Bootstrapping gauge theories (QCD)

Vifei He LPENS CNRS

based on 2309.12402 and to appear with Martin Kruczenski

Low energy physics of asymptotically free gauge theory

asymptotically free gauge theory $SU(N_c)$

chiral symmetry breaking and confinement

 N_f massive quarks $m_q \ll \Lambda_{
m QCD}$ fundamental representation of gauge group

Low energy physics of asymptotically free gauge theory

asymptotically free gauge theory $SU(N_c)$

chiral symmetry breaking and confinement

 N_f massive quarks $m_q \ll \Lambda_{
m QCD}$ fundamental representation of gauge group

$$\mathcal{L} = i \sum_{j}^{N_f} \bar{q}_j \not{D} q_j - \sum_{j}^{N_f} m_q \bar{q}_j q_j - \frac{1}{4} G^{\mu\nu}_a G^a_{\mu\nu} + \text{gauge fixing} + \text{ghost}$$

gauge theory parameters: $N_c \,\,\, N_f \,\,\, m_q \,\,\, \Lambda_{
m QCD}$

Low energy physics of asymptotically free gauge theory

asymptotically free gauge theory $SU(N_c)$

chiral symmetry breaking and confinement

 N_f massive quarks $m_q \ll \Lambda_{
m QCD}$ fundamental representation of gauge group

$$\mathcal{L} = i \sum_{j}^{N_f} \bar{q}_j \not{D} q_j - \sum_{j}^{N_f} m_q \bar{q}_j q_j - \frac{1}{4} G^{\mu\nu}_a G^a_{\mu\nu} + \text{gauge fixing} + \text{ghost}$$

gauge theory parameters: $N_c \ N_f \ m_q \ \Lambda_{
m QCD}$

What is the low energy physics?

Physics of Goldstone bosons

chiral symmetry breaking

 $SU(N_f)_L \times SU(N_f)_R \to SU(N_f)_V$

(approximate) Goldstone bosons dominate the low energy physics

e.g.
$$N_f = 2$$
 pions $\pi_0 = \pi^3$ $\pi_{\pm} = \frac{1}{\sqrt{2}} (\pi^1 \pm i\pi^2)$

Physics of Goldstone bosons

chiral symmetry breaking

 $SU(N_f)_L \times SU(N_f)_R \to SU(N_f)_V$

(approximate) Goldstone bosons dominate the low energy physics

e.g.
$$N_f = 2$$
 pions $\pi_0 = \pi^3 \quad \pi_{\pm} = \frac{1}{\sqrt{2}} (\pi^1 \pm i\pi^2)$
very low energy
effective Lagrangian
(lowest order): $\mathcal{L} = \frac{f_{\pi}^2}{4} \{ \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) + m_{\pi}^2 \operatorname{Tr} \left(U + U^{\dagger} \right) \} \quad U = e^{i \frac{\vec{\tau} \cdot \vec{\pi}}{f_{\pi}}}$
 $\mathcal{L}_2^{2\pi} = \frac{1}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} - \frac{1}{2} m_{\pi}^2 \vec{\pi}^2 \quad \mathcal{L}_2^{4\pi} = \frac{1}{6 f_{\pi}^2} \left((\vec{\pi} \cdot \partial_{\mu} \vec{\pi})^2 - \vec{\pi}^2 (\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}) \right) + \frac{m_{\pi}^2}{24 f_{\pi}^2} (\vec{\pi}^2)^2 \quad \dots$

Pure S-matrix bootstrap:	
symmetry, analyticity, crossing, unitarity	
	<
>	<

Pure S-matr	bootstrap:	
symmetry, analyticit	crossing, unitarity	
Chiral symmetry	ry breaking:	
general very low ene	gy behavior	
> 		<

Pure S-matrix bootstrap:	
symmetry, analyticity, crossing, unitarity	
Chiral symmetry breaking:	
general very low energy behavior	
Form factor bootstrap + SVZ sum rules:	
gauge theory information	,

• Pure S-matrix bootstrap: symmetry, analyticity, crossing, unitarity	≪	$SU(N_f)_V$		
Chiral symmetry breaking: general very low energy behavior	≺	f_{π} m_{π}		
• Form factor bootstrap + SVZ sum rules: $N_c \ m_q \ \Lambda_{\rm QCD}$ gauge theory information				

can be compared with experimental data

for general gauge theories — compare with lattice data

• Pure S-matrix bootstrap:

symmetry, analyticity, crossing, unitarity

$SU(N_f)_V$

modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016 & 2017]

