Les Rencontres de Physique des Particules (RPP)-2024

Light by Light Scattering at NLO in QCD+QED

Ajjath Abdul Hameed

26 Jan 2024

In collaboration with Ekta Chaubey, Mathijs Fraaije, Valentin Hirschi, and Hua-Sheng Shao
arXiv: 2312.16966 [hep-ph] \& arXiv:2312.16956 [hep-ph]

Motivation

* Light by light scattering (LbL) is a fundamental QED process and it is one of the earliest QED predictions : in 1930s by Euler, Heisenberg et al!

Motivation

* Light by light scattering (LbL) is a fundamental QED process and it is one of the earliest QED predictions : in 1930s by Euler, Heisenberg et al!

Kurze Origina Für die kurzen Originalmitteile Uber spiegelbildiche Naturfarbstoffe. Der in. reinem Zustande isolierte rote Farbstoff der kannawirzeln (Alkanna tinctoria, Suideuropa), das Alken- ist, was allen Bearbeitern bisher entgangen ist, optisch aktiv, und z war linksdrehend $[\alpha]$ cod $=-17 \circ^{\circ}($ Benzol) $)$. Ein Farb- scarieben worden. daß idese nicht identisch sind. noch nicht untersuchte Shikonin erwies sich im Gegensatz zum Alkannin als rechtsdrehehend und stellt den optischen Antipoden des linksdrehenden Alkannins dar, eine bei NaturDurch Behandlung mit methyl-alkoholischer Salzsäure inakntive Alikannin und Shikonin in ein und dieselbe optisch- führen ${ }^{3}$. Auf Grund zahlreicher Abbauversuche, uber die an anderer Stelle berichect werden sol, sind die fïr Alkannin und Sikikonin bisher vermuteten Konstitutionsformen im und Shikonin bisher vermuteten Konstitutionsformeln im beistehenden Sinne abzuändern. Heidelberg, Kaiser Wilhelm-Institut für Medizinische Forsching, Institut für Chemie, den 12. fanuar 1935. Über die Streuung von Licht an Licht nach der Diracschen Theorie. Halpern ${ }^{4}$ und Debye ${ }^{5}$ haben darauf aufmorksam ge- \qquad 2 Der Deutschen Botschaft in Tokyo spreche ich für die freundliche Beschaffung von Shikonwurzeln meinen allerbesten Dank aus. 3 Dieses Kunstprodukt wurde kürzlich von H. Raudnitz u. E. Stein, Ber. dtsch. chem. Ges. 67, r955 (1934) für den 	Imitteilungen. sschiieslich der Verfasser verantwortich. Fír diesen Fall, der durch die Bedingung: Fien Pares ausricht. Dazu wurde zunächst nach der gewöhnlichen Störungs- rechnung der Dracschen Theorie das Matrixelement 4. Ordnung für diesen Prozeß berechnet und nach Lichtquantenenergien $\frac{h \nu}{m c^{2}}$ entwickelt. Das Glied 0 . Ordnung in $\frac{h v}{m c^{2}}$ erwies sich als entgegengesetzt gleich dem Glied Giied 4 . Ordnung in in $\frac{h \nu}{m_{0}}$ Hieß sich formal darstellen als gnetische Indie ma- ${ }_{2}^{1}$ Die ausführlichen Rechnungen erscheinen später. 92, 692 (1934). 3 Vgl. Heisenberg u. Pauli, Z. Physik 56, I (ig30); 168 (ts30).

Consequences of Dirac's Theory of the Positron
W. Heisenberg and H. Euler in Leipzig ${ }^{1}$
22. December 1935

Abstract

According to Dirac's theory of the positron, an electromagnetic field tends to create pairs of particles which leads to a change of Maxwell's equations in the vacuum. These changes are calculated in the special case that no real electrons or positrons are present and the field varies little over a Compton wavelength. The resulting effective Lagrangian of the field reads:

$$
\begin{aligned}
& \mathfrak{L}=\frac{1}{2}\left(\mathfrak{E}^{2}-\mathfrak{B}^{2}\right)+\frac{e^{2}}{\hbar c} \int_{0}^{\infty} e^{-\eta} \frac{d \eta}{\eta^{3}}\left\{i \eta^{2}(\mathfrak{E} \mathfrak{B}) \cdot \frac{\cos \left(\frac{\eta}{\left|\mathcal{E}_{k}\right|} \sqrt{\mathscr{E}^{2}-\mathfrak{B}^{2}+2 i(\mathfrak{E} \mathfrak{B})}\right)+\operatorname{conj} .}{\cos \left(\frac{\left|\mathcal{E}_{k}\right|}{} \sqrt{\mathfrak{E}^{2}-\mathfrak{B}^{2}+2 i(\mathfrak{E} \mathfrak{B})}\right)-\operatorname{conj} .}\right. \\
& \left.+\left|\mathfrak{E}_{k}\right|^{2}+\frac{\eta^{2}}{3}\left(\mathfrak{B}^{2}-\mathfrak{E}^{2}\right)\right\} \\
& \mathfrak{E}, \mathfrak{B} \text { field strengths } \\
& \left|\mathfrak{E}_{k}\right|=\frac{m^{2} c^{3}}{e \hbar}=\frac{1}{137} \frac{e}{\left(e^{2} / m c^{2}\right)^{2}}=\quad \text { critical field strengths }
\end{aligned}
$$

