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Quantum-computing applications in high-energy physics

→ Quantum applications still in their in-
fancy!

Is it possible?

Is there a (theoretical) quantum
advantage?

Is it more resource efficient than
CPU/GPU?

→ Look at the example of quantum simu-
lation/integration in high-energy physics!

[Source: Sherpa]
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Computing problem in high-energy physics

[ATLAS; CERN-LHCC-2022-005]

→ Event generation:
∼ 15% of ∼ 3 billion cpuh.y−1 for ATLAS
→ More in: [Buckley; 1908.00167], [Valassi et al.; 2004.13687]

• One possible solution: GPU
→ Selected references: [Borowka et al.; 1811.11720],

[Carrazza et al.; 2002.12921, 2009.06635, 2106.10279], [Bothmann et

al.; 2106.06507] + Talk1 + Talk2

Can quantum computing be of any use in HEP?
→ to compute things faster/more efficiently?
→ to compute new things?
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Cross section

→ Probability to measure scattering process
→ Predictable theoretically and measurable experimentally!
→ Monte Carlo techniques with error scaling as 1/

√
N

σ ∝
∫

dΦ|M|2

→ In general:

σ ∝
∫ 1

0
dx1 · · ·

∫ 1

0
dxn f (x1, · · · , xn)Θ(g(x1, · · · , xn))

For a given observable O = O(x1, · · · , xn):

σ =
∑

i

dσ

dOi
=

∑

i ,l

cil
dσ

dx il

Integrating = guessing the values of a
function at specific points (Riemann sum)
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→ Basic of quantum mechanics

State

|ψ⟩ = α |0⟩+ β |1⟩ =
(
α
β

)
,

with α2 + β2 = 1

Operation

ψ
A−→ ψ′

A |ψ⟩ = |ψ′⟩ with A unitary

|ψ⟩ A |ψ′⟩

→ Representation

Mathieu PELLEN Quantum computing for high-energy physics simulations 5 / 19



→ Basic of quantum mechanics

State

|ψ⟩ = α |0⟩+ β |1⟩ =
(
α
β

)
,

with α2 + β2 = 1

Operation

ψ
A−→ ψ′

A |ψ⟩ = |ψ′⟩ with A unitary

|ψ⟩ A |ψ′⟩

→ Representation

Mathieu PELLEN Quantum computing for high-energy physics simulations 5 / 19



→ Basic of quantum mechanics

State

|ψ⟩ = α |0⟩+ β |1⟩ =
(
α
β

)
,

with α2 + β2 = 1

Operation

ψ
A−→ ψ′

A |ψ⟩ = |ψ′⟩ with A unitary

|ψ⟩ A |ψ′⟩

→ Representation

Mathieu PELLEN Quantum computing for high-energy physics simulations 5 / 19



Example of gates

Pauli-X (X)

X =

[
0 1
1 0

]

α |0⟩+ β |1⟩ → α |1⟩+ β |0⟩

Hadamard (H)

H = 1√
2

[
1 1
1 −1

]

α |0⟩+ β |1⟩ → α |0⟩+|1⟩√
2

+ β |0⟩−|1⟩√
2

H
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Example of gates

Controlled not (CNOT, CX)

CX =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




|00⟩ → |00⟩ ; |01⟩ → |01⟩ ;
|10⟩ → |11⟩ ; |11⟩ → |10⟩ .

If 0 nothing happens, if 1 CX!

Control qubit (top) and target qubit (bottom)

Mathieu PELLEN Quantum computing for high-energy physics simulations 6 / 19



Grover algorithm/iteration

Very general quantum algorithm

Quadratic speed up → O(
√
N) operations instead of O(N)

Most famous example: unstructured database search

Example (from [Johnston, Harrigan, Gimeno-Segovia; Programming Quantum Computers])

→ What solution is contained in our quantum register?
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Grover algorithm/iteration

→ Applying a Grover iteration

→ Applying it twice
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Quantum Amplitude Estimate (QAE) [Brassard, Hoyer, Mosca, Tapp; quant-ph/0005055]

A|0⟩ =
√
1− a|Ψ0⟩+

√
a|Ψ1⟩

→ QAE estimates a with high probability such that the estimation error scales as
O(1/M) [as opposed to O(1/

√
M)]

→ Various algorithms/implementations available
→ Basis of quantum Monte Carlo integration and O(1/M) scaling
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Quantum Amplitude Estimate (QAE) [Brassard, Hoyer, Mosca, Tapp; quant-ph/0005055]

A|0⟩ =
√
1− a|Ψ0⟩+

√
a|Ψ1⟩

→ QAE estimates a with high probability such that the estimation error scales as
O(1/M) [as opposed to O(1/

√
M)]

→ Various algorithms/implementations available
→ Basis of quantum Monte Carlo integration and O(1/M) scaling

[Grinko, Gacon, Zoufal, Woerner; 1912.05559]

Resulting estimation error for a = 1/2 and 95% confidence level with respect to the required total number of oracle queries.
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Quantum integration

Extension to
A|0⟩ =

∑

i

ai |Ψi ⟩

→ Definition of a piece-wise function with f (xi ) = ai .

