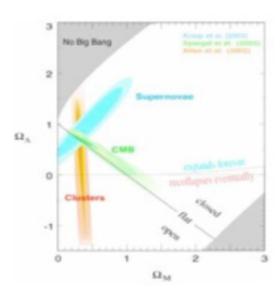
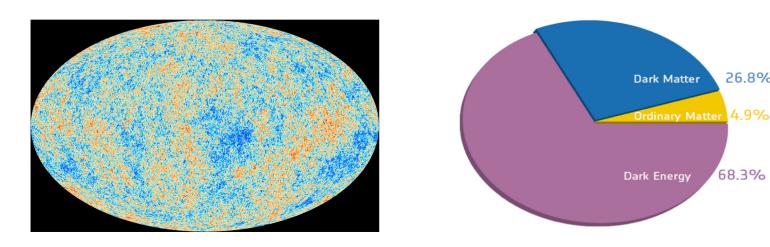

Dark matter From WIMPs to weaker and lighter DM


G. Bélanger

LAPTh, Annecy-le-Vieux

Introduction



- Strong evidence for dark matter from many scales
 - The galactic scale (rotation curves)
 - Scale of galaxy clusters: mass to light-ratio, gravitational lensing, Bullet cluster
 - Cosmological scales
 - DM required to amplify the small fluctuations in Cosmic microwave background to form the large scale structure in the universe today
- Dark Matter a new particle?

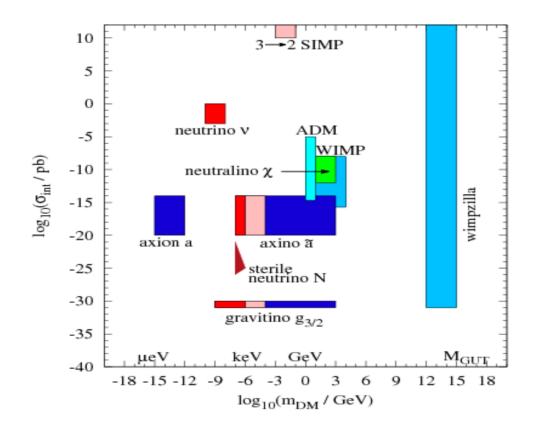
WMAP and PLANCK

26.8%

The universe contains ~27% of cold dark matter

*Cold: non-relativistic during structure formation otherwise with erase structure

Since DM is non relativistic at the time of 'last scattering' when photons decoupled -> M>10keV : neutrino cannot be main DM component

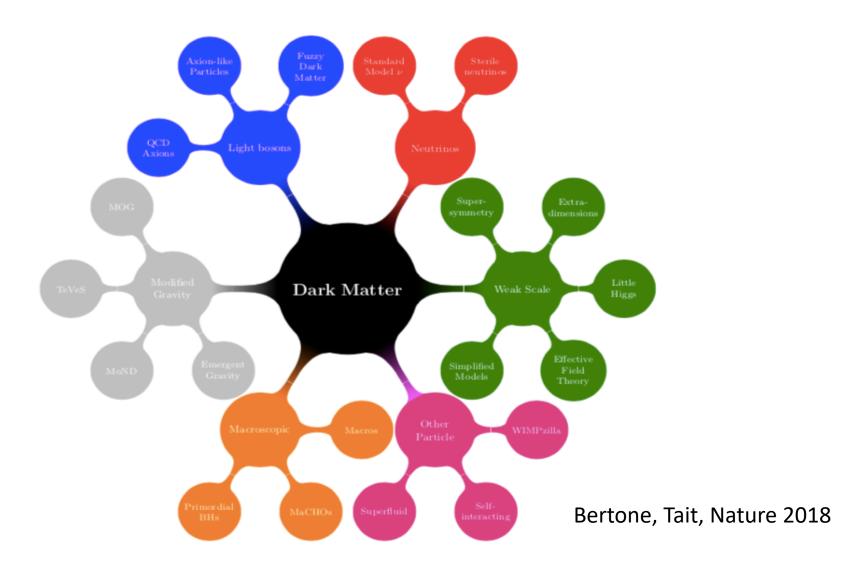

DM a new particle : what are its properties?