The expansion terms in small fields (compared to \mathfrak{E}) describe light-light scattering. The simplest term is already known from perturbation theory For large fields, the equations derived here differ strongly from Maxwell's equations. Our equations will be compared to those proposed by Born

German title: "Folgerungen aus der Diracschen Theorie des Positrons" Zeitschr. Phys. 98, 714 (1936)

Motivation

* Light by light scattering (LbL) is a fundamental QED process and it is one of the earliest QED predictions : in 1930s by Euler, Heisenberg et al!
First complete calculation by R. Karplus and M. Neuman (1951)

Motivation

* Light by light scattering (LbL) is a fundamental QED process and it is one of the earliest QED predictions : in 1930s by Euler, Heisenberg et al! First complete calculation by R. Karplus and M. Neuman (1951)
* In Standard Model, most viable self interaction is four photon interaction mediated via virtual charged fermion or $W^{ \pm}$boson loops.

$\sim \mathcal{O}\left(\alpha^{4}\right)$ in QED at lowest order

Experimentally challenging to detect

No direct measurement
until 2017!

Motivation

* Interest to this process revived recently, because it is sensitive to searches for new physics..
* It has been also acknowledged that LbL can be used to probe the quartic anomalous gauge couplings, large extra dimensions, supersymmetric particles etc.

* It is also background for looking for new particles in the SM, such as ditauonium

Measurement of LbL

* First evidence for direct detection reported by ATLAS in 2017 [Nature Physics 13(2017) 852] followed by CMS in 2018 [Phys.Lett.B 797 (2019) 134826]
* Observed in Ultra-peripheral heavy ion collisions (UPCs) such as Lead (Pb)

$$
b_{\text {min }}>R_{A}+R_{B}
$$

EM field associated with highly relativistic charged particles can be treated as a beam of coherent photons with small virtuality (Equivalent photon approximation)

Large photon flux $\sim Z^{2}, Z=82$ for $P b$
Cross section (PbPb) scales like $Z^{4} \sim 5 \cdot 10^{7}$ larger than $p p$ or $e^{ \pm}$

Data-theory comparison

* Integrated fiducial cross section

Process, system	ATLAS data [15]	gamma-UPC σ			SUPERCHIC σ
		EDFF	ChFF	average	
$\gamma \gamma \rightarrow \gamma \gamma, \mathrm{Pb}-\mathrm{Pb}$ at 5.02 TeV	$120 \pm 22 \mathrm{nb}$	63 nb	76 nb	$70 \pm 7 \mathrm{nb}$	$78 \pm 8 \mathrm{nb}$

Theory predictions are based on LO cross section

* Differential cross section

Shape well reproduced except for the lowest bin

Data is 2σ larger than theory predictions

Status - LbL

- Earlier works at two-loop
= Low energy approximation: two loop corrections to Euler-Heisenberg Lagrangian using string-inspired approach [L.C. Martin,C. Schubert, V.M.V Sandoval '03]
$=$ Massless limit of two-loop amplitudes with internal fermions in QCD and QED [Z. Bern, A. Freitas, L.J. Dixon, A. Ghinculov, \& H.L. Wong ‘01], [T. Binoth, E.W.N. Glover, P. Marquard, \& J. J. van der Bij '02]
* Aim : QCD \& QED corrections at NLO with massive fermion loops
= Analytic two-loop helicity amplitudes with general massive internal fermions and get the fully differential cross section
= Fully differential cross section using two radically different and independent method : Analytic and Numerical Local unitarity method

LbL at NLO

$$
\gamma\left(p_{1}, \lambda_{1}\right)+\gamma\left(p_{2}, \lambda_{2}\right)+\gamma\left(p_{3}, \lambda_{3}\right)+\gamma\left(p_{4}, \lambda_{4}\right) \rightarrow 0,
$$

$$
\begin{aligned}
& \text { Lorentz decomposition: } \\
& \mathcal{M}_{\vec{\lambda}}=\left(\prod_{i=1}^{4} \varepsilon_{i_{i} \mu_{i}}\left(p_{i}\right)\right) \mathcal{N}^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}\left(p_{1}, p_{2}, p_{3}, p_{4}\right),
\end{aligned}
$$