2-to-2 pion scattering: $\pi_a(p_1) + \pi_b(p_2) \to \pi_c(p_3) + \pi_d(p_4)$

 $\langle p_1, a; p_2, b | \mathbf{T} | p_3, c; p_4, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc}$

modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016 & 2017]

2-to-2 pion scattering:
$$\pi_a(p_1) + \pi_b(p_2) \rightarrow \pi_c(p_3) + \pi_d(p_4)$$

 $\langle p_1, a; p_2, b | \mathbf{T} | p_3, c; p_4, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc}$

constrain amplitudes using generic consistency conditions

crossing A(s,t,u) = A(s,u,t) analyticity cuts s,t,u > 4 $m_{\pi} = 1$

modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016 & 2017]

2-to-2 pion scattering:
$$\pi_a(p_1) + \pi_b(p_2) \rightarrow \pi_c(p_3) + \pi_d(p_4)$$

 $\langle p_1, a; p_2, b | \mathbf{T} | p_3, c; p_4, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc}$

constrain amplitudes using generic consistency conditions

$$\begin{array}{ll} \mbox{crossing} & A(s,t,u) = A(s,u,t) & \mbox{analyticity} & \mbox{cuts} & s,t,u > 4 \\ & m_{\pi} = 1 \end{array}$$

$$A(s,t,u) = \frac{1}{\pi^2} \int_4^{\infty} dx \int_4^{\infty} dy \left[\frac{\rho_1(x,y)}{(x-s)(y-t)} + \frac{\rho_1(x,y)}{(x-s)(y-u)} + \frac{\rho_2(x,y)}{(x-s)(y-u)} \right] + \mbox{subtraction terms}$$

$$parameters: \left\{ \rho_{\alpha=1,2}(x,y), \dots \right\} \quad numerics: discretize \quad \left\{ \rho_{\alpha,ij}, \dots \right\} \quad bootstrap variables$$

analytic function of s

 $f_{\ell}^{I}(0 < s < 4)$ real linear functionals of bootstrap variables

unphysical region

each boundary point: an extremal numerical amplitude

Weakly coupled Goldstone bosons

chiral symmetry breaking: weakly coupled Goldstone bosons at very low energy

interaction:
$$\mathcal{L}_{2}^{4\pi} = \frac{1}{6f_{\pi}^{2}} \Big((\vec{\pi} \cdot \partial_{\mu}\vec{\pi})^{2} - \vec{\pi}^{2} (\partial_{\mu}\vec{\pi} \cdot \partial^{\mu}\vec{\pi}) \Big) + \frac{m_{\pi}^{2}}{24f_{\pi}^{2}} (\vec{\pi}^{2})^{2}$$

tree-level amplitude: $A_{\text{tree}}(s,t,u) = \frac{4}{\pi} \frac{s - m_{\pi}^2}{32\pi f_{\pi}^2}$ linear in s [Weinberg, 1966]

good in the unphysical region (very low energy) $0 < s, t, u < 4m_{\pi}^2$

Weakly coupled Goldstone bosons

chiral symmetry breaking: weakly coupled Goldstone bosons at very low energy

interaction:
$$\mathcal{L}_{2}^{4\pi} = \frac{1}{6f_{\pi}^{2}} \left((\vec{\pi} \cdot \partial_{\mu}\vec{\pi})^{2} - \vec{\pi}^{2}(\partial_{\mu}\vec{\pi} \cdot \partial^{\mu}\vec{\pi}) \right) + \frac{m_{\pi}^{2}}{24f_{\pi}^{2}} (\vec{\pi}^{2})^{2}$$
tree-level amplitude: $A_{\text{tree}}(s, t, u) = \frac{4}{\pi} \frac{s - m_{\pi}^{2}}{32\pi f_{\pi}^{2}}$ linear in s [Weinberg, 1966]
corresponding
partial waves
good in the unphysical region (very low energy) $0 < s, t, u < 4m_{\pi}^{2}$
 f_{ℓ}^{I}
S0: $f_{0,\text{tree}}^{0}(s) = \frac{2}{\pi} \frac{2s - m_{\pi}^{2}}{32\pi f_{\pi}^{2}}$ P1: $f_{1,\text{tree}}^{1}(s) = \frac{2}{\pi} \frac{s - 4m_{\pi}^{2}}{96\pi f_{\pi}^{2}}$ S2: $f_{0,\text{tree}}^{2}(s) = \frac{2}{\pi} \frac{2m_{\pi}^{2} - s}{32\pi f_{\pi}^{2}}$