- cold, neutral (or very small charge), stable, non-baryonic, weak interactions with standard model (or feeble)

• Relic density of DM known precisely (PLANCK)

$$\Omega_{\rm DM}h^2 = 0.1188 \pm 0.0010$$
,

• Leaves lots of possibilities for DM of different mass and interaction strength - a new stable WIMP is most studied candidate - despite strong experimental programs – no signs of WIMPs but the searches continue



Baer et al, 1404.0071

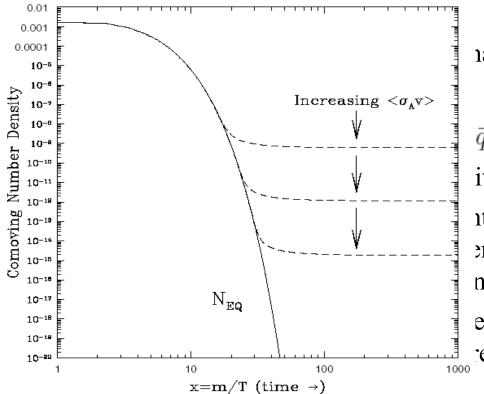
- Well-motivated New Physics model has yet to be singled out
- 30 years ago, had a very good idea what would be this new particle: neutralino in SUSY despite the large parameter space clear paths for DM searches (direct and indirect searches and production at colliders)
- Same strategy applies for other WIMPs a new stable neutral weakly interacting particle
- Many possibilities for dark matter, classified by:
 - Dark matter production mechanisms: in thermal equilibrium in early universe or not interaction strengths (WIMPs, FIMPs, SIMPs, SIDM etc..) mass...
 - Theoretically motivated beyond the standard model (e.g. naturalness)
 - Expt-motivated extension of the Standard model : neutrino, anomaly (B, g-2...); baryogenesis
 - Extension of SM with DM candidate (e.g. simplified model)

- Underlying theoretical model allow to best exploit connections between search strategies range masses, coupling strengths, spin of DM, nature of mediator(s)
- Mediator(s): coupling between DM and SM e.g. H, new particle

The case of WIMPs

WIMP DM

- Most studied hypothesis: a new stable neutral weakly-interacting massive particle WIMP why are they good DM candidates?
- In thermal equilibrium when T of Universe much larger than its mass
- Equilibrium abundance maintained by processses


$$\chi \bar{\chi} \to e^+ e^-, \mu^+ \mu^-, \tau^+ \tau^-, q\bar{q}, W^+ W^-, ZZ$$

- As well as reverse processes, inverse reaction proceeds with equal rate
- As Universe expands T drops below m_{χ} , n_{eq} drops exponentially, production rate is suppressed (particles in plasma do not have sufficient thermal energy to produce $\chi\chi$) χ start to decouple can only annihilate $dn/dt=\sigma v$ n^2
- Eventually rate of annihilation drops below expansion rate Γ < H not enough χ for annihilation > fall out of equilibrium and freeze-out (at T_{FO} ~m/20), density depends only on expansion rate

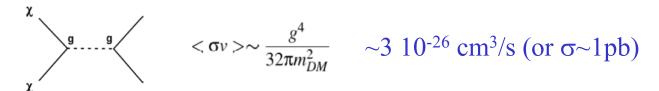
$$\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle \left[n^2 - n_{eq}^2 \right]$$

WIMP DM

- Why WIMP
- In thermal e
- Equilibrium
- As well as re
- As Universe rate is suppr to produce χ
- Eventually r enough χ for $T_{FO}\sim m/20$,

nan its mass

$$\bar{q}$$
, W^+W^- , ZZ
ith equal rate
ntially, production
ent thermal energy
 $n/dt=\sigma v n^2$
e $\Gamma < H-not$
reeze-out (at

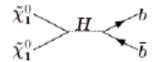

$$\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle \left[n^2 - n_{eq}^2 \right]$$

Dark matter: a WIMP?

In standard cosmological scenario, relic abundance

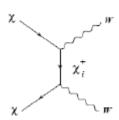
$$\Omega_X h^2 \approx \frac{3 \times 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma v \rangle}$$
.