$$
\left.+B_{j_{1} j_{2}}^{3} g^{\mu_{1} \mu_{4}} p_{j_{1}}^{\mu_{2}} p_{j_{2}}^{\mu_{3}}+B_{j_{1} j_{2}}^{4} g^{\mu_{2} \mu_{3}} p_{j_{1}}^{\mu_{1}} p_{j_{2}}^{\mu_{4}}+B_{j_{1} j_{2}}^{5} g^{\mu_{2} \mu_{4}} p_{j_{1}}^{\mu_{1}} p_{j_{2}}^{\mu_{3}}+B_{j_{1} j_{2}}^{6} g^{\mu_{3} \mu_{4}} p_{j_{1}}^{\mu_{1}} \mu_{j_{2}}\right)
$$

$$
+\sum_{j_{1}, j_{2}, j_{3}, j_{4}=1}^{3} C_{j_{1} j_{2} j_{3} j_{4}} p_{j_{1}}^{\mu_{1}} p_{j_{2}}^{\mu_{2}} p_{j_{3}}^{\mu_{3}} p_{j_{4}}^{\mu_{4}},
$$

138 different coefficients

Tranversality $\left(\varepsilon_{\lambda_{i}} \cdot p_{i}=0\right)$
Bose sym
Gauge sym.
5 independent ones

- 5 helicity amplitudes

$$
\left(\begin{array}{l}
\mathcal{M}_{+++} \\
\mathcal{M}_{-++} \\
\mathcal{M}_{-+++} \\
\mathcal{M}_{+-+-} \\
\mathcal{M}_{+--+}
\end{array}\right)=\frac{1}{4}\left(\begin{array}{ccccc}
1 & 2 & 2 & 2 & -1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 2 & -2 & -2 & -1 \\
1 & -2 & -2 & 2 & -1 \\
1 & -2 & 2 & -2 & -1
\end{array}\right)\left(\begin{array}{c}
A_{S}(s, t, u) \\
u \Delta \hat{B}_{11}^{1}(s, t, u) \\
s \Delta \hat{B}_{11}^{1}(t, u, s) \\
t \Delta \hat{B}_{11}^{1}(u, s, t) \\
s u \Delta \hat{C}_{2111}(s, t, u)
\end{array}\right),
$$

Computation

Generate Feynman diagrams:
Qgraf/FeynArts

Color/Dirac/Lorentz algebraic manipulation and get the amplitude :

FORM/Mathematica

IBP Reduction: Reduce 10000+ integrals into $30+$ crossing Master integrals (MIs)

FiniteFlow/Kira

$$
\begin{array}{cc}
\text { Helicity amplitudes }=\sum_{j} r_{j}^{(2)}\left(s, t, u ; m^{2}, \epsilon\right) I_{j ; a_{1}, \cdots, a_{9}}^{(2)}\left(s, t, u ; m^{2}, \epsilon\right) & \\
I_{a_{1}, \cdots, a_{9}}^{(2)}\left(s, t, u ; m^{2}, \epsilon\right)=\int \mathrm{d}^{d} \ell_{1} \mathrm{~d}^{d} \ell_{2} \frac{1}{D_{1}^{a_{1}} D_{2}^{a_{2}} D_{3}^{a_{3}} D_{4}^{a_{4}} D_{5}^{a_{5}} D_{6}^{a_{6}} D_{7}^{a_{7}} D_{8}^{a_{8}} D_{9}^{a_{9}}} & D_{i}=q^{2}-m_{f}^{2}+i \epsilon \\
d=4-2 \epsilon
\end{array}
$$

Computation

Generate Feynman
diagrams:
Qgraf/FeynArts

Color / Dirac/ Lorentz algebraic manipulation and get the amplitude

FORM/Mathematica

IBP Reduction: Reduce 10000+ integrals into $30+$ crossing Master integrals (MIs)

FiniteFlow / Kira

$$
\begin{aligned}
\text { Helicity amplitudes } & =\sum_{j} r_{j}^{(2)}\left(s, t, u ; m^{2}, \epsilon\right) I_{j ; a_{1}, \cdots, a_{9}}^{(2)}\left(s, t, u ; m^{2}, \epsilon\right) \\
I_{a_{1}, \cdots, a_{9}}^{(2)}\left(s, t, u ; m^{2}, \epsilon\right) & =\int \mathrm{d}^{d} \ell_{1} \mathrm{~d}^{d} \ell_{2} \frac{D_{i}=q^{2}-m_{f}^{2}+i \epsilon}{D_{1}^{a_{1}} D_{2}^{a_{2}} D_{3}^{a_{3}} D_{4}^{a_{4}} D_{5}^{a_{5}} D_{6}^{a_{6}} D_{7}^{a_{7}} D_{8}^{a_{8}} D_{9}^{a_{9}}}
\end{aligned} \begin{aligned}
& d=4-2 \epsilon
\end{aligned}
$$

Standard techniques to reduce the integrals \rightarrow linearly independent Master integrals : basic idea is Feynman integrals obey linear relations such as Integration by parts identities.