good in unphysical region (very low energy) $0 < s < 4m_{\pi}^2$

Chiral symmetry breaking input

approximate linear behavior at very low energy: input in gauge theory bootstrap

numerically

requires p.w. in the bootstrap match the tree level p.w. in unphysical region

 $\begin{aligned} f_0^0(s) &\simeq f_{0,\text{tree}}^0(s) \\ f_1^1(s) &\simeq f_{1,\text{tree}}^1(s) \qquad 0 < s < 4m_\pi^2 \\ f_0^2(s) &\simeq f_{0,\text{tree}}^2(s) \end{aligned}$

S

Chiral symmetry breaking input

approximate linear behavior at very low energy: input in gauge theory bootstrap

numerically

requires p.w. in the bootstrap match the tree level p.w. in unphysical region

 $f_0^0(s) \simeq f_{0,\text{tree}}^0(s)$ $f_1^1(s) \simeq f_{1,\text{tree}}^1(s) \qquad 0 < s < 4m_\pi^2$ $f_0^2(s) \simeq f_{0,\text{tree}}^2(s)$

too loose: large deviation from chiSB prediction

too tight: exclude the desired theory

numerics with a series of tolerance

use $\,f_{\pi}=92{
m MeV}\,$ to select appropriate tolerance

S

 ϵ^{χ} {

Form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

an important development: $|\psi_1\rangle = |p_1, p_2\rangle_{in}$, $|\psi_2\rangle = |p_1, p_2\rangle_{out}$, $|\psi_3\rangle = \int dx e^{-i(p_1+p_2)\cdot x} \mathcal{O}(x)|0\rangle$ positive semidefinite matrix $\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0$ state created by UV local operator

Form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

an important development: $|\psi_1\rangle = |p_1, p_2\rangle_{in}$, $|\psi_2\rangle = |p_1, p_2\rangle_{out}$, $|\psi_3\rangle = \int dx e^{-i(p_1+p_2)\cdot x} \mathcal{O}(x)|0\rangle$ positive semidefinite matrix $\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & o \end{pmatrix} \succeq 0$ state created by UV local operator S $|_{ ext{out}}\langle p_1,p_2|\mathcal{O}(0)|0
angle=F(s)$ analytic function of s 2-particle form factor: F(s) $F(s) = \frac{1}{\pi} \int_{-\infty}^{\infty} dx \frac{\mathrm{Im}F(x)}{x-s} + \text{subtractions}$ $\int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0 | \mathcal{O}^{\dagger}(x) \mathcal{O}(0) | 0 \rangle = \rho(s) \quad \text{supported at } s > 4$ spectral density:

Form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

an important development: $|\psi_1\rangle = |p_1, p_2\rangle_{in}$, $|\psi_2\rangle = |p_1, p_2\rangle_{out}$, $|\psi_3\rangle = \int dx e^{-i(p_1+p_2)\cdot x} \mathcal{O}(x)|0\rangle$ positive semidefinite matrix $\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0$ state created by UV local operator $\sum_{\text{out}} \langle p_1, p_2 | \mathcal{O}(0) | 0 \rangle = F(s)$ analytic function of s 2-particle form factor: $F(s) = \frac{1}{\pi} \int_{1}^{\infty} dx \frac{\mathrm{Im}F(x)}{x-s}$ +subtractions F(s)spectral density: $\int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0 | \mathcal{O}^{\dagger}(x) \mathcal{O}(0) | 0 \rangle = \rho(s) \quad \text{supported at } s > 4$ bootstrap variables: $\{\rho_{1,2}(x,y),\ldots,\operatorname{Im} F(x),\rho(x)\}$ allow connection with UV theory

Current correlators from the UV gauge theory

 $\begin{array}{c} |\mathrm{in}\rangle_{P,I,\ell} & |\mathrm{out}\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}|0\rangle \\ \langle \mathrm{out}|_{P',I,\ell} & \begin{pmatrix} 1 & S_{\ell}^{I}(s) & \mathcal{F}_{\ell}^{I} \\ S_{\ell}^{I*}(s) & 1 & \mathcal{F}_{\ell}^{I*} \\ \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I} & \rho_{\ell}^{I}(s) \end{pmatrix} \succeq 0 \qquad s > 4 \quad \forall \ell, I \end{array}$

to connect with UV gauge theory

construct operators from gauge theory with desired quantum numbers

Current correlators from the UV gauge theory

to connect with UV gauge theory

e.g.

