

Recent Results in Flavor Physics

Olcyr Sumensari

IJCLab (Orsay)

RPP, 26 January, 2024

Laboratoire de Physique des 2 Infinis

Flavor physics

- The **Standard Model** is an **effective theory** at low-energies of a more fundamental *(unknown)* theory:
 - ⇒ Hierarchy and flavor problems unanswered gravity not included.
 - \Rightarrow Quest for **physics beyond the SM**!
- *Fermions* appear as three almost *identical replicas*:
 - ⇒ Flavor physics is the study of flavor-changing phenomena and CP violation.

Twofold role of flavor physics:

I. Origin of flavor?

- Gauge sector of the SM entirely **fixed by symmetry**:
 - \Rightarrow Only a handful of parameters.
 - \Rightarrow Theory renormalizable and verified at the loop level.
- Flavor sector **loose**:
 - \Rightarrow 13 free parameters (masses and quark mixing) fixed by data.

$$\mathcal{L}_{\text{Yuk}} = -\frac{Y_d^{ij}}{Q_i} \overline{Q_i} d_{Rj} H - \frac{Y_u^{ij}}{Q_i} \overline{Q_i} u_{Rj} \widetilde{H} - \frac{Y_\ell^{ij}}{L_i} \overline{L_i} e_{Rj} H + \text{h.c.}$$

 \Rightarrow These (many) parameters exhibit a hierarchical structure which we do not understand.

I. Origin of flavor?

• Striking hierarchy of fermion masses [does not look accidental...]

• Why three families? Why do quarks and leptons mix in different ways?

$$V_{\rm CKM} = \begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix} \qquad V_{\rm PMNS} = \begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix}$$

How to explain the observed patterns in terms of less and more fundamental parameters?

I. Origin of neutrino masses?

Neutrinos are the least known particles in the SM:

- What is the **absolute scale** of **neutrino masses**?
- Normal or inverted **ordering**?
- Is CP violated in the lepton sector?
- Majorana or Dirac particles? (i.e., is **lepton number** conserved?)

Huge experimental/theoretical effort to answer these questions and to measure precisely the PMNS matrix.

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \mathsf{PMNS} \\ \mathsf{matrix} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

. . .

II. Indirect searches of New Physics

i. Search deviations w.r.t. SM predictions:

$$\mathcal{O}_{exp} = \mathcal{O}_{SM} \left(1 + \delta_{NP}\right)$$

Both exp. and theory must be precise!

Look for observables:

- (Highly) sensitive to contributions from New Physics
- Mildly sensitive to hadronic uncertainties
- Accessible in current and/or (near) future experiments.

Rare meson decays are a good example!

II. Indirect searches of New Physics

ii. Search processes forbidden (by accidental symmetries) in the SM

Global symmetry of the SM gauge sector:

$$U(3)^5 \equiv U(3)_Q \times U(3)_L \times U(3)_U \times U(3)_D \times U(3)_E$$

Broken by Yukawas to

$$U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$$

Examples:

- Proton decay (BNV): $p \rightarrow \pi^0 e^+$
- $0\nu\beta\beta$ (LNV): $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$
- Lepton Flavor Violation (LFV): $\mu \rightarrow e\gamma$

Clean probes of New Physics!

How do we do it?

The SM is an Effective Field Theory (EFT) at low energies of a more fundamental theory which is still unknown:

$$\mathcal{L}_{\text{sm}} (\text{renormalizable}) \\ \mathcal{L}_{\text{eff}} = \overbrace{\mathcal{L}_{\text{gauge}}(A, \Psi) + \mathcal{L}_{\text{Higgs}}(A, \Psi, H)}_{\text{Higgs}(A, \Psi, H)} + \underbrace{\sum_{d \ge 5} \frac{c_n^{(d)}}{\Lambda^{d-4}} \mathcal{O}_n^{(d)}(A, \Psi, H)}_{\text{Operators of dim} \ge 5 \text{ made of SM fields}} \\ \text{Assumption: } E \ll \Lambda \end{cases}$$

Most general description of new physics as long as there is not enough energy to produce the new degrees of freedom.

New physics flavor problem?

Flavor violation needs to be protected to suppress rare/forbidden processes:

 \Rightarrow e.g., Minimal Flavor Violation, or flavor symmetries such as $U(2)^5$.

 \Rightarrow Fundamental input for model building.

[D'Ambrosio et al. '02], [Barbieri et al. '11]

Outline

- I. Introduction
- II. CKM-ology
- III. Recents results in *B*-physics*
- IV. Outlook

*including the first observation of $B \rightarrow K \nu \bar{\nu}$ at Belle-II

CKM-ology

$$\mathcal{L}_{c.c.} \supset \frac{g}{\sqrt{2}} \left(V_{CKM} \right)_{ij} \left(\bar{u}_{Li} \gamma^{\mu} d_{L_j} \right) W_{\mu}^{+} + h.c.$$

$$V_{ij}$$

$$V_{CKM} = U_{u_L}^{\dagger} U_{d_L}$$

Strategy:

Fix the CKM matrix entries through tree-level decays, and over-constrain it with loopinduced processes:

Good agreement! But there are a **few tensions** to be solved (*precision physics is hard*!)

41 -

Example: kaon decays

Hadronic uncertainties:

$$\langle 0|\bar{s}\gamma^{\mu}\gamma_5 u|K^+\rangle \to f_K$$

$$\langle \pi^+ | \bar{s} \gamma^\mu d | K^0 \rangle \rightarrow f_{0,+}(q^2)$$

• Non-perturbative QCD (Lattice QCD needed) — cf. FLAG review.

Example: kaon decays

Hadronic uncertainties:

$$\langle 0|\bar{s}\gamma^{\mu}\gamma_5 u|K^+\rangle \to f_K$$

$$\langle \pi^+ | \bar{s} \gamma^\mu u | K^0 \rangle \propto f_{0,+}(q^2)$$

- Non-perturbative QCD (Lattice QCD needed) cf. FLAG review.
- Current precision requires radiative and isospin-breaking corrections:

$$\alpha_{\rm em} \approx \frac{1}{137}$$
 and $\frac{m_d - m_u}{\Lambda_{\rm QCD}} \approx \mathcal{O}(1\%)$

 \Rightarrow Included in recent QCD+QED simulations of $K(\pi) \rightarrow \mu\nu$ on the lattice!