Automatised

$$
I_{j}^{(2)}=\sum_{k} C_{j k} f_{k}^{(2)}, \quad f_{k}^{(2)} \rightarrow \text { Master integrals at } 2-\text { loop }
$$

LiteRed (FiniteFlow) [Lee '13] [Peraro '19] KIRA
[Klappert, Lange, Maierhöfer, Usovitsch, `20]

$$
30+\text { crossing master integrals }
$$

Computation

Generate Feynman
diagrams:
Qgraf/FeynArts

Color/Dirac/Lorentz algebraic manipulation and get the amplitude FORM/Mathematica

IBP Reduction: Reduce 10000+ integrals into $30+$ crossing Master integrals (MIs)

LiteRed-FiniteFlow / Kira

Solve MIs in terms of known special functions
(Multiple polylogarithms)
In-house routine

Computation

differential equation matrix $d A^{(2)}$ depends only on kinematics, ϵ is fully decoupled

Computation

differential equation matrix $d A^{(2)}$ depends only on kinematics, ϵ is fully decoupled Further series expansion over dimensional regulator $\epsilon: \quad \vec{f}^{(2)}=\sum_{w} \epsilon^{w} \vec{f}^{(2, w)}$

Computation

Generate Feynman
diagrams:
Qgraf/FeynArts

Color/Dirac/Lorentz algebraic manipulation and get the amplitude : FORM/Mathematica

One of the most effective method to solve the MIs : use differential equations [Kotikov '91] [Gehrmann, Remiddi '00]

$$
d \vec{f}(2)=\epsilon d A^{(2)} \vec{f}(2) \quad \text { Canonical basis } \quad[\text { Caron-huot, Henn,'14] }
$$

IBP Reduction: Reduce 10000+ integrals into 30 + crossing Master integrals (MIs)

LiteRed-FiniteFlow / Kira

Solve MIs in terms of known special functions
(Multiple polylogarithms)
In-house routine
differential equation matrix $d A^{(2)}$ depends only on kinematics, ϵ is fully decoupled Further series expansion over dimensional regulator ϵ :

$$
\vec{f}^{(2)}=\sum_{w} \epsilon^{w} \vec{f}^{(2, w)}
$$

For the canonical differential equations, the solution can be written in terms of Chen's iterated integrals, mostly they can be expressed in terms of Multiple polylogarithms : well known functions and can be numerically evaluated

$$
\begin{gathered}
G\left(a_{1}, \ldots a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right), \\
G\left(a_{1} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}}, \quad a_{1} \neq 0 .
\end{gathered}
$$

Computation

Generate Feynman
diagrams:
Qgraf/FeynArts

Color/Dirac/Lorentz algebraic manipulation and get the amplitude

FORM/Mathematica

Helicity amplitudes $=\sum_{j} \sum_{w} \epsilon^{w} \tilde{r}_{j}^{(2, w)}\left(s, t, u ; m^{2}\right) f_{j}^{(2, w)}\left(\frac{s}{m^{2}}, \frac{t}{m^{2}}, \frac{u}{m^{2}}\right)$
$300+$ master integrals at different weights, $f_{j}^{(2, w)}$
We use properties of iterated integrals to find relations among them : shuffle properties

$$
\begin{aligned}
X_{1}(t) X_{1}(t) & =\iint_{0 \leq t_{1} \leq t} d t_{1} H\left(t_{1}\right) \int_{0 \leq t_{2} \leq t} d t_{2} H\left(t_{2}\right) \\
& =\iint_{0 \leq t_{1} \leq t_{2} \leq t} d t_{1} d t_{2} H\left(t_{1}\right) H\left(t_{2}\right)+\iint_{0 \leq t_{2} \leq t_{1} \leq t} d t_{1} d t_{2} H\left(t_{1}\right) H\left(t_{2}\right) \\
& =X_{(12)}(t)+X_{(21)}(t),
\end{aligned}
$$

IBP Reduction: Reduce 10000+ integrals into $30+$ crossing Master integrals (MIs)

LiteRed-FiniteFlow / Kira

Solve MIs in terms of known special functions
(Multiple polylogarithms)
In-house routine

Finiteflow / Mathematica

Computation

Generate Feynman
diagrams:
Qgraf/FeynArts

Color/Dirac/Lorentz algebraic manipulation and get the amplitude : FORM/Mathematica

Helicity amplitudes $=\sum_{j} \sum_{w} \epsilon^{w} \tilde{r}_{j}^{(2, w)}\left(s, t, u ; m^{2}\right) f_{j}^{(2, w)}\left(\frac{s}{m^{2}}, \frac{t}{m^{2}}, \frac{u}{m^{2}}\right)$

We can also find out relations between the rational coefficients.