WIMP at EW scale has 'typical' annihilation cross section for $\Omega h^2 \sim 0.1$ (PLANCK)

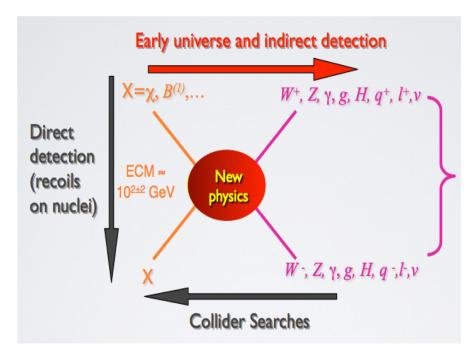


Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter (WIMP miracle)

This is simple estimate – possible variations by orders of magnitude Mass and interaction strength for thermal DM?


Miracle?

- Relic density puts strong constraint on combination of mass/couplings
- Will any weakly interacting particle lead to the 'miracle'?
- Resonance


$$\sigma v \propto m_{\tilde{\chi}}^2/(4m_{\chi}^2 - m_H^2)^2$$

- much weaker coupling required when $2m_{\chi}\sim m_H$
- New channels: increase of cross section if W/Z/h/t channels kinematically open, also larger cross sections for spin 1
- t-channel: enhancement when small mass splitting

Other processes can contribute to DM formation

Probing the nature of dark matter

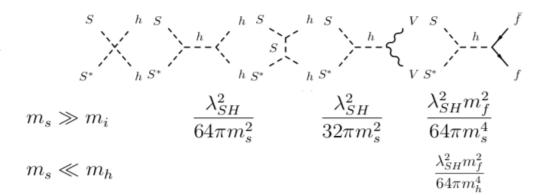
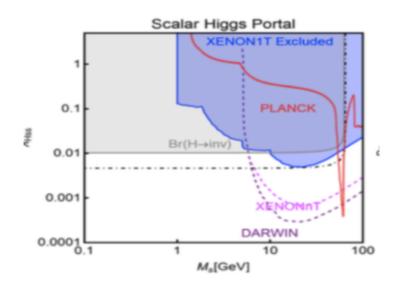
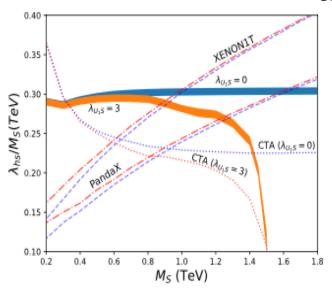

- All determined by interactions of WIMPS with Standard Model
- Strong connection relic/ID (only difference is v)
- Relic density and direct detection put severe constraints on WIMP models
- Not necessarily the same particles/process play dominant role, eg annihilation into dark sector can dominate relic no effect on collider searches

Illustration relic/DD constraints

- Singlet scalar : Simplest SM extension : one singlet scalar + Z_2 symmetry
- Improves stability of Higgs sector
- Higgs portal : one coupling (to Higgs) drives all DM observables relic,DD,ID

$$V_{Z_2} = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 |S|^2 + \lambda_S |S|^4 + \lambda_{SH} |S|^2 |H|^2$$
 Direct detection