[Di Giusti et al. '17, '18], [Di Carlo et al. '19]...

FLAG

First-row unitarity

Better understanding the hadronic uncertainties is fundamental to solving these (mild) discrepancies!

Inclusive vs. exclusive: V_{cb} and V_{ub}

More problematic:

• V_{cb} plays an essential role in the predictions of FCNCs through unitarity:

 $|V_{tb}V_{ts}|^2 \simeq |V_{cb}|^2 \left[1 + \mathcal{O}(\lambda^2)\right]$

This <u>ambiguity</u> needs to be solved to match the expected sensitivity of Belle-II!

[NEW] Warning!

 \Rightarrow Needs clarification to reliably extract $|V_{cb}|$ from $B \rightarrow D^* \ell \bar{\nu} \dots$

NB. Recent JLQCD agrees well with exp. data!

<u>Way out</u>: independent LQCD results + Belle-II data!

Which CKM value?

$$\lambda_t = V_{tb} V_{ts}^*$$

• Using available $b \to c \ell \bar{\nu}$ data:

$$\begin{split} |\lambda_t| \times 10^3 &= \begin{cases} 41.4 \pm 0.8 \,, & (B \to X_c l \bar{\nu}) & \text{[HFLAV, '22]} \\ 39.3 \pm 1.0 \,, & (B \to D l \bar{\nu}) & \text{[FLAG, '21]} \\ 37.8 \pm 0.7 \,, & (B \to D^* l \bar{\nu}) & \text{[HFLAV, '22]} \end{cases} \end{split}$$

... to be compared to CKM global fits:

cf. also [Martinelli et al. '21]

$$|\lambda_t|_{\text{UTfit}} = (41.4 \pm 0.5) \times 10^{-2}$$

$$|\lambda_t|_{\text{CKMfitter}} = (40.5 \pm 0.3) \times 10^{-2}$$

• Alternative strategy: to use $\Delta m_{B_s} \propto f_{B_s}^2 \hat{B}_{B_s} |\lambda_t|^2$

[Buras, Venturini. '21, '22]

$$|\lambda_t| \times 10^3 = \begin{cases} 41.9 \pm 1.0, & (N_f = 2 + 1 + 1) \\ 39.2 \pm 1.1, & (N_f = 2 + 1) \end{cases}$$

$$f_{B_s} \sqrt{\hat{B}_{B_s}} = 256 \pm 6 \text{ MeV} \qquad (N_f = 2 + 1 + 1) \\ \text{[HPQCD '19]} \\ f_{B_s} \sqrt{\hat{B}_{B_s}} = 274 \pm 8 \text{ MeV} \qquad (N_f = 2 + 1) \end{cases}$$

$$f_{B_s} \sqrt{\hat{B}_{B_s}} = 274 \pm 8 \text{ MeV} \qquad (N_f = 2 + 1) \\ \text{[HPQCD '19]} \\ \text{[FLAG '21]} \end{cases}$$

There is not a clear answer to this ambiguity so far.

Recent results in *B***-physics**

*emphasis on $B \rightarrow K \nu \bar{\nu}$ at Belle-II

[Recap] B-meson decays

Targets of current experiments (LHCb & Belle-II):

• Loop-induced decays: e.g., $b \to s\ell\ell$ and $b \to s\nu\bar{\nu}$

$$B \to K^{(*)}\ell\ell$$
$$B \to K^{(*)}\nu\bar{\nu}$$
$$B_s \to \phi\ell\ell$$

• **Tree-level decays:** $e.g., b \rightarrow c\tau\bar{\nu}$

$$B \to D^{(*)} \ell \nu$$

 $B_s \to D_s^{(*)} \ell \nu$
 \dots

 \Rightarrow Decays with *b*-baryons are also available at LHCb. [Boer et al. '19, Becirevic et al. '22...]

 \Rightarrow In both cases, ratios of observables can be used to reduce theoretical uncertainties.

Revisiting $B \rightarrow K \nu \nu$ in the SM

[D. Becirevic, G. Piazza, **OS**, 2301.06990]

Why to study *B*-decays with neutrinos?

X

- $B \to K^{(*)}\ell\ell$:
- Sensitive to new physics effects.
- Experimentally clean (especially for $\ell = \mu$).
- Many observables (angular distribution).
- Theoretically challenging (non-factorizable contributions...)

- $B \to K^{(*)} \nu \bar{\nu}$:
- Sensitive to new physics effects.
- Exp. more challenging (missing energy).
- Fewer observables.
- Theoretically cleaner! 🗸
- Sensitive to operators with au-leptons.

$B \rightarrow K \nu \bar{\nu}$ in the SM

• Effective Hamiltonian within the SM:

 $\mathcal{L}_{\text{eff}}^{b \to s \nu \nu} = \frac{4G_F \lambda_t}{\sqrt{2}} \frac{\alpha_{\text{em}}}{2\pi} \sum_i C_L^{\text{SM}} (\bar{s}_L \gamma_\mu b_L) (\bar{\nu}_{Li} \gamma^\mu \nu_{Li}) + \text{h.c.},$ $\lambda_t = V_{tb} V_{ts}^*$

• **Short-distance** contributions known to **good precision**:

$$C_L^{\rm SM} = -X_t / \sin^2 \theta_W$$
$$= -6.32(7)$$

Including NLO QCD and two-loop EW contributions:

see e.g. [Buras et al. '14]

$$X_t = 1.462(17)(2)$$

[Buchala et al. '93, '99], [Misiak et al. '99], [Brod et al. '10]

Two main sources of uncertainties:

ii) CKM matrix: From CKM unitarity: $|V_{tb}V_{ts}^*| = |V_{cb}| (1 + O(\lambda^2))$

Which value to take (incl. vs. excl.)?