With a set of rational functions, we can solve a linear fit problem such that the most complex ones can be written in terms of rather simple ones.

IBP Reduction: Reduce 10000+ integrals into $30+$ crossing Master integrals (MIs)

LiteRed-FiniteFlow / Kira

Solve MIs in terms of known special functions (Multiple polylogarithms)

In-house routine

Computation

Generate Feynman diagrams : Qgraf/FeynArts		Color/Dirac/Lorentz algebraic manipulation and get the amplitude FORM/Mathematica		IBP Reduction: Reduce 10000+ integrals into $30+$ crossing Master integrals (MIs) FiniteFlow/Kira
				\downarrow
				MIs into canonical basis and then set up differential equations to solve them in terms of known functions (Multiple polylogarithms) In-house routine
Number of scalar integrals to Master integrals (MIs)	10k+	$30+$ crossing	IBP/Lorentz invariance/ Symmetries	
Master integrals in UT basis at different weights	$300+$	84	Using different properties of integrals	
Rational coefficients	200+	$\begin{gathered} 31+ \\ \text { crossing } \end{gathered}$	Symmetries and linear relations	
Total size	300 Mb	Few pages	arXiv:2312.16966	

Amplitude - compact structure

* Most compact structure for M_{++++}: fully symmetric in ($\mathrm{s}, \mathrm{t}, \mathrm{u}$)

$$
\begin{gathered}
i \mathcal{M}_{++++}^{(1,0, f)}=4 N_{c, f} Q_{f}^{4} \alpha^{2} \frac{\alpha_{s}}{\pi} C_{F, f}\left\{\begin{array}{c}
3-4 \sum_{\substack{(i, j, k)=(s, t, u),(t, u, s),(u, s, t)}}\left[\left(\frac{2}{x_{i}}+\frac{2}{x_{k}}-\frac{1}{x_{j}}\right) f_{5}^{(1,2)}\left(x_{i}, x_{j}, x_{k}\right)-\frac{1}{x_{i}^{2}} f_{24}^{(2,4)}\left(x_{i}, x_{j}, x_{k}\right)+\frac{2}{\sqrt{x_{i} x_{j}\left(x_{i} x_{j}+4 x_{k}\right)}}\left(\frac{x_{i} x_{j}+4 x_{k}}{x_{k}} f_{19}^{(2,2)}\left(x_{i}, x_{j}, x_{k}\right)+f_{22}^{(2,3)}\left(x_{i}, x_{j}, x_{k}\right)\right)\right. \\
\left.+\frac{1}{2 x_{i} x_{j}}\left(6 f_{3}^{(2,3)}\left(x_{i}, x_{j}, x_{k}\right)-f_{14}^{(2,3)}\left(x_{k}, x_{i}, x_{j}\right)-4 f_{16}^{(2,3)}\left(x_{k}, x_{i}, x_{j}\right)-8 f_{20}^{(2,3)}\left(x_{i}, x_{j}, x_{k}\right)+2 f_{15}^{(2,2)}\left(x_{k}, x_{i}, x_{j}\right) f_{3}^{(1,1)}\left(x_{k}, x_{i}, x_{j}\right)\right)\right]+\sum_{\substack{(i, j, k)=(s, t, u),(s, u, t),(t, s, u),(t, u, s)(u, s, t),(u, t, s)}}\left[\frac{8 f_{19}^{(2,3)}\left(x_{i}, x_{j}, x_{k}\right)}{\sqrt{x_{i} x_{j}\left(x_{i} x_{j}+4 x_{k}\right)}}-\frac{2\left(x_{i}-2\right) f_{27}^{(2,4)}\left(x_{i}, x_{j}, x_{k}\right)}{\sqrt{x_{i}\left(x_{i}-4\right)} \sqrt{x_{i} x_{j}\left(x_{i} x_{j}+4 x_{k}\right)}}\right]
\end{array}\right)
\end{gathered}
$$

* M_{-+++}is slightly bigger, fully symmetric in ($\mathrm{s}, \mathrm{t}, \mathrm{u}$)

$$
i \mathcal{M}_{-+++}^{(1,0, f)}=N_{c, f} Q_{f}^{4} \alpha^{2} \frac{\alpha_{s}}{\pi} C_{F, f}\left\{\sum _ { \substack { (i , j , k) = (s , t , u) , \\ (t , u , s) , (u , s , t) } } \left[\frac { 1 } { \sqrt { x _ { j } (x _ { j } - 4) } } \left(2 r_{1}^{(1)}\left(x_{j}, x_{k}, x_{i}\right) f_{3}^{(1,1)}\left(x_{i}, x_{j}, x_{k}\right)+r_{2}^{(2)}\left(x_{i}, x_{j}, x_{k}\right)\left(f_{3}^{(2,3)}\left(x_{i}, x_{j}, x_{k}\right)+\frac{1}{3} f_{3}^{(1,1)}\left(x_{k}, x_{i}, x_{j}\right) f_{15}^{(2,2)}\left(x_{k}, x_{i}, x_{j}\right)\right)+r_{5}^{(2)}\left(x_{i}, x_{j}, x_{k}\right) f_{14}^{(2,3)}\left(x_{i}, x_{j}, x_{k}\right)+r_{6}^{(2)}\left(x_{i}, x_{j}, x_{k}\right) f_{5}^{(1,2)}\left(x_{i}, x_{j}, x_{k}\right)\right.\right.\right.
$$