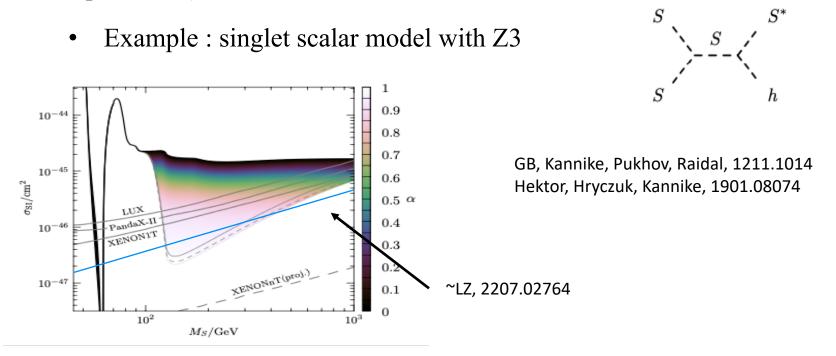

annihilation



Need large enough coupling for DM annihilation – but constraints from DD

Singlet scalar

GB et al 2206.11305

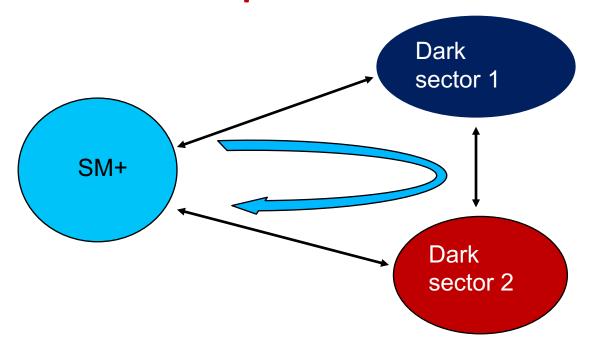


Arcadi et al, 2101.02507

- If annihilation is efficient enough for relic density to be satisfied -> strong constraint from direct detection (unless DM mass >TeV, DM mass ~ mh/2)
- If $m_S < m_h/2$: Higgs invisible also constrain the model Djouadi, Lebedev, Mambrini, Quevillon, 1112.3299

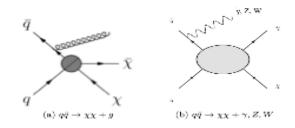
- To relax constraints on WIMPs: uncorrelate relic density/ direct detection
- Several ways to do that (beyond exploiting resonance effect)
 - New processes for relic (e.g. co-annihilation, semi-annihilation ...)
 - Semi-annihilation: processes involving different number of dark particles (Hambye, 0811.0172; D'Eramo, Thaler 1003.5912)

• Relax direct detection constraint of the singlet scalar – now under tension with LZ result

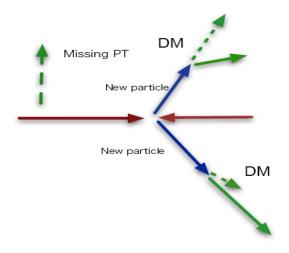

- To relax constraints on WIMPs : uncorrelate relic density/ direct detection
- Several ways to do that (beyond exploiting resonance effect)
 - New particles for relic (e.g. new processes not involving the Higgs)
 - New processes for relic :

Hochberg, Les Houches SciPost Phys. Lect. 2022

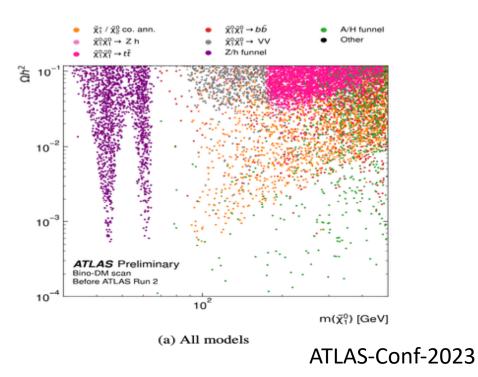
- To relax constraints on WIMPs: uncorrelate relic density/ direct detection
- Several ways to do that (beyond exploiting resonance effect)
 - New particles for relic (e.g. new processes not involving the Higgs)
 - New processes for relic (e.g. co-annihilation, semi-annihilation ...)
 - Pseudoscalar mediator(s) Banerjee, GB, Bhatia, Fuks, Raychaudhuri, 2110.15391
 - Relax DD constraints potential signature of new pseudoscalar at LHC
 - Loop-induced contribution to DD much weaker, current experiments do not yet probe O(1) couplings -- Li, Wu, 1904.03407
 - Multi-component: no reason that the dark sector contains only one new particle issue of stability


