Quantum computing for high-energy physics simulations

Mathieu PELLEN
University of Freiburg
Based on [Agliardi, Grossi, MP, Prati; 2201.01547] and [Chawdhry, MP; 2303.04818]
RPP, Paris, France
$26^{\text {th }}$ of January 2024

Quantum-computing applications in high-energy physics

Quantum-computing applications in high-energy physics

\rightarrow Quantum applications still in their infancy!

- Is it possible?

Quantum-computing applications in high-energy physics

\rightarrow Quantum applications still in their infancy!

- Is it possible?
- Is there a (theoretical) quantum advantage?

Quantum-computing applications in high-energy physics

\rightarrow Quantum applications still in their infancy!

- Is it possible?
- Is there a (theoretical) quantum advantage?
- Is it more resource efficient than CPU/GPU?
\rightarrow Look at the example of quantum simulation/integration in high-energy physics!

Computing problem in high-energy physics

\rightarrow Event generation:
$\sim 15 \%$ of ~ 3 billion cpuh. y^{-1} for ATLAS
\rightarrow More in: [Buckley; 1908.00167], [Valassi et al:; 2004.13687]

Computing problem in high-energy physics

\rightarrow Event generation:
$\sim 15 \%$ of ~ 3 billion cpuh. y^{-1} for ATLAS
\rightarrow More in: [Buckley; 1908.00167], [Valassi et al.; 2004.13687]

Computing problem in high-energy physics

[ATLAS; CERN-LHCC-2022-005]
\rightarrow Event generation:
$\sim 15 \%$ of ~ 3 billion cpuh. y^{-1} for ATLAS
\rightarrow More in: [Buckley; 1908.00167], [Valassi et al:; 2004. 13687]

- One possible solution: GPU
\rightarrow Selected references: [Borowka et al:; 1811.11720], [Carrazza et al.; 2002.12921, 2009.06635, 2106.10279], [Bothmann et al.; 2106.06507] $+\rightarrow$ Talk1 $+\rightarrow$ Talk2

Computing problem in high-energy physics

\rightarrow Event generation:
$\sim 15 \%$ of ~ 3 billion cpuh. y^{-1} for ATLAS
\rightarrow More in: [Buckley; 1908.00167], [Valassi et al:; 2004. 13687]

- One possible solution: GPU
\rightarrow Selected references: [Borowka et al:; 1811.11720],
[Carrazza et al.; 2002.12921, 2009.06635, 2106.10279], [Bothmann et al.; 2106.06507] $+\rightarrow$ Talk1 $+\rightarrow$ Talk2
[ATLAS; CERN-LHCC-2022-005]
Year
- Can quantum computing be of any use in HEP?
\rightarrow to compute things faster/more efficiently?
\rightarrow to compute new things?

Cross section

\rightarrow Probability to measure scattering process
\rightarrow Predictable theoretically and measurable experimentally!
\rightarrow Monte Carlo techniques with error scaling as $1 / \sqrt{N}$

$$
\sigma \propto \int \mathrm{d} \Phi|\mathcal{M}|^{2}
$$

Cross section

\rightarrow Probability to measure scattering process
\rightarrow Predictable theoretically and measurable experimentally!
\rightarrow Monte Carlo techniques with error scaling as $1 / \sqrt{N}$

$$
\sigma \propto \int \mathrm{d} \Phi|\mathcal{M}|^{2}
$$

\rightarrow In general:

$$
\sigma \propto \int_{0}^{1} \mathrm{~d} x_{1} \cdots \int_{0}^{1} \mathrm{~d} x_{n} f\left(x_{1}, \cdots, x_{n}\right) \Theta\left(g\left(x_{1}, \cdots, x_{n}\right)\right)
$$

Cross section

\rightarrow Probability to measure scattering process
\rightarrow Predictable theoretically and measurable experimentally!
\rightarrow Monte Carlo techniques with error scaling as $1 / \sqrt{N}$

$$
\sigma \propto \int \mathrm{d} \Phi|\mathcal{M}|^{2}
$$

\rightarrow In general:

$$
\sigma \propto \int_{0}^{1} \mathrm{~d} x_{1} \cdots \int_{0}^{1} \mathrm{~d} x_{n} f\left(x_{1}, \cdots, x_{n}\right) \Theta\left(g\left(x_{1}, \cdots, x_{n}\right)\right)
$$