So far used in finance for simple functions in 1D [Zoufal, Lucchi, Woerner; 1904.00043]

[Woerner and Egger; 1806.06893], [Stamatopoulos et al.; 1905.02666, 2111.12509], [Rebentrost, Gupt, Bromley; Phys.Rev.A 98 (2018) 022321]

→ Applicable to HEP? What are the limitations?

I =

∫
dx f (x)g(x)

In finance:

f : probability
g : payoff

In HEP:

f : |M|2
g : Θ(Φ− Φc)
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Integration - 2D [e+e− → qq̄′W with angles fixed]

0 x

y

S1: matching boundary of integration
S2: no matching boundary of integration
[Agliardi, Grossi, MP, Prati; 2201.01547]

Working but control of uncertainty crucial!
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Alternative to loading - [Chawdhry, MP; 2303.04818]

M ∼
∑

Tr (T a1 ...T an)K(1, ..., n)

Kinematic part: made of spinors and tensors (and kinematic invariants)

Colour part: made of SU(3) generators of QCD

e−

e+ γ

Remarks

First step towards a full quantum amplitude/Monte Carlo

Useful for a quantum parton shower
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Colour algebra in QCD - crash course

[T a,T b] = ifabcT
c .

T a,T c , ...: SU(3) generators

Gell-Mann matrices

T 1 =
1

2

0 1 0
1 0 0
0 0 0

 , T 2 =
1

2

0 −i 0
i 0 0
0 0 0

 , T 3 =
1

2

1 0 0
0 −1 0
0 0 0

 , T 4 =
1

2

0 0 1
0 0 0
1 0 0

 ,

T 5 =
1

2

0 0 −i
0 0 0
i 0 0

 , T 6 =
1

2

0 0 0
0 0 1
0 1 0

 , T 7 =
1

2

0 0 0
0 0 −i
0 i 0

 , T 8 =
1

2
√
3

1 0 0
0 1 0
0 0 −2

 .

Attention! T a are not unitary!

→ In our example, colour factor: T a
ijT

a
ji = CF
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Quantum implementation of colour

Gluon: 8 colours → 3 qubits (23)

Quark: 3 colours → 2 qubits (22)

→ Make non-unitary matrices unitary: extend dimension and modify them

T 1 =
1

2


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , T 2 =
1

2


0 −i 0 0
i 0 0 0
0 0 1 0
0 0 0 1

 , T 3 =
1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , T 4 =
1

2


0 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

 ,

T 5 =
1

2


0 0 −i 0
0 1 0 0
i 0 0 0
0 0 0 1

 , T 6 =
1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , T 7 =
1

2


1 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 1

 , T 8 =
1

2
√
3


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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Example

i i

g

U

q

q̃

Rg Q Q R−1
g

Rq R−1
q

One-to-one correspondence between Feynman diagram and circuit

Gates for qqg (Q) and ggg (G ) vertices to simulate QCD (colour) interaction

G
=

g1

g2

g3

U

G′

A

G′ =
∏

a,b,c:fabc ̸=0

g1

g2

g3

U

|a⟩

|b⟩

|c⟩

B(fabc)

B1(α)q1

q2

qNU

B(α)

=
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Example

i i

g

U

q

q̃

Rg Q Q R−1
g

Rq R−1
q

⟨Ω|U
Nops∏

i=1

{B(αi )A} |Ω⟩U =

Nops∏

i=1

αi

G
=

g1

g2

g3

U

G′

A

G′ =
∏

a,b,c:fabc ̸=0

g1

g2

g3

U

|a⟩

|b⟩

|c⟩

B(fabc)

B1(α)q1

q2

qNU

B(α)

=
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(real-life) Example

→ Trace defined in |00000000000⟩ = |011⟩
state: |ψ⟩ = C

N |011⟩+ ...
⇒ 27415

Nshots=1000000 ∼
(

C
N = (Nc=3)CF

N
nq=1
c (N2

c−1)ng=1

)2

→ Colour factors encoded in one single
state (as needed for QAE)
→ Any colour factor computable
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Quantum Monte Carlo in high-energy physics

Is it possible?
→ Yes.

Is there a quantum advantage?
→ In principle, yes. In practice for now, no.