Form-factors: $B \rightarrow K \nu \bar{\nu}$

• Lattice QCD data available at nonzero recoil $(q^2 \neq q_{\text{max}}^2)$ for all form-factors:

$$\langle K(k)|\bar{s}\gamma^{\mu}b|B(p)\rangle = \left[(p+k)^{\mu} - \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}\right]f_{+}(q^{2}) + q^{\mu}\frac{m_{B}^{2} - m_{K}^{2}}{q^{2}}f_{0}(q^{2})$$

with $f_{+}(0) = f_{0}(0)$. Only form-factor needed for $B \to K\nu\bar{\nu}!$

• **[NEW]** We update the FLAG average by combining [HPQCD '22] results with [FNAL/MILC '16]:

Form-factors: $B \rightarrow K \nu \bar{\nu}$

*See back-up for proposed tests of these results.

Form-factors based on Light-Cone Sum Rules (LCSR) lead to smaller branching fractions.

[Bharucha et al. '15, Gubernari et al. '18]

$$\mathcal{B}(B \to K \nu \bar{\nu})^{\text{SM}} / |\lambda_t|^2 = \begin{cases} (1.33 \pm 0.04)_{K_S} \times 10^{-3} \\ (2.87 \pm 0.10)_{K^+} \times 10^{-3} \end{cases}$$

Summary (circa '22)

[Belle 1303.3719, 1702.03224] [BaBar 1009.1529, 1303.7465]

Take-home:

- To remain **cautions** about **hadronic uncertainties** associated to the **form-factors** and the extraction of **CKM** matrix-elements *non-negligible given the projected Belle-II sensitivity.*
- Binned measurements at Belle-II would be a valuable piece of information to test the consistency the SM predictions (cf. back-up).

[Intermezzo] Anomalies in $B \rightarrow K^{(*)}\mu\mu$ decays?

$$\mathcal{L}_{\text{eff}}^{b \to s\ell\ell} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_{\ell} \left[C_9^{\ell\ell} \left(\bar{s} \gamma^{\mu} P_L b \right) \left(\bar{\ell} \gamma_{\mu} \ell \right) + C_{10}^{\ell\ell} \left(\bar{s} \gamma^{\mu} P_L b \right) \left(\bar{\ell} \gamma_{\mu} \gamma_5 \ell \right) + \dots \right] + \text{h.c.}$$

• Angular $B \to K^{(*)} \mu \mu$ observables show a preference for $\delta C_9^{\mu \mu} < 0$:

[Algueró et al. '21, Altmannshofer et al. '21, Hurth et al. '21]

New physics effects or underestimated hadronic uncertainties?

see e.g. Ciuchini et al'. '21

NB. LFU ratios $R_{K^{(*)}} = \mathscr{B}(B \to K^{(*)}\mu\mu)/\mathscr{B}(B \to K^{(*)}ee)$ do not depend on $C_9^{\ell\ell}$, but they are difficult to measure — cf. latest LHCb results, which now agree with the SM predictions.

O. Sumensari

[Intermezzo] Remarks on $B \rightarrow K^{(*)}\nu\nu/B \rightarrow K^{(*)}\mu\mu$

• $B \to K^{(*)}\nu\nu$ and $B \to K^{(*)}\mu\mu$ have a similar decay spectrum away from the narrow $c\bar{c}$ resonances:

• We can defined the **CKM-free ratio**:

*using 2-loop results for $c\bar{c}$ loops from [Asatryan et al. '09]

[Becirevic, Piazza, OS. 2301.06990] [Bartsch et al. '09]

$$\mathcal{R}_{K^{(*)}}^{(\nu/l)}[q_0^2, q_1^2] \equiv \frac{\mathcal{B}(B \to K^{(*)}\nu\bar{\nu})}{\mathcal{B}(B \to K^{(*)}ll)} \bigg|_{[q_0^2, q_1^2]} \qquad \qquad \text{Ratio of partial branching fractions integrated in the same } q^2\text{-bin.}$$

- \Rightarrow Form-factor uncertainties cancel out to a good extent for $q^2 \gg m_\ell^2$.
- \Rightarrow Neglecting NP contributions, this ratio can be used to extract $C_{0}^{\mu\mu}$!

O. Sumensari

• Predictions using perturbative calculation of $c\bar{c}$ loops:

 $\mathcal{R}_{K}^{(\nu/l)}[1.1,6]\Big|_{\mathrm{SM}} = 7.58 \pm 0.04$

with the following dependence on C_9^{eff} :

Precise measurements could help us to understand the various anomalies in $b \rightarrow s\mu\mu$ data.

Understanding the first determination of $B \rightarrow K\nu\nu$ at Belle-II

[L. Allwicher, D. Becirevic, G. Piazza, S. Rosauro-Alcaraz, OS, 02246]

[NEW] Belle-II results

- Only the **incl. method** shows an **excess above background** (and w.r.t. the SM predictions).
- The **had.** method is compatible with the SM (and with no observed signal).

 \Rightarrow More data is needed! Many possible cross-checks (e.g., $B^0 \rightarrow K_S \nu \bar{\nu}$).

O. Sumensari

O. Sumensari

10SM 5 0 15 0 5 [Becirevic, Piazza, **OS**. '22] $\mathcal{B}(B \to K \nu \overline{\nu}) \times 10^6$ Forbidden region in the EFT approach [Bause et al. '23]

Complementarity of $B \to K \nu \bar{\nu}$ and $B \to K^* \nu \bar{\nu}$: \bullet

40 $[\delta C_L]$ 35 δC_R $\frac{\mathcal{B}(B \to K^{(*)}\nu\bar{\nu})}{\mathcal{B}(B \to K^{(*)}\nu\bar{\nu})^{\mathrm{SM}}} = 1 + \sum_{i} \frac{2\mathrm{Re}[C_{L}^{\mathrm{SM}}\left(\delta C_{L}^{\nu_{i}\nu_{i}} + \frac{\delta C_{R}^{\nu_{i}\nu_{i}}}{3|C_{L}^{\mathrm{SM}}|^{2}}\right)]}{3|C_{L}^{\mathrm{SM}}|^{2}}$ 30 Belle (90% C.L.) $\mathcal{B} \left(B \to K^* \nu \overline{\nu} \right) \times 10^6$ $12 \quad 02 \quad 52 \quad 03$ $+\sum_{i,i}\frac{|\delta C_L^{\nu_i\nu_j}+\delta C_R^{\nu_i\nu_j}|^2}{3|C_L^{\rm SM}|^2}$ $-\eta_{K^{(*)}} \sum_{i,j} \frac{\operatorname{Re}[\delta C_R^{\nu_i \nu_j} (C_L^{\mathrm{SM}} \delta_{ij} + \delta C_L^{\nu_i \nu_j})]}{3|C_L^{\mathrm{SM}}|^2},$ Belle II $\eta_K = 0$ $\eta_{K^*} = 3.5(1)$ Excluded (EFT)