Multi-component: 2 dark sectors

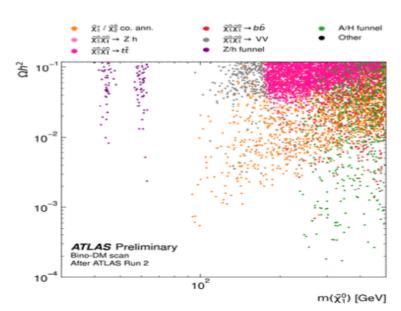
- Assisted freeze-out: no interactions DS2-SM interactions DS1-DS2 determine the abundance of DM2 (GB, JC Park, JCAP03 (2012) 038)
- DM conversion : include also DS2-SM
- WIMP models can be constructed to avoid certain constraints, but strategy of direct/indirect/collider searches offer powerful probes of WIMPs
- Zurek 0811.4429, Bhattacharya 1607.08461, Lu Wu Zhou, 1101.4148, Bas I Beneito, et al, 2207.02874, GB, Mjallal, Pukhov, 2108.08061


LHC searches for DM

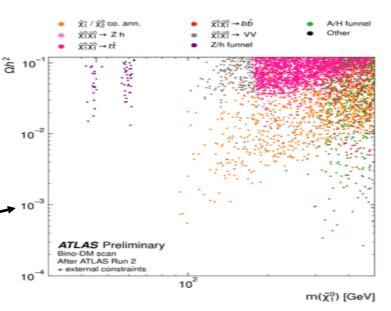
Model independent approach (monoX) MET+ jet, γ, W, Z


Model dependent approach:

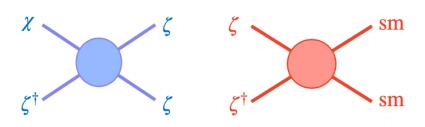
- Production of new particles that decay in DM, signature : MET + 1, q,....
- Invisible decays of the Higgs
- Charged tracks and displaced vertices
 - small mass splitting or very weak interactions
- Searches for new particles in SM final state
 - E.g. mediator

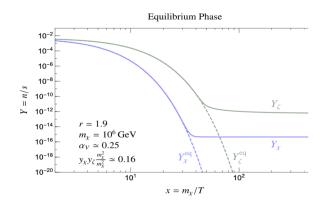


Status of SUSY after LHC and LZ


Searches for electroweakinos in RunII

Still room for SUSY DM after Run2 and recent DM searches

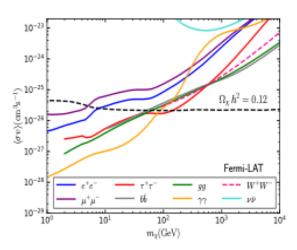

(b) Models not excluded by ATLAS



Above/below the weak scale

- General properties of thermal DM
- No naturalness -> mass scale extends from 10 MeV->100TeV
 - For FO mechanism from $\chi\chi$ ->SM SM
 - rate of DM annihilation $\Gamma=n<\sigma v>$, unitarity imposes upper limit on $<\sigma v>->$ lower bound on n at FO ($\Gamma\sim H$)
 - $\Omega h^2 \sim m_{\chi} n \rightarrow \text{upper bound on } m_{\chi}$
 - Or if DM is heavier than upper bound it will be overabundant
 - Remark : if DM is > few TeV : hard for LHC and for ID (CTA can reach high masses) but signal scales as $n^2 \sim \rho^2/m^2$
 - Note: with zombie can relax this constraint -> almost to Planck scale

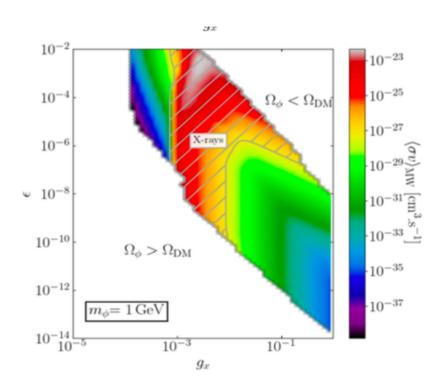
- Note: with zombie can relax this constraint -> almost to Planck scale
- Kramer et al, 2003.04900 (assumes that $\chi\chi -> \zeta\zeta$ or SM SM small)


- DM is χ ; $m_{\zeta} < m\chi < 3$ m_{ζ} (to prevent $\chi -> \zeta \zeta \zeta$ decay)
- If ζ remains in equilibrium, at FO of χ , n_{ζ} large

$$\dot{n}_{\chi} + 3Hn_{\chi} = -n_{\zeta}^{\text{eq}} \langle \sigma_{\chi\zeta \to \zeta\zeta} v \rangle \left(n_{\chi} - n_{\chi}^{\text{eq}} \right) .$$

