of various large logarithms

- next-to-eikonal corrections: energy-suppressed but give access to spin-dependent observables
- next-to-planar corrections: going beyond the large-Nc limit

these must be addressed for less and less inclusive observables measured in experiments: exclusive and diffractive cross sections, correlation measurements, global event properties ...

A recent example

NLO calculation of di-jet production

the French community is strongly involved in those NLO calculations

Altinoluk, Boussarie, CM and Taels (2020); Caucal, Salazar and Venugopalan (2021) Taels, Altinoluk, Beuf and CM (2022); Fucilla, Grabovsky, Li, Szymanowski and Wallon (2023) Iancu and Mulian (2023)

When is this important ?

initial stages of heavy-ion collisions

high-energy cosmic rays

Relativistic Heavy-Ion Collisions

main goal: produce and study the quark-gluon-plasma

one observes the system after it has gone through a complicated evolution involving different aspect of QCD

to understand each stage and the transition between them has been challenging

hot and/or dense QCD: the phase diagram

The QCD phase diagram

rich structure: early universe, critical point, deconfinement phase transition, chiral symmetry restoration, neutron stars, color superconductivity, ...

high temperature or baryon density : perturbative computations zero net baryon density: lattice QCD simulations

Finite temperature lattice QCD

• it is now possible to use a realistic pion mass

lattice QCD deals with a simpler QGP compared to heavy-ion collisions: it is static, fully-thermalized and baryon-less

Reproducing lattice results

• except around *Tc*, we know how to approximate QCD well enough

Hadron Resonance Gas model works until 0.9 *Tc*

Hard-Thermal-Loop QGP works above 2 *Tc*

Perturbative approaches near T_c

• perturbation theory works well at high scales

gauge-fixing plagued by ambiguities which prevent access to the infrared

but the pure gauge coupling does not necessarily get large

• one can approach the problem using effective models solved by semi-perturbative methods, e.g. the Curci-Ferrari model

$T_{\rm c}~({ m MeV})$	lattice	fRG	1-loop	2-loop
SU(2)	295	230	238	284
${ m SU}(3)$	270	275	185	254

Reinosa et al. (2015-16)

Neutron stars

 At T=0: No Lattice. But we have astrophysics and both particle and nuclear physics

 EoS of the inner core? Upper and lower bound from pQCD and Chiral EFT + astrophysical measurements (including GW data from binary neutron star mergers)

Equation of state in inner core

Masses

Deformabilities

Annala, Gorda, Hirvonen, Komoltsev, Kurkela, Nättilä, Vuorinen, <u>2303.11356</u>

Number of degrees of freedom consistent with deconfined quark matter!

Radii, compactness

hot QCD at colliders

Heavy-ion Programs

Relativistic Heavy Ion Collider (RHIC)

Au-Au collisions

 $\sqrt{s_{\rm NN}} = 7.7 - 200 \, {\rm GeV}$

(Also d-Au, He-Au, Cu-Cu, O-O...)

Large Hadron Collider (LHC)

Pb-Pb collisions $2010 - 2011 : \sqrt{s_{NN}} = 2.76 \text{ TeV}$ $2011 - 2015 : \sqrt{s_{NN}} = 5.02 \text{ TeV}$ $2023 - 2025 : \sqrt{s_{NN}} = 5.36 \text{ TeV}$ (Also p-Pb, Xe-Xe)

Heavy-ion Collisions

- Dynamical description of heavy-ion collisions from underlying theory of QCD remains a challenge
- Standard picture based on effective descriptions of QCD exploiting the clear separation of time scales

Relativistic hydrodynamics

Very small η/s : most perfect fluid in Nature

The QGP flows like a fluid

the initial momentum distribution is isotropic

strong interactions induce pressure gradients the expansion turns the space anisotropy into a momentum anisotropy

a complete causal formulation of relativistic viscous hydro was developed

Elliptic flow

 $\eta/s = 0.08$

n/s=0.16

η/s=0.24

25 20 20

25

15

10

5

0ò

• STAR

1

 $\eta/s=10^{-4}$

CGC initial conditions

2

3

p_T[GeV]

$$v_2(p_T, b) = \frac{\int d\phi \cos(2\phi) \ d\sigma_{AA}/d^2 p_T d^2 b}{\int d\phi \ d\sigma_{AA}/d^2 p_T d^2 b}$$

Two ingredients needed for flow

flow is an **initial spatial anisotropy** turned into a momentum anisotropy by the **hydrodynamic expansion** of the medium

final-state
$$\leftarrow$$
 $\mathcal{V}_n = \kappa_n \mathcal{E}_n \longrightarrow \stackrel{\text{initial-state}}{\operatorname{harmonic}}$

v₂ has two components: a geometric one and one due to fluctuations (the geometric component vanishes in central collisions)

Two ingredients needed for flow

flow is an **initial spatial anisotropy** turned into a momentum anisotropy by the **hydrodynamic expansion** of the medium

final-state
$$\sim \mathcal{V}_n = \kappa_n \mathcal{E}_n \longrightarrow$$
 initial-state harmonic

v₂ has two components: a geometric one and one due to fluctuations (the geometric component vanishes in central collisions)

 v_3 is only due to fluctuations

The eccentricity harmonics

How do we calculate the initial anisotropy?