$\mathcal{L}_{\text{eff}}^{\text{b}\to\text{s}\nu\nu} = \frac{4G_F\lambda_t}{\sqrt{2}} \frac{\alpha_{\text{em}}}{2\pi} \sum_{\cdots} \left[C_L^{\nu_i\nu_j} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_{Li} \gamma^\mu \nu_{Lj} \right) + C_R^{\nu_i\nu_j} \left(\bar{s}_R \gamma_\mu b_R \right) \left(\bar{\nu}_{Li} \gamma^\mu \nu_{Lj} \right) \right] + \text{h.c.},$

EFT for $b \rightarrow s \nu \bar{\nu}$

Low-energy EFT:

see e.g. [Buras et al. '14]

Exclusion from Belle/BaBar

[Allwicher et al (**OS**). '23]

30

35

40

25

20

Predictions

• Another observable to measure is the K* longitudinal-polarisation asymmetry:

$$F_L \equiv \frac{\Gamma_L(B \to K^* \nu \bar{\nu})}{\Gamma(B \to K^* \nu \bar{\nu})} \qquad \qquad F_L(B \to K^* \nu \bar{\nu})^{\rm SM} = 0.49(7) \qquad \qquad \mathcal{R}_{F_L} \equiv \frac{F_L}{F_L^{\rm SM}}$$

[Altmannshofer et al. '09]

The measurement of $\mathscr{B}(B \to K^* \nu \bar{\nu})$ and $F_L(B \to K^* \nu \bar{\nu})$ would be **model-independent tests** of Belle-II results.

- **SMEFT** is formulated for $\Lambda \gg v_{ew}$ with $SU(3)_c \times SU(2)_L \times U(1)_Y$ invariant operators.
- Gauge invariance correlates $b \to s\nu\bar{\nu}$ with $b \to s\ell\ell$ since $L_i = (\nu_{Li}, \ell_{Li})^T$.
- Two types of d = 6 contributions at tree-level:

[Buchmuller & Wyler. '85, Gradkowski et al. '10]

i) $\psi^2 H^2 D$:

e.g.,

$$\mathcal{O}_{Hl}^{(1)} = (H^{\dagger} \overleftrightarrow{D}_{\mu} H) (\bar{L} \gamma^{\mu} L)$$

Lepton flavor universal!

ii) ψ^4 :

e.g.,

 $\mathcal{O}_{ld} = (\bar{L}\gamma^{\mu}L)(\bar{d}_R\gamma_{\mu}d_R)$

- **SMEFT** is formulated for $\Lambda \gg v_{ew}$ with $SU(3)_c \times SU(2)_L \times U(1)_Y$ invariant operators.
- Gauge invariance correlates $b \to s\nu\bar{\nu}$ with $b \to s\ell\ell$ since $L_i = (\nu_{Li}, \ell_{Li})^T$.
- Two types of d = 6 contributions at tree-level:

[Buchmuller & Wyler. '85, Gradkowski et al. '10]

• ψ^4 operators invariant under $SU(2) \times U(1)_Y$:

$$\begin{split} \left[\mathcal{O}_{lq}^{(1)}\right]_{ijkl} &= \left(\overline{L}_{i}\gamma^{\mu}L_{j}\right)\left(\overline{Q}_{k}\gamma_{\mu}Q_{l}\right)\\ \left[\mathcal{O}_{lq}^{(3)}\right]_{ijkl} &= \left(\overline{L}_{i}\gamma^{\mu}\tau^{I}L_{j}\right)\left(\overline{Q}_{k}\tau^{I}\gamma_{\mu}Q_{l}\right)\\ \left[\mathcal{O}_{ld}\right]_{ijkl} &= \left(\overline{L}_{i}\gamma^{\mu}L_{j}\right)\left(\overline{d}_{k}\gamma_{\mu}d_{l}\right)\\ \left[\mathcal{O}_{eq}\right]_{ijkl} &= \left(\overline{e}_{i}\gamma^{\mu}e_{j}\right)\left(\overline{Q}_{k}\gamma_{\mu}Q_{l}\right)\\ \left[\mathcal{O}_{ed}\right]_{ijkl} &= \left(\overline{e}_{i}\gamma^{\mu}e_{j}\right)\left(\overline{d}_{k}\gamma_{\mu}d_{l}\right) \end{split}$$

$$b \to s\ell\ell \qquad \qquad b \to s\nu\bar{\nu}$$

$$\left[\mathcal{O}_{lq}^{(1)} \right]_{ijkl} = \left(\overline{L}_i \gamma^{\mu} L_j \right) \left(\overline{Q}_k \gamma_{\mu} Q_l \right)$$

= $\left(\overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) + \left(\overline{\nu}_{Li} \gamma^{\mu} \nu_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) + \dots$

$$\left[\mathcal{O}_{lq}^{(3)} \right]_{ijkl} = \left(\overline{L}_i \gamma^{\mu} \tau^I L_j \right) \left(\overline{Q}_k \gamma_{\mu} \tau^I Q_l \right)$$

=
$$\left(\overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) - \left(\overline{\nu}_{Li} \gamma^{\mu} \nu_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) + \dots$$

$$\begin{bmatrix} \mathcal{O}_{ld} \end{bmatrix}_{ijkl} = \left(\overline{L}_i \gamma^{\mu} L_j \right) \left(\overline{d}_k \gamma_{\mu} d_l \right) \\ = \left(\overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right) \left(\overline{d}_{Rk} \gamma_{\mu} d_{Rl} \right) + \left(\overline{\nu}_{Li} \gamma^{\mu} \nu_{Lj} \right) \left(\overline{d}_{Rk} \gamma_{\mu} d_{Rl} \right)$$