$$
\left.+r_{1}^{(2)}\left(x_{i}, x_{j}, x_{k}\right)\left(f_{3}^{(1,2)}\left(x_{i}, x_{j}, x_{k}\right)-\frac{1}{6} f_{15}^{(2,2)}\left(x_{i}, x_{j}, x_{k}\right)\right)\right)-\frac{2 x_{i} x_{j} f_{6}^{(1,2)}\left(x_{i}, x_{j}, x_{k}\right)}{\sqrt{x_{i} x_{j}\left(x_{i} x_{j}+4 x_{k}\right)}}+\frac{r_{3}^{(2)}\left(x_{i}, x_{j}, x_{k}\right)}{\sqrt{x_{i}\left(x_{i}-4\right)}} f_{5}^{(2,3)}\left(x_{i}, x_{j}, x_{k}\right)+\frac{r_{4}^{(2)}\left(x_{i}, x_{j}, x_{k}\right)}{\sqrt{x_{i}\left(x_{i}-4\right)}} f_{13}^{(2,4)}\left(x_{i}, x_{j}, x_{k}\right)+r_{7}^{(2)}\left(x_{i}, x_{j}, x_{k}\right) f_{5}^{(1,3)}\left(x_{i}, x_{j}, x_{k}\right)-\left(\frac{6}{x_{i}}+\frac{4}{x_{i}}+\frac{6}{x_{k}}\right) f_{17}^{(2,4)}\left(x_{i}, x_{j}, x_{k}\right)
$$

$$
\left.+\left(\frac{4}{x_{i}}+\frac{4}{x_{j}}+\frac{8}{x_{k}}\right)\left(f_{21}^{(2,4)}\left(x_{i}, x_{j}, x_{k}\right)-\frac{1}{2} f_{24}^{(2,4)}\left(x_{k}, x_{i}, x_{j}\right)\right)+r_{8}^{(2)}\left(x_{i}, x_{j}, x_{k}\right) f_{20}^{(2,3)}\left(x_{i}, x_{j}, x_{k}\right)+r_{10}^{(2)}\left(x_{i}, x_{j}, x_{k}\right) \frac{f_{19}^{(2,2)}\left(x_{i}, x_{j}, x_{k}\right)}{\sqrt{x_{i} x_{j}\left(x_{i} x_{j}+4 x_{k}\right)}}-\left(32+\frac{16 x_{i} x_{j}}{x_{k}}\right) \frac{f_{22}^{(2,3)}\left(x_{i}, x_{j}, x_{k}\right)}{\sqrt{x_{i} x_{j}\left(x_{i} x_{j}+4 x_{k}\right)}}\right]
$$

$$
-\sum_{\substack{(i, j, k)=(s, t, u)(s, u, t) \\(t, u, s),(t, s, u)(u, s, t),(u, t, s)}}\left[\left(\frac{4}{x_{i}}+\frac{6}{x_{j}}+\frac{6}{x_{k}}\right) f_{26}^{(2,4)}\left(x_{i}, x_{j}, x_{k}\right)+\left(\frac{2}{x_{j}}-\frac{2}{x_{k}}\right) f_{29}^{(2,4)}\left(x_{i}, x_{j}, x_{k}\right)-\frac{r_{9}^{(2)}\left(x_{i}, x_{j}, x_{k}\right) f_{18}^{(2,3)}\left(x_{i}, x_{j}, x_{k}\right)}{\sqrt{x_{i}\left(x_{i}\left(x_{j}-1\right)^{2}-4 x_{j}^{2}\right)}}-\left(32+\frac{16 x_{i} x_{j}}{x_{k}}\right) \frac{f_{19}^{(2,3)}\left(x_{i}, x_{j}, x_{k}\right)}{\sqrt{x_{i} x_{j}\left(x_{i} x_{j}+4 x_{k}\right)}}\right.
$$

$$
\left.\left.-r_{11}^{(2)}\left(x_{i}, x_{j}, x_{k}\right) \frac{f_{25}^{(2,4)}\left(x_{i}, x_{j}, x_{k}\right)}{\sqrt{x_{i} x_{j}\left(x_{i} x_{j}+4 x_{k}\right)}}+\left(2+\frac{x_{i} x_{j}}{x_{k}}\right) \frac{4\left(x_{i}-2\right)}{\sqrt{x_{i}\left(x_{i}-4\right)}} \frac{f_{7}^{(2,4)}\left(x_{i}, x_{j}, x_{k}\right)}{\sqrt{x_{i} x_{j}\left(x_{i} x_{j}+4 x_{k}\right)}}-\left(\frac{4\left(x_{i}-2\right)}{x_{k}}-\frac{2 x_{k}}{x_{j}}\right) \frac{f_{28}^{(2, \dot{4})}\left(x_{i}, x_{j}, x_{k}\right)}{\sqrt{x_{i}\left(x_{i}-4\right)}}\right]\right\}
$$

