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Motivation
❖ Light by light scattering (LbL) is a fundamental QED process and it is one of the earliest 

QED predictions : in 1930s by Euler, Heisenberg et al!
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Motivation
❖ Light by light scattering (LbL) is a fundamental QED process and it is one of the earliest 

QED predictions : in 1930s by Euler, Heisenberg et al! 
First complete calculation by R. Karplus and M. Neuman (1951)

❖ In Standard Model,  
most viable self interaction is four photon interaction  
mediated via virtual charged fermion or  boson loops.W±
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Furry’s theorem= 0

∼ 𝒪(α4) in QED at lowest order 

α → fine structure constant

Experimentally challenging to detect

No direct measurement 
until 2017! 



Motivation
❖ Interest to this process revived recently, 

because it is sensitive to searches for new 
physics..

❖ It has been also acknowledged that LbL can be 
used to probe the quartic anomalous gauge 
couplings, large extra dimensions, 
supersymmetric particles etc.

❖ It is also background for looking for new 
particles in the SM, such as ditauonium 

❖
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ALPs, GLPs, 
monopoles, 

or any SM/BSM spin 
even states



Measurement of LbL
❖ First evidence for direct detection reported by ATLAS in 2017 

followed by CMS in 2018 

❖ Observed in Ultra-peripheral heavy ion collisions (UPCs) such as Lead (Pb)
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bmin > RA + RB

[Nature Physics 13 (2017) 852]

[Phys.Lett.B 797 (2019) 134826]

[ATLAS Collaboration, ’17]

RA

b

RB

EM field associated with highly relativistic 
charged particles can be treated as a beam of 
coherent photons with small virtuality 
(Equivalent photon approximation)

Large photon flux ∼ Z2, Z = 82 for Pb

Cross section (PbPb) scales like  larger than  or  Z4 ∼ 5 ⋅ 107 pp e±



Data-theory comparison
❖ Integrated fiducial cross section

❖ Differential cross section
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[ATLAS : JHEP 03 (2021) 243] 
[CMS : Phys. Lett. B 797 (2019) 134826] 

[H.S Shao, D. 
d’Enterria ’22]

[L. A. Harland-Lang, V. A. Khoze, 
and M. G. Ryskin ’19]

Shape well reproduced except for the lowest bin

Data is  larger than theory predictions2σ

Theory predictions are based on LO cross section



Status - LbL 
❖ Earlier works at two-loop

➡ Low energy approximation: two loop corrections to Euler-Heisenberg Lagrangian using 
string-inspired approach [L.C. Martin,C. Schubert, V.M.V Sandoval ’03]

➡ Massless limit of two-loop amplitudes with internal fermions in QCD and QED  
[Z. Bern, A. Freitas, L.J. Dixon, A. Ghinculov, & H.L. Wong ‘01], [T. Binoth, E.W.N. Glover, P. Marquard, & J. J. van der Bij ’02]

❖ Aim  : QCD & QED corrections at NLO with massive fermion loops

➡ Analytic two-loop helicity amplitudes with general massive internal fermions and get the 
fully differential cross section

➡ Fully differential cross section using two radically different and independent method : 
Analytic and Numerical Local unitarity method
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❖ Lorentz decomposition :

❖ 5 helicity amplitudes 

LbL at NLO

 Ai, Bi
jk, Cijkl : (s, t, u; m2)

∼ r(s, t, u; m2) I(s, t, u; m2)

Tranversality  
Bose sym.
Gauge sym. 

(ελi
⋅ pi = 0)

138 different coefficients

5 independent ones



Computation
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Generate Feynman 
diagrams :  

Qgraf/FeynArts

Color/Dirac/Lorentz algebraic  
 manipulation and get the amplitude :  

FORM/Mathematica

IBP Reduction: Reduce 10000+ integrals into 
30 + crossing Master integrals (MIs)

FiniteFlow/Kira

Helicity amplitudes =  ∑
j

r(2)
j (s, t, u; m2, ϵ) I(2)

j; a1,⋯,a9
(s, t, u; m2, ϵ)

I(2)
a1,⋯,a9

(s, t, u; m2, ϵ) =
Di = q2 − m2

f + iϵ
d = 4 − 2ϵ
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I(2)
a1,⋯,a9

(s, t, u; m2, ϵ) =
Di = q2 − m2

f + iϵ

Standard techniques to reduce the integrals  linearly independent Master integrals : basic idea is 
Feynman integrals obey linear relations such as Integration by parts identities.

→

Automatised

[Lee ’13] [Peraro ’19]LiteRed (FiniteFlow)
KIRA [Klappert, Lange, Maierhöfer, 

Usovitsch, `20]

I(2)
j = ∑

k

Cjk f (2)
k , f (2)

k → Master integrals at 2 − loop

30 + crossing master integrals

d = 4 − 2ϵ
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One of the most effective method to solve the MIs : 
use differential equations [Kotikov ’91] [Gehrmann, Remiddi ’00]

d ⃗f (2) = ϵ dA(2) ⃗f (2) Canonical basis [Caron-huot, Henn, ’14]

⃗f (2) = ∑
w

ϵw ⃗f (2,w)Further series expansion over dimensional regulator  :ϵ

differential equation matrix  depends only on kinematics,  is fully decoupled dA(2) ϵ
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Generate Feynman 
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One of the most effective method to solve the MIs : 
use differential equations [Kotikov ’91] [Gehrmann, Remiddi ’00]

d ⃗f (2) = ϵ dA(2) ⃗f (2) Canonical basis [Caron-huot, Henn, ’14]

⃗f (2) = ∑
w

ϵw ⃗f (2,w)Further series expansion over dimensional regulator  :ϵ

For the canonical differential equations, the solution can be 
written in terms of Chen’s iterated integrals, mostly they can be 
expressed in terms of Multiple polylogarithms : well known 
functions and can be numerically evaluated

differential equation matrix  depends only on kinematics,  is fully decoupled dA(2) ϵ
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Simplification 
Finiteflow/Mathematica

Helicity amplitudes =  ∑
j

∑
w

ϵw r̃(2,w)
j (s, t, u; m2) f (2,w)

j (
s

m2
,

t
m2

,
u

m2
)

300+ master integrals at different weights,   f (2,w)
j

We use properties of iterated integrals to find 
relations among them : shuffle properties 

Naively,



Computation
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Generate Feynman 
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Simplification 
Finiteflow/Mathematica

We can also find out relations between the rational 
coefficients.