Is it more resource efficient than CPU/GPU?
→ At the moment, not known.
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Road map for quantum Monte Carlo

Reliable error estimate
→ Taking into account binning effects / multi-dimension integrand

More natural definition of objects to be computed
→ Example of colour algebra

Estimate of resources needed for actual computation on near-term quantum
computers (scaling, noise, connections, ...)
→ On-going collaboration with Quantinuum (Cambridge, UK)

Can there be quantum advantage for event generation? [Bravo-Prieto et al; 2110.06933]
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Back-up slides

BACK-UP
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Reviews

[Gray, Terashi; Gray:2022fou] (selected topics)

[Delgado et al.; 2203.08805] (Snowmass)

[Klco et al.; 2107.04769] (lattice)

Selected references

Amplitude/loop integrals: [Ramirez-Uribe et al.; 2105.08703], [Bepari, Malik, Spannowsky, Williams; 2010.00046],

[Chawdhry, MP; 2303.04818]

Parton shower: [Bauer, de Jong, Nachman, Provasoli; 1904.03196], [Bepari, Malik, Spannowsky, Williams; 2010.00046],
[Williams, Malik, Spannowsky, Bepari; 2109.13975], [Chigusa, Yamazaki; 2204.12500], [Gustafson, Prestel, Spannowsky, Williams;

2207.10694], [Bauer, Chigusa, Yamazaki; 2310.19881]

Machine learning: [Filipek et al; 2105.04582], [Bravo-Prieto et al; 2110.06933], [Alvi, Bauer, Nachman; 2206.08391]

Others: [Ciavarella; 2007.04447], [Perez-Salinas, Cruz-Martinez, Alhajri, Carrazza: 2011.13934], [Bauer, Freytsis, Nachman;

2102.05044], [Martenez de Lejarza, Cieri, Rodrigo; 2204.06496], [Agliardi, Grossi, MP, Prati; 2201.01547], [Martenez de Lejarza et al.;

2401.03023], [Cruz-Martinez, Robbiati, Carrazza; 2308.05657]
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Loading of distribution / encoding into qubits

Encoding the distribution to be integrated into qubits

Exact loading [Shende, Bullock, Markov, quant-ph/0406176] (resource intensive)

Using quantum machine learning (qGAN) [Zoufal, Lucchi, Woerner; 1904.00043] (not exact)

Example: Exact loading - 1 + x2

0.875 0.125 1.125
x

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

p(
x)

Distribution
(1+x^2)*3/8
simulation

→ 3 qubits: 23 = 8 bins
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Quantum Amplitude Estimate (QAE)
[Brassard, Hoyer, Mosca, Tapp; Quantum Amplitude Amplification and Estimation]

A|0⟩ =
√
1− a|Ψ0⟩+

√
a|Ψ1⟩

QAE estimates a with high probability such that the estimation error scales as O(1/M)
[as opposed to O(1/

√
M)]

M: number of applications of A

→ What the (orignal) algorithm provides:

An estimate: ã = sin2(θ̃a)
with θ̃a = yπ/M, y ∈ {0, ...,M − 1}, and M = 2n

A success probability (that can be increased by repeating the algorithm)

A bound: |a− ã| ≤ O (1/M)
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Applications

e+e− → qq̄ (in QED)

σ ∼
∫ 1

−1

∫ 2π

0
d cos θdϕ

(
1 + cos2 θ

)

e+e− → qq̄′W

σ ∼
∫ s

M2
W

∫ sMax
1

0

∫ 1

−1

∫ 2π

0

∫ 2π

0
dΦ3

∣∣Me+e−→qq̄′W

∣∣2

∼
∫ s

M2
W

∫ sMax
1

0
dΦ̃3

∣∣M′∣∣2

with M′ = Me+e−→qq̄′W (cos θ1 = 0, ϕ1 = π/2, ϕ2 = π/2).
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Integration - 1 + x2

Matching boundary of integration (3 qubits ⇒ 23 bins)

Non-matching boundary of integration

[Agliardi, Grossi, MP, Prati; 2201.01547]Mathieu PELLEN Quantum computing for high-energy physics simulations 25 / 19



A

=

q1

q2

qNU
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B1(α) =

(√
1− |α|2 α

−α
√
1− |α|2

)
(1)

B(α)A |k⟩ =





α |0⟩+
√

1− |α|2 |1⟩ if k = 0

|k + 1⟩ if 0 < k < 2NU − 1√
1− |α|2 |0⟩ − α |1⟩ if k = 2NU − 1

(2)

⟨Ω|UB(α)A|Ω⟩U = α (3)

⟨Ω|U
Nops∏

i=1

{B(αi )A} |Ω⟩U =

Nops∏

i=1

αi (4)
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