Cross section

* In addition to two loop QCD and QED corrections coming from massive fermion loop, we also include one-loop corrections from W-boson loop.
- Cross section for $A B \xrightarrow{\gamma \gamma} A \gamma \gamma B$ with heavy ions A and B :

$$
\begin{gathered}
\sigma^{\mathrm{NLO}_{\mathrm{QCD}+\mathrm{QED}}^{\prime}=\int \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathcal{L}^{(\mathrm{AB})}\left(x_{1}, x_{2}\right) \cdot \frac{1}{2 s} \int \mathrm{~d} \Phi_{2} \bar{\sum}_{\text {helicity }}\left|\mathcal{M}_{\vec{\lambda}}^{(0,0)}+\mathcal{M}_{\vec{\lambda}}^{(1,1)}\right|^{2},} \\
\mathcal{M}_{\vec{\lambda}}^{(0,0)}=\sum_{l=f, W} \mathcal{M}_{\vec{\lambda}}^{(0,0, l)}: \\
\mathcal{M}_{\vec{\lambda}}^{(1,1)}=\sum_{f} \mathcal{M}_{\vec{\lambda}}^{(1,0, f)}+\mathcal{M}_{\vec{\lambda}}^{(0,1, f)}
\end{gathered}
$$

$$
\begin{aligned}
& \quad M_{\stackrel{1}{\lambda}}^{(i, j, f)} \rightarrow \text { two loop amplitude for fermion } f \text { in QCD }(i) \text { and / or QED }(j) . \\
& L^{(A B)} \rightarrow \text { photon-photon flux for the heavy ions A and B. } \quad \text { Obtained from gamma-UPC } \\
& \text { [H.S Shao, D. d'Enterria'22] }
\end{aligned}
$$

Cross section : Analytic and numeric methods

Black curve \rightarrow results from analytic calculation
Blue dots \rightarrow results from numerical Local unitarity method Green line \rightarrow Low energy approximation Red line \rightarrow High energy approximation

* Two radically different and independent approach match well within the errors, except at the asymptotic limits $\sqrt{s} \ll m_{f} \& \sqrt{s} \gg m_{f}$, where numerical instability prohibit a fair comparison.
* The full mass dependent result match with known results from Low energy and high energy limits.
* At $\sqrt{s} \rightarrow 2 m_{f}$, the two loop amplitudes suffer from Coulomb singularity - but is integrable, hence harmless while convoluting with photon flux - proper treatment required Coulomb resummation.
*K-factor for the full mass dependent computation exhibit non-trivial behaviour.
* K-factor for HE limit $\rightarrow 1.124$ and LE limit \rightarrow 1.512 .

Data-Theory comparison

* ATLAS measured value $=120 \pm 22 \mathrm{nb}$.
* Cross section at $\mathrm{LO}=76 \mathrm{nb}$.
* NLO' QCD+QED increases by $6.5 \%_{-1.2 \%}^{+2.1 \%}$ wrt LO.
* Best prediction $\rightarrow 81.2_{-0.9}^{+1.6} \mathrm{nb}: 1.8 \sigma$ below ATLAS measurements
* HE approximation increment from LO by 0.7% : underestimate the corrections specifically for smaller $m_{\gamma \gamma}$
* LE approximation increment from LO by 13\% : significantly overestimates them specifically for large values of $m_{\gamma \gamma}$

Data-Theory comparison

* Tension between data-theory is highest in first diphoton invariant mass bin, $m_{\gamma \gamma} \in[5,10] \mathrm{GeV}$.
* This motivated to study the impact from resonances like C-even bottomonia states and fully-charmed tetra quark states $\mathrm{X}(6900)$: obtained from HELACOnia event generator. [H.S Shao, '13, '16]
* We find the contributions of these resonances to LbL cross section is negligible.
* Our result reduces, but not eliminate the data-theory tension.
* The NLO corrections are largest in first bin of 10\%, and reduces to 2% in the highest mass bin.