- Relaxes upper bound on mχ
- Also if DM at weak scale much smaller interaction rates than standard WIMPs

- Light DM (below few GeVs)
 - For correct relic density and to escape current constraint, light DM usually couples also to some light mediator -> probes in high intensity low energy colliders
 - Strong constraints from CMB and Indirect detection
 - Ionizing particles (e⁺ e⁻ γ) from DM annihilation change the ionization history of hydrogen gas-> perturbation of CMB anisotropies
 - Stringent limits on light DM assuming s-wave annihilation and 100%BR in given SM (neutrino annihilation channel escapes constraints)


 Slatyer, 1506.03811

Dutta et al, 2212.09795

• Fermi-LAT searches for photons from DM annihilation in dSph's also strong constraints

- Light DM (below few GeVs)
 - Example : scalar DM coupled (gx) to dark photon kinetic mixing(ε)
 - annihilation near resonance Breit-Wigner enhancement $\sigma v(MW) >> \sigma v(FO)$,
 - process is p-wave avoid strongest constraints from CMB


GB, Chakraborti, Genolini, Salati, 2401.02513

e+e- from DM annihilation scattering on low energy photons in interstellar raiation field in Galaxy – generate Xray

Xray Constraints from XMM Newton, Cirelli et al 2303.08854

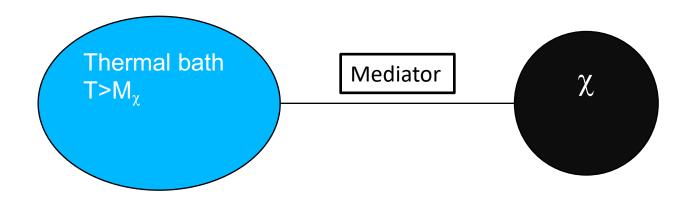
DM annihilation injects energy in plasma generate distortions from pure black body spectrum – constraints from FIRAS

- Light DM (below few GeVs)
 - Example : scalar DM coupled (gx) to dark photon kinetic mixing(ε)
 - annihilation near resonance Breit-Wigner enhancement $\sigma v(MW) >> \sigma v(FO)$,
 - process is p-wave avoid strongest constraints from CMB

GB, Chakraborti, Genolini, Salati, 2401.02513

e+e- from DM annihilation scattering on low energy photons in interstellar raiation field in Galaxy – generate Xray

Xray Constraints from XMM Newton, Cirelli et al 2303.08854

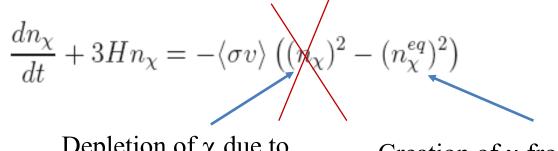

DM annihilation injects energy in plasma generate distortions from pure black body spectrum – constraints from FIRAS

• Below threshold for DD on nucleons, strong constraints from ID (Xray) and CMB, also colliders (here BABAR and LEP, e+e--> AA'-> invisible)

Weaker than weak: the FIMP case

FIMPS (Feebly interacting MP)

- Freeze-in (Hall et al 0911.1120, McDonald, J. hep-ph/0106249)
 relevant for FIMP
- In early Universe, χ so feebly interacting that χ is decoupled from plasma



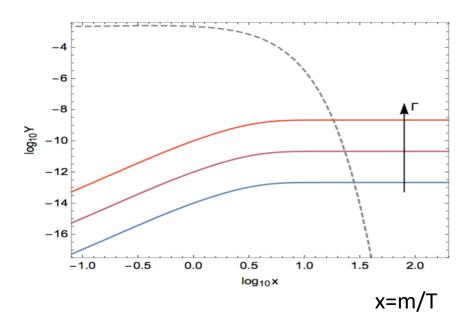
- Interactions are feeble but lead to production of χ
- Review: Bernal et al, 1706.07442; GB, Chakraborti, Pukhov, 2309.00491