- Correlations for concrete mediators:
 - $Z' \sim (\mathbf{1}, \mathbf{1}, 0)$: $C_{lq}^{(1)} \neq 0$, $C_{lq}^{(3)} = 0$
 - $V \sim (\mathbf{1}, \mathbf{3}, 0)$: $C_{lq}^{(1)} = 0, \quad C_{lq}^{(3)} \neq 0$
 - $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$: $\mathcal{C}_{lq}^{(1)} = \mathcal{C}_{lq}^{(3)}$
 - $S_3 \sim (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$: $\mathcal{C}_{lq}^{(1)} = 3 \mathcal{C}_{lq}^{(3)}$

 $(SU(3)_c, SU(2)_L, U(1)_Y)$

. . .

• ψ^4 operators invariant under $SU(2) \times U(1)_Y$:

$$\begin{split} \left[\mathcal{O}_{lq}^{(1)}\right]_{ijkl} &= \left(\overline{L}_{i}\gamma^{\mu}L_{j}\right)\left(\overline{Q}_{k}\gamma_{\mu}Q_{l}\right)\\ \left[\mathcal{O}_{lq}^{(3)}\right]_{ijkl} &= \left(\overline{L}_{i}\gamma^{\mu}\tau^{I}L_{j}\right)\left(\overline{Q}_{k}\tau^{I}\gamma_{\mu}Q_{l}\right)\\ \left[\mathcal{O}_{ld}\right]_{ijkl} &= \left(\overline{L}_{i}\gamma^{\mu}L_{j}\right)\left(\overline{d}_{k}\gamma_{\mu}d_{l}\right)\\ \left[\mathcal{O}_{eq}\right]_{ijkl} &= \left(\overline{e}_{i}\gamma^{\mu}e_{j}\right)\left(\overline{Q}_{k}\gamma_{\mu}Q_{l}\right)\\ \left[\mathcal{O}_{ed}\right]_{ijkl} &= \left(\overline{e}_{i}\gamma^{\mu}e_{j}\right)\left(\overline{d}_{k}\gamma_{\mu}d_{l}\right) \end{split}$$

$$b \to s\ell\ell \qquad \qquad b \to s\nu\bar{\nu}$$

$$\begin{bmatrix} \mathcal{O}_{lq}^{(1)} \end{bmatrix}_{ijkl} = \left(\overline{L}_i \gamma^{\mu} L_j \right) \left(\overline{Q}_k \gamma_{\mu} Q_l \right)$$

= $\left(\overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) + \left(\overline{\nu}_{Li} \gamma^{\mu} \nu_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) + \dots$

$$\left[\mathcal{O}_{lq}^{(3)} \right]_{ijkl} = \left(\overline{L}_i \gamma^{\mu} \tau^I L_j \right) \left(\overline{Q}_k \gamma_{\mu} \tau^I Q_l \right)$$

=
$$\left(\overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) - \left(\overline{\nu}_{Li} \gamma^{\mu} \nu_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) + \dots$$

$$\begin{bmatrix} \mathcal{O}_{ld} \end{bmatrix}_{ijkl} = \left(\overline{L}_i \gamma^{\mu} L_j \right) \left(\overline{d}_k \gamma_{\mu} d_l \right) \\ = \left(\overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right) \left(\overline{d}_{Rk} \gamma_{\mu} d_{Rl} \right) + \left(\overline{\nu}_{Li} \gamma^{\mu} \nu_{Lj} \right) \left(\overline{d}_{Rk} \gamma_{\mu} d_{Rl} \right)$$

[Allwicher, Becirevic, Piazza, Rousaro-Alcaraz OS. '23]

- Which flavor?
- 1) Couplings to muons are tightly constrained by $\mathscr{B}(B_s \to \mu\mu)$.
- II) LFV couplings are constrained by searches for $\mathscr{B}(B_s \to \ell_i \ell_j)$ and $\mathscr{B}(B \to K^{(*)} \ell_i \ell_j)$.

III) The only viable option is coupling to τ 's (due to weak exp. limits on $b \to s\tau\tau$).

$$\Rightarrow \underline{\text{Predictions:}} \qquad \qquad \frac{\mathcal{B}(B_s \to \tau\tau)}{\mathcal{B}(B_s \to \tau\tau)^{\text{SM}}} \simeq \frac{\mathcal{B}(B \to K^{(*)}\tau\tau)}{\mathcal{B}(B \to K^{(*)}\tau\tau)^{\text{SM}}} \simeq 10$$

However, experimentally challenging...

O. Sumensari

R_D and R_{D^*}

SM predictions are under reasonable control (cf. back-up).

Needs urgent clarification from Belle-II and LHCb (run-2) data!

- LHCb also measured $R_{J/\psi}^{exp}$ and $R_{\Lambda_c}^{exp}$, but with limited precision.
- R_D^{exp} and R_{D*}^{exp} : dominated by BaBar!

LFU in $b \rightarrow c \tau \bar{\nu}$

 $\Delta \chi^2 = 1.0$ contours

BaBar

World Average

 $\rho = -0.37$

0.45

0.4

 $\dot{P}(\chi^2) = 33\%$

 $\begin{array}{l} R(D) = 0.357 \pm 0.029_{total} \\ R(D^*) = 0.284 \pm 0.012_{total} \end{array}$

0.5

LHCb^a

0.55

R(D)

EFT for $b \rightarrow c \tau \bar{\nu}$

$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1 + g_{V_L}) \big(\bar{c}_L \gamma_\mu b_L \big) \big(\bar{\ell}_L \gamma_\mu \nu_L \big) + g_{V_R} \big(\bar{c}_R \gamma_\mu b_R \big) \big(\bar{\ell}_L \gamma_\mu \nu_L \big) \\ + g_{S_R} \big(\bar{c}_L b_R \big) \big(\bar{\ell}_R \nu_L \big) + g_{S_L} \big(\bar{c}_R b_L \big) \big(\bar{\ell}_R \nu_L \big) + g_T \big(\bar{c}_R \sigma_{\mu\nu} b_L \big) \big(\bar{\ell}_R \sigma_{\mu\nu} \nu_L \big) \Big] + \text{h.c.}$$