Summary and Outlook

* LbL with full mass dependence in the internal fermion loops at NLO in QCD \& QED.
* Efforts on simplifying the amplitude to more compact and concise form so that the helicity amplitudes can be expressed in few pages in the paper.
- Cross section has been computed using radically different methods and are well within errors
* The corrections at NLO is around 6.5\%
* Does not eliminate, but reduces the theory-data tension compared to LO cross section

Summary and Outlook

* There are possible extensions to this work
- LbL is an ideal process to look at complicated higher order level
\uparrow LbL at three loop with massless internal lines : same number of mass scales as NLO.
\downarrow EW corrections at NLO - more complex due to additional internal mass scale. Integrals are unknown
\star Coulomb resummation at the energy scale $\sqrt{s}=2 m_{f}$

Thank you for the attention!

Backup Slides

Photon luminosity

Photon luminosity

- Cross section:

$$
\sigma(\mathrm{AB} \xrightarrow{\gamma \gamma} \mathrm{~A} X \mathrm{~B})=\int \frac{d E_{\gamma_{1}}}{E_{\gamma_{1}}} \frac{d E_{\gamma_{2}}}{E_{\gamma_{2}}} \frac{\mathrm{~d}^{2} N_{\gamma_{1} / Z_{1}, \gamma_{2} / Z_{2}}^{(\mathrm{AB})}}{\mathrm{d} E_{\gamma_{1}} \mathrm{~d} E_{\gamma_{2}}} \sigma_{\gamma \gamma \rightarrow X}\left(W_{\gamma \gamma}\right)
$$

- Effective two-photon luminosity:

$$
\begin{aligned}
\frac{\mathrm{d}^{2} N_{\gamma_{1} / / \mathrm{Z}_{1}, \gamma_{2} / \mathrm{Z}_{2}}^{(\mathrm{AB}}}{\mathrm{d} E_{\gamma_{1}} \mathrm{~d} E_{\gamma_{2}}}=\int \mathrm{d}^{2} \boldsymbol{b}_{1} \mathrm{~d}^{2} \boldsymbol{b}_{2} P_{\text {noinel }}\left(\left|\boldsymbol{b}_{1}-\boldsymbol{b}_{2}\right|\right) & N_{\gamma_{1} / \mathrm{Z}_{1}}\left(E_{\gamma_{1}}, \boldsymbol{b}_{1}\right) N_{\gamma_{2} / \mathrm{Z}_{2}}\left(E_{\gamma_{2}}, \boldsymbol{b}_{2}\right) \\
& \times \theta\left(b_{1}-\epsilon R_{\mathrm{A}}\right) \theta\left(b_{2}-\epsilon R_{\mathrm{B}}\right)
\end{aligned}
$$

- No hadronic/inelastic interaction probability density:

$$
P_{\text {no inel }}(b)= \begin{cases}e^{-\sigma_{\text {inel }}^{\mathrm{NN}} \cdot T_{\mathrm{AB}}(b)}, & \text { nucleus-nucleus } \\ e^{-\sigma_{\text {inel }}^{\mathrm{NN}} \cdot T_{\mathrm{A}}(b)}, & \text { proton-nucleus } \\ \left|1-\Gamma\left(s_{\mathrm{NN}}, b\right)\right|^{2}, \quad \text { with } \Gamma\left(s_{\mathrm{NN}}, b\right) \propto e^{-b^{2} /\left(2 b_{0}\right)} & \text { p-p }\end{cases}
$$

Iterated integrals

2.2. Iterated integrals. Let k be the real or complex numbers, and let M be a smooth manifold over k. Let $\gamma:[0,1] \rightarrow M$ be a piecewise smooth path on M, and let $\omega_{1}, \ldots, \omega_{n}$ be smooth k-valued 1 -forms on M. Let us write

$$
\gamma^{*}\left(\omega_{i}\right)=f_{i}(t) d t
$$

for the pull-back of the forms ω_{i} to the interval $[0,1]$. Recall that the ordinary line integral is given by

$$
\int_{\gamma} \omega_{1}=\int_{[0,1]} \gamma^{*}\left(\omega_{1}\right)=\int_{0}^{1} f_{1}\left(t_{1}\right) d t_{1},
$$

and does not depend on the choice of parameterization of γ.
Definition 2.1. The iterated integral of $\omega_{1}, \ldots, \omega_{n}$ along γ is defined by

$$
\int_{\gamma} \omega_{1} \ldots \omega_{n}=\int_{0 \leq t_{1} \leq \ldots \leq t_{n} \leq 1} f_{1}\left(t_{1}\right) d t_{1} \ldots f_{n}\left(t_{n}\right) d t_{n}
$$

There is the shuffle product formula

$$
\int_{\gamma} \omega_{1} \ldots \omega_{r} \int_{\gamma} \omega_{r+1} \ldots \omega_{r+s}=\sum_{\sigma \in \Sigma(r, s)} \int_{\gamma} \omega_{\sigma(1)} \ldots \omega_{\sigma(r+s)}
$$