construct operators from gauge theory with desired quantum numbers

$$\begin{array}{c} |\mathrm{in}\rangle_{P,I,\ell} & |\mathrm{out}\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}|0\rangle \\ \langle \mathrm{out}|_{P',I,\ell} & \left(\begin{array}{cc} 1 & S_{\ell}^{I}(s) & \mathcal{F}_{\ell}^{I} \\ S_{\ell}^{I*}(s) & 1 & \mathcal{F}_{\ell}^{I*} \\ \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I} & \rho_{\ell}^{I}(s) \end{array}\right) \succeq \end{array}$$

 $\rho_{\ell}^{I}(s) = 2 \operatorname{Im} \Pi_{\ell}^{I}(x + i\epsilon)$

 $\succeq 0 \qquad s > 4 \quad \forall \ell, I$

S

Current correlators from the UV gauge theory

to connect with UV gauge theory

construct operators from gauge theory with desired quantum numbers

$$\begin{array}{c} |\mathrm{in}\rangle_{P,I,\ell} & |\mathrm{out}\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}|0\rangle \\ \langle \mathrm{out}|_{P',I,\ell} & \begin{pmatrix} 1 & S_{\ell}^{I}(s) & \mathcal{F}_{\ell}^{I} \\ S_{\ell}^{I*}(s) & 1 & \mathcal{F}_{\ell}^{I*} \\ \mathcal{O}|\mathcal{O}_{P',I,\ell}^{\dagger} & \begin{pmatrix} \mathcal{F}_{\ell}^{I*}(s) & 1 & \mathcal{F}_{\ell}^{I*} \\ \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I} & \rho_{\ell}^{I}(s) \end{pmatrix} \succeq 0 \quad s > 4 \quad \forall \ell, I \end{array}$$

 $\rho_{\ell}^{I}(s) = 2 \operatorname{Im} \Pi_{\ell}^{I}(x + i\epsilon)$

S

 $\Pi(a)$

large spacelike momenta — asymptotic free region with pQCD computation

SVZ expansion

[Shifman, Vainshtein, Zakharov, 1979]

OPE:
$$T\{j(x)j(0)\} = C_{\mathbb{1}}(x) \ \mathbb{1} + \sum_{\mathcal{O}} C_{\mathcal{O}}(x) \ \mathcal{O}(0)$$

$$\langle 0|T\{j(x)j(0)\}|0\rangle = C_{\mathbb{1}}(x) + C_{\bar{q}q}(x) \langle 0|j_{S}(0)|0\rangle + C_{G^{2}}(x) \langle 0|\frac{\alpha_{s}}{\pi}G^{a}_{\mu\nu}G^{a\,\mu\nu}|0\rangle + \dots$$

SVZ expansion

[Shifman, Vainshtein, Zakharov, 1979]

SVZ expansion

[Shifman, Vainshtein, Zakharov, 1979]

Finite energy sum rule

connect with pQCD with bootstrap at s0

contour integral $s^{n}\Pi(s)$ vanishes SVZ $\int_{4}^{s_{0}} \rho(x)x^{n}dx = -s_{0}^{n+1}\int_{0}^{2\pi} e^{i(n+1)\varphi}\Pi(s_{0}e^{i\varphi})d\varphi$

Finite energy sum rule

connect with pQCD with bootstrap at s0

 $\begin{array}{c} \text{contour integral } s^n \Pi(s) \text{ vanishes } \\ \int_4^{s_0} \rho(x) x^n dx = -s_0^{n+1} \int_0^{2\pi} e^{i(n+1)\varphi} \Pi(s_0 e^{i\varphi}) d\varphi \\ \\ \\ \text{bootstrap variables } \\ \hline \\ \text{linear constraints} \end{array} \text{ gauge theory information} \end{array}$