- $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge invariance implies that only g_{V_L} , g_{S_L} , g_{S_R} and g_T can break LFU at d = 6.
- Few scenarios can accommodate data:
 - $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$: g_{V_L} , g_{S_R}
 - $R_2 \sim (\mathbf{3}, \mathbf{2}, 7/6)$: $g_{S_L} = 4g_T$
 - $S_1 \sim (\overline{\mathbf{3}}, \mathbf{1}, 1/3)$: $g_{S_L} = -4g_T$, g_{V_L}

Only scalar/vector leptoquarks can do the job!

O. Sumensari

Angular observables: $b \rightarrow c \tau \bar{\nu}$

Example: $B \rightarrow D\tau\nu$

see e.g. [Becirevic, Jaffredo, Penuelas, **OS**, '21]

 $\Lambda_b \to \Lambda_c (\to \Lambda \pi) \tau \bar{\nu}$

[1907.12554, 2209.13409]

• Many more opportunities in other modes:

 $B \to D^* (\to D\pi) \tau \bar{\nu}$

[1602.03030, 1907.02257, 2104.02094...]

O. Sumensari

Example: $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$

2

 $\mathcal{L}_{U_1} \supset [x_1^L]_{i\alpha} U_1^\mu \bar{q}_i \gamma_\mu l_\alpha + \text{h.c.}$

Complementarity between LHC data, flavor and EWPT

34

[Intermezzo] Probing flavor at the LHC

High-p_T searches (CMS and ATLAS) **can probe** the **same four-fermion operators** constrained by **flavor-physics experiments** (NA62, KOTO, BES-III, LHCb, Belle-II...).

Many works on EFTs and Drell-Yan: Cirigliano et al. '12, '18], [de Blas et al. '13], [Farina et al. '16], [Dawson et al. '18, '21], [Greljo et al. '18], [Shepherd et al. '18], [Fuentes-Martín et al. '20], [Marzocca et al. '20], [Endo et al. '21], [Boughezal et al. '21], [Angelescu et al. '20], [Allwicher et al. '23]...

[Intermezzo] Probing flavor at the LHC

<u>Goal</u>: Probe flavor transitions that are poorly constrained at low energies (e.g., $b \rightarrow s\tau\tau$)

Strategy: Recast **di-lepton searches** and look for **NP effects** in the **tails** of the **invariant-mass** distributions (where *S*/*B* is large).

[Intermezzo] Probing flavor at the LHC

<u>Goal</u>: Probe flavor transitions that are poorly constrained at low energies (e.g., $b \rightarrow s\tau\tau$)

Strategy: Recast **di-lepton searches** and look for **NP effects** in the **tails** of the **invariant-mass** distributions (where *S*/*B* is large).

<u>**Caveat:**</u> EFT must be valid ($E \ll \Lambda$). Otherwise, use explicit model (e.g., leptoquark or Z').

<u>HighPT</u>: A Tool for high- p_T Drell-Yan Tails Beyond the SM

Searches available (140 fb⁻¹):

$pp \to \tau\tau$	[arXiv:2002.12223]
$pp \rightarrow ee, \ \mu\mu$	CMS-PAS-EXO-19-019
$pp \to \tau \nu$	ATLAS-CONF-2021-025
$pp \rightarrow e\nu, \ \mu\nu$	[arXiv:1906.05609]
$pp \rightarrow e\mu, e\tau, \mu\tau$	[arXiv:2205.06709]

*more to be included (see GitHub page)

Reinterpretation of latest LHC Drell-Yan searches for New Physics scenarios with general flavor structure.

Recast procedure:

MadGraph 5 + Pythia + Delphes

Main functionalities:

- Consider SMEFT (d ≤ 8) and specific mediators (LQs, Z', ...).
- Computes cross-sections, event yields and likelihoods as a function of NP couplings.
- **SMEFT likelihoods** can be exported in the *WCxf* format.

[[]Aebischer et al. '17]

Outlook

Olcyr Sumensari (IJCLab, Orsay)

Outlook

- **H** Kaon physics (NA62 and KOTO)
- **+** EDM experiments & Muon g-2 at Fermilab
- Huge effort in the neutrino sector

...

<u>B-physics</u>: Belle-II and LHCb

Improved data will have the potential to resolve persisting anomalies such $R_{D^{(*)}}$:

[Rev. Mod. Phys. 94, 015003 (2022)]

\Rightarrow They will also provide **valuable inputs** to **determine** better V_{ub} and V_{cb} :

Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	50 ab^{-1}
$ V_{cb} $ incl.	$42.2\cdot 10^{-3}\cdot (1\pm 1.8\%)$	1.2%	_
$ V_{cb} $ excl.	$39.0\cdot 10^{-3}\cdot (1\pm 3.0\%_{ m ex.}\pm 1.4\%_{ m th.})$	1.8%	1.4%
$ V_{ub} $ incl.	$4.47\cdot 10^{-3}\cdot (1\pm 6.0\%_{ m ex.}\pm 2.5\%_{ m th.})$	3.4%	3.0%
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm 2.5\%_{ ext{ex.}} \pm 3.0\%_{ ext{th.}})$	2.4%	1.2%
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$91\cdot(1\pm24\%)$	9%	4%
$\mathcal{B}(B o \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%
$R(B \to D\tau\nu)$ (Had. tag)	$0.374 \cdot (1 \pm 16.5\%)$	6%	3%
$R(B \to D^* \tau \nu)$ (Had. tag)	$0.296 \cdot (1 \pm 7.4\%)$	3%	2%

Belle-II physics book

Lepton Flavor Violation

 $\mu \rightarrow e$

An **impressive progress** is expected in the next years in $\mu \rightarrow e$ **experiments**:

\Rightarrow <u>Very clean</u> probes of new physics!