[Teaney, Yan 1010.1876]

The theoretical input is a model for $\rho(\mathbf{s})$ and its fluctuations.

What is needed ?

$$S(\mathbf{s}_1, \mathbf{s}_2) = \langle \rho(\mathbf{s}_1) \rho(\mathbf{s}_2) \rangle - \langle \rho(\mathbf{s}_1) \rangle \langle \rho(\mathbf{s}_2) \rangle$$

in particular the integral
$$\xi(\mathbf{s}) = \int_{\mathbf{r}} S\left(\mathbf{s} + \frac{\mathbf{r}}{2}, \mathbf{s} - \frac{\mathbf{r}}{2}\right)$$

compute the 1-point and 2-point energy correlators

Initial eccentricity fluctuations from first principles ?

CGC = Color Glass Condensate

The collision of two CGCs

• the initial condition for the time evolution in heavy-ion collisions

before the collision:

$$J^{\mu} = \delta^{\mu +} \delta(x^{-}) \rho_1(x_{\perp}) + \delta^{\mu -} \delta(x^{+}) \rho_2(x_{\perp})$$
$$\rho_1 \sim 1/g \qquad \rho_2 \sim 1/g$$

the distributions of ρ contain the small-*x* evolution of the nuclear wave functions $|\Phi_{x_1}[\rho_1]|^2 = |\Phi_{x_2}[\rho_2]|^2$

 $ho(x_{\perp}) = -\nabla^2 \alpha(x_{\perp})$ denotes the color charge which generates the field

The collision of two CGCs

• the initial condition for the time evolution in heavy-ion collisions

before the collision:

$$J^{\mu} = \delta^{\mu +} \delta(x^{-}) \rho_1(x_{\perp}) + \delta^{\mu -} \delta(x^{+}) \rho_2(x_{\perp})$$
$$\rho_1 \sim 1/g \qquad \rho_2 \sim 1/g$$

the distributions of ρ contain the small-*x* evolution of the nuclear wave functions $|\Phi_{x_1}[\rho_1]|^2 |\Phi_{x_2}[\rho_2]|^2$

 $\rho(x_{\perp}) = -\nabla^2 \alpha(x_{\perp})$ denotes the color charge which generates the field

• after the collision

the gluon field is a complicated function of the two classical color sources

the field decays, once it is no longer strong (classical) a particle description is again appropriate

"strong-field" QCD factorization

solve Yang-Mills equations

$$[D_{\mu}, F^{\mu\nu}] = J^{\nu} \longrightarrow \mathcal{A}_{\mu}[\rho_1, \rho_2]$$

this is done numerically (it can be done analytically in the p+A case)

express observables in terms of the field

determine $O[\mathcal{A}_{\mu}]$, in general a non-linear function of the sources

e.g.
$$T^{\mu\nu} = \frac{1}{4}g^{\mu\nu}F^{\lambda\sigma}F_{\lambda\sigma} - F^{\mu\lambda}F^{\nu}_{\lambda}$$

"strong-field" QCD factorization

solve Yang-Mills equations

$$[D_{\mu}, F^{\mu\nu}] = J^{\nu} \longrightarrow \mathcal{A}_{\mu}[\rho_1, \rho_2]$$

this is done numerically (it can be done analytically in the p+A case)

express observables in terms of the field

determine $O[\mathcal{A}_{\mu}]$, in general a non-linear function of the sources

e.g.
$$T^{\mu\nu} = \frac{1}{4}g^{\mu\nu}F^{\lambda\sigma}F_{\lambda\sigma} - F^{\mu\lambda}F^{\nu}_{\lambda}$$

• perform the averages over the color charge densities

$$\langle O \rangle = \int D\rho_1 D\rho_2 |\Phi_{x_1}[\rho_1]|^2 |\Phi_{x_2}[\rho_2]|^2 O[\mathcal{A}_{\mu}]$$

ightarrow each nucleus is characterized by its saturation scale $\,Q_s^2({f s}) \propto T({f s})$

nuclear thickness

Relevant features of $S(s_1, s_2)$

Relevant features of $S(s_1, s_2)$

Giacalone, Guerrero-Rodriguez, Luzum, CM and Ollitrault (2019)

36

Comparison to data

only applicable for central collisions

Hard probes

rare high- p_T particles created at early times that have propagated through the evolving quark-gluon plasma

Nuclear modification factor

Jet quenching

this will be discussed by Carlota Andres in the next talk, along with novel techniques to address the problem

Conclusions

- QCD under extreme conditions (strong fields, high temperature, large baryon densities) is a vey rich field, there are many aspect I didn't mention
- several ongoing experimental programs:

FAIR, NICA (low energies) RHIC and the planned EIC (medium-energies) LHC (high energies)

 heavy-ions collisions (e+A, p+A, A+A) are considered in future collider discussions

Thank you for your attention!