Helicity amplitudes =  ∑
j

∑
w

ϵw r̃(2,w)
j (s, t, u; m2) f (2,w)

j (
s

m2
,

t
m2

,
u

m2
)

With a set of rational functions, we can solve a 
linear fit problem such that the most complex ones 
can be written in terms of rather simple ones. 



Computation
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Generate Feynman 
diagrams :  

Qgraf/FeynArts

Color/Dirac/Lorentz algebraic  
 manipulation and get the amplitude :  

FORM/Mathematica

IBP Reduction: Reduce 10000+ integrals into 
30 + crossing Master integrals (MIs)

FiniteFlow/Kira

MIs into canonical basis and then set up 
differential equations to solve them in terms 

of known functions (Multiple polylogarithms)
In-house routine

Simplification 
Finiteflow/Mathematica

Number of scalar integrals 
to Master integrals (MIs)

Master integrals in UT basis 
at different weights

Rational coefficients

Total size

10k+
30 +  

crossing

300+ 84

300 Mb
Few 

pages arXiv:2312.16966

IBP/Lorentz invariance/
Symmetries

Using different properties of 
integrals

200+ 31+ 
crossing Symmetries and linear relations



Amplitude - compact structure
❖ Most compact structure for  : fully symmetric in (s,t,u) 

❖  is slightly bigger, fully symmetric in (s,t,u) 

M++++

M−+++
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Cross section
❖ In addition to two loop QCD and QED corrections coming from massive fermion loop, we also 

include one-loop corrections from W-boson loop.

❖ Cross section for  with heavy ions A and B : AB ⟶ AγγB
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two loop amplitude for fermion  in QCD ( ) and/or QED( ). M(i,j, f )
⃗λ

→ f i j

photon-photon flux for the heavy ions A and B. L(AB) → Obtained from gamma-UPC
[H.S Shao, D. d’Enterria ’22]

γγ



Cross section : Analytic and numeric methods
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❖ Two radically different and independent approach match well within the 
errors, except at the asymptotic limits  , where 
numerical instability prohibit a fair comparison.

❖ The full mass dependent result match with known results from Low energy 
and high energy limits. 

❖ At  ,  the two loop amplitudes suffer from Coulomb singularity  
- but is integrable, hence harmless while convoluting with photon flux 
- proper treatment required Coulomb resummation.

❖ K-factor for the full mass dependent computation exhibit non-trivial 
behaviour.

❖ K-factor for HE limit  1.124 and LE limit  1.512 . 

s ≪ mf & s ≫ mf

s → 2mf

→ →

Black curve  results from analytic calculation
Blue dots  results from numerical Local unitarity method

Green line  Low energy approximation
Red line  High energy approximation

→
→

→
→



Data-Theory comparison
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❖ ATLAS measured value =  nb.

❖ Cross section at LO = 76 nb.

❖ NLO’ QCD+QED increases by  wrt LO.

❖ Best prediction  nb :  below ATLAS 
measurements

❖ HE approximation increment from LO by 0.7% : 
underestimate the corrections specifically for smaller 

❖ LE approximation increment from LO by 13% : 
significantly overestimates them specifically for large 
values of 

120 ± 22

6.5 %+2.1%
−1.2%

→ 81.2+1.6
−0.9 1.8σ

mγγ

mγγ



Data-Theory comparison
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❖ Tension between data-theory is highest in first di-
photon invariant mass bin,  GeV.

❖ This motivated to study the impact from resonances 
like C-even bottomonia states and fully-charmed 
tetra quark states X(6900): obtained from HELAC-
Onia event generator.

❖ We find the contributions of these resonances to LbL 
cross section is negligible.  

❖ Our result reduces, but not eliminate the data-theory 
tension.

❖ The NLO corrections are largest in first bin of 10%, 
and reduces to 2% in the highest mass bin.

mγγ ∈ [5,10]

[H.S Shao, ’13 , ’16]



Summary and Outlook
❖ LbL with full mass dependence in the internal fermion loops at NLO in QCD & QED.

❖ Efforts on simplifying the amplitude to more compact and concise form so that the 
helicity amplitudes can be expressed in few pages in the paper.

❖ Cross section has been computed using radically different methods and are well 
within errors

❖ The corrections at NLO is around 6.5%

❖ Does not eliminate, but reduces the theory-data tension compared to LO cross section
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❖ There are possible extensions to this work

➡ LbL is an ideal process to look at complicated higher order level

✦ LbL at three loop with massless internal lines : same number of mass scales as 
NLO. 

✦ EW corrections at NLO - more complex due to additional internal mass scale. 
Integrals are unknown

✦ Coulomb resummation at the energy scale s = 2mf

Summary and Outlook



Thank you for the attention!
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Photon luminosity
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Photon luminosity
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Photon number density calculated using EdFF (Electron dipole form factor or ChFF (charge form factor)
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Iterated integrals