Lepton Flavor Violation

τ -decays

Belle-II will also **improve** the **sensitivity** on $\tau \to e$ and $\tau \to \mu$ decays by a **factor** $\mathcal{O}(10)$:

[NEW] CMS obtained Br($\tau \rightarrow 3\mu$) < 2.4 × 10⁻⁸ (90%CL.) — comparable to BaBar/Belle!

11/04 -12/04 in Orsay

Topical workshop on LFV decays of the tau

- i 11 Apr 2024, 09:00 → 12 Apr 2024, 18:00 Europe/Paris
- ♀ 210/1-114 Salle des Séminaires (IJCLab)
- Asmaa Abada-Zeghal (Pôle Théorie IJCLAB), Damir Becirevic (IJCLab Pôle Théorie), Olcyr Sumensari (IJCLab)

https://indico.ijclab.in2p3.fr/e/tauLFV

	THURSDAY, 11 A pril		-
10:00 → 10:30	τ→ 3ℓ at hadron colliders Speaker: Federica Simone (Bari U./INFN)	③ 30m ♀ 210/1-114 - Salle des Séminai	•
10:30 → 11:00	τ→ 3ℓ at Belle-II Speaker: Justine Serrano (CPPM)	③ 30m 9 210/1-114 - Salle des Séminai	
11:00 → 11:30	Coffee Break		() 30m
11:30 → 12:00	Effective field theory description of LFV decays Speaker: Marco Ardu (Valencia U., IFIC)	③ 30m ♀ 210/1-114 - Salle des Séminai	
14:30 → 15:00	New Physics models giving rise to LFV (seesaw mechanism inspired) Speaker: Enrique Fernandez Martinez (UAM/IFT-Madrid)	③ 30m 9 210/1-114 - Salle des Séminai	
15:00 → 15:30	New Physics models giving rise to LFV (involving leptoquarks) Speaker: Nejc Košnik (IJS, Ljubljana)	③ 30m ♀ 210/1-114 - Salle des Séminai	
15:30 → 16:00	Coffee Break		() 30m
16:00 → 16:30	New Physics models giving rise to LFV (general considerations) Speaker: Shaikh Saad (U. Basel)	③ 30m ♀ 210/1-114 - Salle des Séminai	•
	FRIDAY, 12 APRIL		-
10:00 → 10:30	τ→ የ+hadron decays at Belle II Speaker: Laura Zani (INFN, Rome3)	③ 30m 9 210/1-114 - Salle des Séminai	
10:30 → 11:00	Hadronic issues in LFV decays of $ au$	③ 30m ♀ 210/1-114 - Salle des Séminai	•
11:00 → 11:30	Coffee Break		() 30m
11:30 → 12:00	Constraints on the decays from the High-p _T studies at LHC Speaker: Felix Wilsch (RWTH Aachen U.)	③ 30m ♀ 210/1-114 - Salle des Séminai	•

┏ -

Summary

- **Precision frontier:** fundamental to seek new physics particles that cannot be produced on-shell at the LHC *complementary approach*!
- Hadronic uncertainties: QCD remains the main obstacle to using low-energy observables to probe new physics *caution is advised*!
- V_{cb} and V_{ub} : theory and exp. progress is needed to solve this issue needed to fix the parametric uncertainties of rare decays in the SM... Belle-II data and new LQCD results will be essential.
- $B \to K\nu\nu$: Theoretically clean and a helpful tool to constrain (B)SM physics. More data and further cross-checks are needed to understand the first Belle-II results e.g., $B^0 \to K_S \nu \bar{\nu}$ and $B \to K^* \nu \bar{\nu}$.
- LHC: Drell-Yan processes at high energies are also complementary probes of flavorphysics operators — *valuable inputs for flavor model-building*.

Many **opportunities** to **explore** physics **(B)SM** in current/future flavor experiments!

Back-up

EFT for
$$b \rightarrow s\ell\ell$$

$$\mathcal{L}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1}^6 C_i(\mu) \mathcal{O}_i + \sum_{7,8,9,10,P,S} \left(C_i(\mu) \mathcal{O}_i + \mathcal{C}'_i(\mu) \mathcal{O}'_i \right) \right] + \text{h.c.}$$

• Semileptonic operators:

$$\mathcal{O}_{9}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell)$$
$$\mathcal{O}_{10}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

$$\mathcal{O}_{S}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\ell)$$
$$\mathcal{O}_{P}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_{5}\ell)$$

• Dimension-6 tensor operator is not allowed by $SU(2)_L \times U(1)_Y$.

[Buchmuller, Wyler. '85]

• (Pseudo)scalar operators are tightly constrained by

$$\overline{\mathcal{B}}(B_s \to \mu\mu)^{\exp} = (2.85 \pm 0.22) \times 10^{-9}$$
$$\overline{\mathcal{B}}(B_s \to \mu\mu)^{\mathrm{SM}} = (3.66 \pm 0.14) \times 10^{-9}$$

[Our exp. average: CMS, ATLAS, LHCb]

[Beneke et al. '19]

 $B_s \to \mu\mu$

 $(\Pi^+ \eta^+ \eta^+)^{0.7}$

0.4

0.3

0.2

0.1

00

2

×10⁻⁹

0.3

0.2

0.1

0.

1

ATLAS

2

Combined

SM

4

5

3

 $\mathcal{B}(B_s \to \mu\mu) \times 10^9$

Good agreement between **LHCb** results and the SM predictions;

5

6

 $B(B_s^0 \rightarrow \mu^+ \mu^-)$

4

3

• Small deficit in the exp. average — *due to ATLAS measurement*.

O. Sumensari

[Intermezzo] Lepton Flavor Universality violation?

LFU ratios are independent of $C_9^{\ell\ell} \equiv C_9^{ee} = C_9^{\mu\mu}$, thus being **theoretically clean**. However, LHCb data now **agrees** with the **SM predictions**.