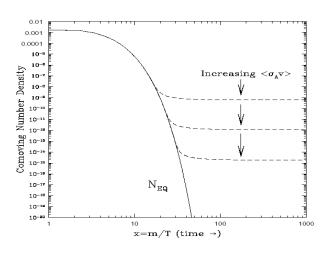
Freeze-in

DM particles are NOT in thermal equilibrium with SM

• Recall

Depletion of χ due to annihilation


Creation of χ from inverse process


Initial number of DM particles is very small

$$\dot{n}_\chi + 3Hn_\chi = \langle \sigma v \rangle_{X\bar{X} \to \chi\bar{\chi}}(T) n_{eq}^2(T) + n_{eq}(T) \Gamma_{Y \to \chi\chi}(T)$$
 annihilation Decay (X,Y in Th.eq. With SM)

FIMPS (Feebly interacting MP)

- DM production from SM annihilation (or decay) until number density of SM becomes Boltzmann suppressed n_{γ} constant 'freezes-in'
- $T \sim M$, χ 'freezes-in' yield increases with interaction strength, $Y \sim \lambda$

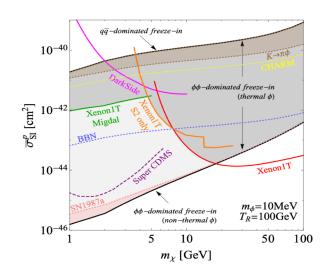
Comparison with WIMPs

- When decay possible, usually dominates
- Typical interaction strength: $10^{-12} 10^{-10}$
- Mass range: from very light to TeV scale

- Some possibilities for FIMPs:
 - FIMP is DM: pair production in annihilation of SM particles (or in decay of particle in thermal equilibrium)
 - FIMP is DM, next to lightest 'odd' particle has long lifetime freeze-out as usual then decay to FIMP typically $\lambda \sim 10^{-12}$
 - a new long-lived particle with signature at collider (LLP) and/or also affect BBN or CMB depending on lifetime
 - FIMP can also be part of multi-component DM if the WIMP is only a small fraction of DM its DD and ID signals are suppressed.
 - FIMP is not DM, freezes-in and then decay to WIMP DM increasing abundance of WIMP
 - Relic abundance and DM annihilation cross section no longer related, freeze-in produces DM abundance, DM annihilation can be large – freeze-out abundance small
 - Hard to identify the presence of the FIMP, but mismatch between properties of measured WIMP with value of relic density
 - Possible boost in indirect detection signals ($\sigma v > 3$ 10-26 cm2/s)

Probes of FIMPs

- FIMP in general a singlet under SM (to prevent reaching thermal equilibrium) for example the singlet scalar model used for freeze-out but for a different choice of couplings
- Probes not as generic as for WIMPs
- Direct detection
 - On nucleons: detectable if mediator is light
 - On electrons
- Colliders
- Indirect detection
- Cosmology: BBN, energy injection...

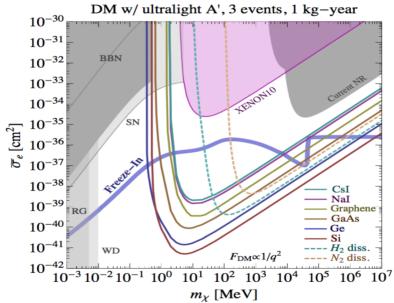

Direct detection

• FIMPs can be within reach of direct detection when rate is enhanced by presence of light mediator

$$\frac{dR}{dE_{\mathcal{B}}} = \frac{\rho_0 \bar{\sigma}_{SI} N_A}{\sqrt{\pi} v_0 m_{\chi} \mu_{\chi N}^2} F^2(q) \eta(q^2) \times \frac{m_{\phi}^4}{(q^2 + m_{\phi}^2)^2} ,$$

where

$$ar{\sigma}_{
m SI}^p = rac{y_p^2 y_\chi^2 \mu_{\chi p}^2}{\pi m_\phi^4} \quad$$
 σ SI at zero momentum transfer