Finite energy sum rule

Gauge theory parameters: numerical input

gauge theory info:
$$\begin{cases} N_f = 2 & N_c = 3 & \text{for comparison with experiments} \\ s_0 = (1.2 \,\text{GeV})^2, & \alpha_s \simeq 0.41, & m_u \simeq 4 \,\text{MeV} & m_d \simeq 7.3 \,\text{MeV} \end{cases}$$
more recently (to appear): $s_0 = (2 \,\text{GeV})^2, & \alpha_s \simeq 0.31, & m_u \simeq 3.6 \,\text{MeV} & m_d \simeq 6.5 \,\text{MeV} \end{cases}$

IR parameters

$$\langle \frac{\alpha_s}{\pi} G^2 \rangle \simeq 0.023 \,\mathrm{GeV}^4, \quad \langle j_S(0) \rangle = m_q \langle \bar{u}u + \bar{d}d \rangle \simeq -(0.1 \,\mathrm{GeV})^4$$

numerically not significant in our working precision

phase shifts up to 2GeV

[YH, Kruczenski, to appear]

experiments (gray dots) [Protopopescu et al, 1973][Losty et al, 1974][Hyams et al, 1975]

scattering lengths and effective range parameters

$$\operatorname{Re} f_{\ell}^{I}(s) \stackrel{k \to 0}{\simeq} \frac{2m_{\pi}}{\pi} k^{2\ell} \left(a_{\ell}^{I} + b_{\ell}^{I} \tilde{k}^{2} + \dots \right) \qquad \qquad k = \frac{\sqrt{s - 4m_{\pi}^{2}}}{2}$$

	DI	FGS	ACGL	CGL PY		РҮ	gauge theory bootstrap		
$a_0^{(0)}$	0.228 ± 0.012		0.240 ± 0.060	0.220 ± 0.0	05	0.230 ± 0.010	0.178	0.188	0.201
$a_0^{(2)}$	-0.0382 ± 0.0038		-0.036 ± 0.013	-0.0444 ± 0.0010		-0.0422 ± 0.0022	-0.0362	-0.0388	-0.0425
$b_0^{(0)}$	(0) 0		0.276 ± 0.006	0.280 ± 0.001		0.268 ± 0.010	0.31	0.307	0.297
$b_0^{(2)}$	$b_0^{(2)}$		-0.076 ± 0.002	-0.080 ± 0.0	001	-0.071 ± 0.004	-0.0629	-0.0681	-0.075
	Nagel PSGY C		GL		PY				
+	0					28.1 ± 1.4			
a_1	$38 \pm 2 \qquad 38.5 \pm 0.6 \qquad 37.0 \pm 0.13$		$[37.9 \pm 0.5]^{\mathrm{a}}$	[38.	6 ± 1.2] ^b × 10 ⁻³	0.0281	0.0304	0.0343	

[Nagel et al, 1979][Descotes et al, 2002][Ananthanarayan et al, 2001] [Colangelo, Gasser, Leutwyler, 2001][Pelaez, Yndurain, 2003]

[YH, Kruczenski, to appear]

rho meson as pole on the second sheet of $S_1^1(s)$

[YH, Kruczenski, to appear]

fit P1 form factor with Breit-Wigner form

[YH, Kruczenski, to appear]

gauge theory bootstrap – summary

bootstrap variables:

Conclusions

• Gauge theory bootstrap:

combining old (SVZ sum rules) and new (S-matrix/form factor bootstrap) techniques

using only
$$N_c N_f m_q \Lambda_{\rm QCD}$$
 $f_\pi m_\pi$
gauge theory parameters universal low energy parameters

strongly coupled low energy physics of asymptotically free gauge theories

Conclusions

• Gauge theory bootstrap:

combining old (SVZ sum rules) and new (S-matrix/form factor bootstrap) techniques

using only
$$N_c N_f m_q \Lambda_{\rm QCD} = f_\pi m_\pi$$

gauge theory parameters universal low energy parameters

strongly coupled low energy physics of asymptotically free gauge theories

• Numerical test with $N_f = 2$ $N_c = 3$ find good agreement with experiments

results show: strongly coupled QCD physics is computable

Conclusions

• Gauge theory bootstrap:

combining old (SVZ sum rules) and new (S-matrix/form factor bootstrap) techniques

using only
$$N_c N_f m_q \Lambda_{QCD} f_{\pi} m_{\pi}$$

gauge theory parameters universal low energy parameters

strongly coupled low energy physics of asymptotically free gauge theories

• Numerical test with $N_f = 2$ $N_c = 3$ find good agreement with experiments

results show: strongly coupled QCD physics is computable

• Further developments — deep understanding of gauge theories

Thank you!