Constraints on LFU violation:

$$\frac{|\mathcal{C}_{\text{LFU}}|}{\Lambda^2} \lesssim (60 \text{ TeV})^{-2}$$

Form-factors: $B \rightarrow K^* \nu \bar{\nu}$

• $B \to K^* \nu \bar{\nu}$ decays are **more challenging** for several reasons:

$$\begin{split} \bar{K}^{*}(k) |\bar{s}\gamma_{\mu}(1-\gamma_{5})b|\bar{B}(p)\rangle &= \varepsilon_{\mu\nu\rho\sigma}\varepsilon^{*\nu}p^{\rho}k^{\sigma}\frac{2V(q^{2})}{m_{B}+m_{K^{*}}} \\ &-i\varepsilon_{\mu}^{*}(m_{B}+m_{K^{*}})A_{1}(q^{2}) \\ &+i(p+k)_{\mu}(\varepsilon^{*}\cdot q)\frac{A_{2}(q^{2})}{m_{B}+m_{K^{*}}} \\ &+iq_{\mu}(\varepsilon^{*}\cdot q)\frac{2m_{K^{*}}}{q^{2}}\left[A_{3}(q^{2})-A_{0}(q^{2})\right], \end{split}$$

• We use LCSR (+LQCD) results from [Bharucha et al. '15, Horgan et al. '13]:

$$\mathcal{B}(B \to K^* \nu \bar{\nu})^{\text{SM}} / |\lambda_t|^2 = \begin{cases} (5.9 \pm 0.8)_{K^{*0}} \times 10^{-3} \\ (6.4 \pm 0.9)_{K^{*+}} \times 10^{-3} \end{cases}$$

[$\approx 15\%$ uncertainty]

 \Rightarrow Relatively small uncertainties, **<u>but are they accurate</u>**?

O. Sumensari

[Intermezzo]: Cross-check of $f_+^{B \to K}(q^2)$

- SM predictions depend on the **extrapolation** of the LQCD **form-factors to low** q^2 values **parameterisation dependent**?
 - ⇒ How can we test the shape of the extrapolated LQCD form-factors?
- We propose to measure:

[Becirevic, Piazza, OS. 2301.06990]

$$r_{\rm low/high} = \frac{\mathcal{B}(B \to K \nu \bar{\nu})_{\rm low-q^2}}{\mathcal{B}(B \to K \nu \bar{\nu})_{\rm high-q^2}}$$

 $r_{\rm low/high} = 1.91 \pm 0.06$

 \Rightarrow <u>Independent</u> of λ_t and the form-factor normalisation, as well as of NP contributions.

NB. w/o ν_R

• Using the bins (0, $q_{\text{max}}^2/2$) vs. $(q_{\text{max}}^2/2, q_{\text{max}}^2)$:

e.g, using (old) FLAG average:

 $r_{\rm low/high} = 2.15 \pm 0.26$

Form-factors: $B \rightarrow K \nu \bar{\nu}$

*Annihilation contributions not included below (see next slides)!

Form-factors based on Light-Cone Sum Rules (LCSR) lead to smaller branching fractions.

[Bharucha et al. '15, Gubernari et al. '18]

$$\mathcal{B}(B \to K \nu \bar{\nu})^{\text{SM}} / |\lambda_t|^2 = \begin{cases} (1.33 \pm 0.04)_{K_S} \times 10^{-3} \\ (2.87 \pm 0.10)_{K^+} \times 10^{-3} \end{cases}$$

Comparison from A. Lytle talk

Hidden sectors?

- What if the excess is due to $B \to KX(\to inv)$, where $X \sim (1, 1, 0)$ is a light mediator produced on-shell (*i.e.*, with $m_X < m_B$)?
- The main difference would be a **peak** in the q^2 -distributions at $q^2 \simeq m_X^2$, smeared by the detector resolution.
- Good fit to Belle-II data too since the excess is mostly localised (within large uncertainties!):

 \Rightarrow To be checked by **dedicated searches**!

[Intermezzo]: $B \to D^{(*)} \ell \bar{\nu}$ in the SM

For light (heavy) leptons:

Form-factors (from lattice, exp...)

B → D : one (two) form-factors with f₀(0) = f₊(0) at q² = 0;
 ⇒ Lattice QCD at q² ≠ q²_{max} for both form-factors.

[MILC/Fermilab '15, HPQCD '15]

EFT vs. concrete models

Examples: $pp \rightarrow \mu\mu$ $pp \rightarrow \tau \tau$ 1.601.20EFT $(d \leq 6)$ EFT $(d \leq 6)$ 1.40 $m_{U_1} = 1 \text{ TeV}$ 1.00 $m_{U_1} = 1 \text{ TeV}$ $|(x_1^L)_{s\mu}|/m_{U_1} [\text{TeV}^{-1}]$ $(x_1^L)_{s\tau}|/m_{U_1}$ [TeV⁻¹] 1.20 $m_{U_1} = 2 \text{ TeV}$ $m_{U_1} = 2 \text{ TeV}$ $m_{U_1} = 3 \text{ TeV}$ $m_{U_1} = 3 \text{ TeV}$ 0.80 1.00 0.80 0.60 0.60 0.40 0.40 0.20^{1} 0.202000 25003000 350050010001500400 200600 800 1000 12001400 $m_{\rm cut} \, [{\rm GeV}]$ $m_{\rm cut} \, [{\rm GeV}]$

The **EFT reproduces** well the **leptoquark models** for $M \gtrsim 2 \text{ TeV}$.

NB. The convergence is slower for *s*-channel mediators.

Example: $b \rightarrow s \tau \tau$

- Related to $b \to c \tau \bar{\nu}$ for some operators through $SU(2)_L$ invariance, $L_i = (\nu_{Li}, \ell_{Li})^T$.
- Extremely difficult measurement at low energies!

Upper limits (90%CL.):
$$\mathcal{B}(B_s \to \tau\tau) < 6.8 \times 10^{-3}$$
[LHCb. '17] $\mathcal{B}(B^+ \to K^+ \tau \tau) < 2.25 \times 10^{-3}$ [BaBar. '16] $vs.$ $\mathcal{B}_{SM} \approx 10^{-7}$ $\mathcal{B}(B^0 \to K^{*\,0} \tau \tau) < 3.1 \times 10^{-3}$ [Belle. '21]