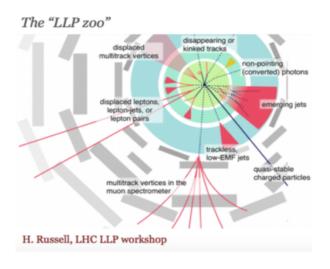


GB, Delaunay, Pukhov, Zaldivar, 2005.06294

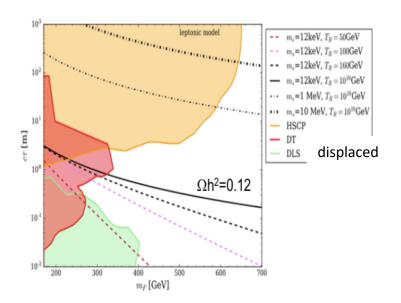
Direct detection – electrons

- DM can scatter off electrons scattering ionize atoms in target leading to single electron signal, recoiling electron can also ionize other atoms if has sufficient energy lead to few electron signals
- Allow to extend the sensitivity of DM detector below m~GeV where typical nuclear recoil energy is below threshold. $E_{nr} \sim m_{DM}^2 v^2 / 2m_N$
- Energy available, $E_{kin} = m_{DM}/2 \text{ v}^2$
- New projects to search for very light DM with different materials, eg. superconductors—

Prospects to probe light FIMPs arXiv:2102.12143



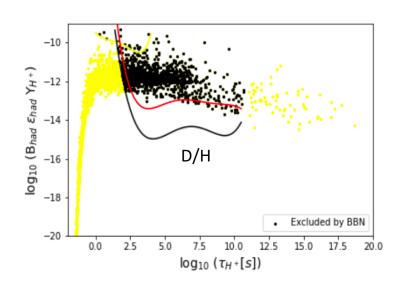
Probes of FIMPs


- Not as generic as for WIMPs
- Direct detection
- Colliders
 - need some other particle in dark sector with at least weak couplings, preferably charged: typical search for Heavy Stable Charged Particle and/or displaced signatures (especially for small reheating temperature)
 - most of standard DM searches at colliders useless host of additional probes in ATLAS/CMS/LHCb,
 - If mass scale is low: in fixed targets, mesons decays (e.g at BESIII and KLOE) and e⁺e⁻ collisions
 - Decays outside detector (MATHUSLA, FASER etc..)
- Indirect detection relevant if LLP decays now
- Cosmology : BBN, energy injection

FIMPs at LHC

- •DM is produced from the decay of heavier particle (Y) whose interactions allow copious production at LHC
- •Y decays in FIMP+SM with very small coupling -> LLP (either colllider stable or displaced signatures)

Few examples of displaced vertices in FI: Co, d'Eramo, Hall, Pappadopoulo, 1506.07532 Evans, Shelton 1601.01326 Hessler, Ibarra, Molinaro, Vogl, 1611.09540



Y: new vector fermion decays to FIMP+lepton GB et al, 1811.05478

•As DM becomes heavier only HSCP becomes relevant

Big Bang Nucleosynthesis

- If particle with lifetime > 0.1s decays can cause non-thermal nuclear reaction during or after BBN spoiling predictions in particular if new particle has hadronic decay modes
 - Kawasaki, Kohri, Moroi, PRD71, 083502 (2005)
- Alteration of n/p ratio for example
 - -> overproduction He⁴
- Hadrodissociation of He⁴ causes overproduction of D
 - $n+He^4 -> He^3+D, 2D+n, D+p+n$
- Key elements :
 - Bhad : hadronic BR of LLP
 - Evis: net energy carried away by hadrons
 - Y(WIMP): yield

Conclusion

- Several processes can contribute to DM production gives rise to a variety of DM models not necessarily tied to the electroweak scale or to weak interactions
- Although classical WIMP models are severely constrained from relic/LHC/direct detection/indirect detection – WIMPs are not dead
- WIMP models can be constructed to avoid certain constraints, but strategy of direct/indirect/collider searches offer powerful probes of DM
- New probes for light DM (e.g. DD or intensity frontier) or LLPs (colliders, cosmo)
- After so many years, still in the dark about the nature of dark matter