- For a given observable $\mathcal{O}=\mathcal{O}\left(x_{1}, \cdots, x_{n}\right)$:

$$
\sigma=\sum_{i} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \mathcal{O}^{i}}=\sum_{i, l} c_{i l} \frac{\mathrm{~d} \sigma}{\mathrm{~d} x_{I}^{i}}
$$

- Integrating $=$ guessing the values of a function at specific points (Riemann sum)

State

$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}$,
with $\alpha^{2}+\beta^{2}=1$

State

$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}$,
with $\alpha^{2}+\beta^{2}=1$

\rightarrow Representation

|0>

|17

$0.95|0\rangle+0.35|1\rangle$
$0.707|0\rangle-0.707|1\rangle$

State

$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}$,
with $\alpha^{2}+\beta^{2}=1$

Operation

$\psi \xrightarrow{A} \psi^{\prime}$
$A|\psi\rangle=\left|\psi^{\prime}\right\rangle$ with A unitary $|\psi\rangle-A-\left|\psi^{\prime}\right\rangle$
\rightarrow Representation
Possible values of a qubit
Graphical representation
|0>

|17
$0.707 \mid 0)+0.707|1\rangle$

$0.95|0\rangle+0.35|1\rangle$

$0.707|0\rangle-0.707|1\rangle$

Example of gates

Pauli-X (X)

$$
\begin{aligned}
& X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& \alpha|0\rangle+\beta|1\rangle \rightarrow \alpha|1\rangle+\beta|0\rangle
\end{aligned}
$$

Hadamard (H)

$$
\begin{aligned}
& H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
& \alpha|0\rangle+\beta|1\rangle \rightarrow \alpha \frac{|0\rangle+|1\rangle}{\sqrt{2}}+\beta \frac{|0\rangle-|1\rangle}{\sqrt{2}}
\end{aligned}
$$

Example of gates

Controlled not (CNOT, CX)

$$
\begin{aligned}
& C X=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& |00\rangle \rightarrow|00\rangle ;|01\rangle \rightarrow|01\rangle ; \\
& |10\rangle \rightarrow|11\rangle ;|11\rangle \rightarrow|10\rangle .
\end{aligned}
$$

- If 0 nothing happens, if 1 CX!
- Control qubit (top) and target qubit (bottom)

Grover algorithm/iteration

- Very general quantum algorithm
- Quadratic speed up $\rightarrow \mathcal{O}(\sqrt{N})$ operations instead of $\mathcal{O}(N)$
- Most famous example: unstructured database search

Grover algorithm/iteration

- Very general quantum algorithm
- Quadratic speed up $\rightarrow \mathcal{O}(\sqrt{N})$ operations instead of $\mathcal{O}(N)$
- Most famous example: unstructured database search
- Example (from [Johnston, Harrigan, Gimeno-Segovia; Programming Quantum Computers])

\rightarrow What solution is contained in our quantum register?

Grover algorithm/iteration

\rightarrow Applying a Grover iteration

Grover algorithm/iteration

\rightarrow Applying a Grover iteration

\rightarrow Applying it twice

$$
\mathcal{A}|0\rangle=\sqrt{1-a}\left|\Psi_{0}\right\rangle+\sqrt{a}\left|\Psi_{1}\right\rangle
$$

\rightarrow QAE estimates a with high probability such that the estimation error scales as $\mathcal{O}(1 / M)$ [as opposed to $\mathcal{O}(1 / \sqrt{M})$]

Quantum Amplitude Estimate (QAE) [Brassard, Hoer, Mosea, Topp: quant:ph/coososos]

$$
\mathcal{A}|0\rangle=\sqrt{1-a}\left|\Psi_{0}\right\rangle+\sqrt{a}\left|\Psi_{1}\right\rangle
$$

\rightarrow QAE estimates a with high probability such that the estimation error scales as $\mathcal{O}(1 / M)$ [as opposed to $\mathcal{O}(1 / \sqrt{M})$]
\rightarrow Various algorithms/implementations available

Quantum Amplitude Estimate (QAE)

$$
\mathcal{A}|0\rangle=\sqrt{1-a}\left|\Psi_{0}\right\rangle+\sqrt{a}\left|\Psi_{1}\right\rangle
$$

\rightarrow QAE estimates a with high probability such that the estimation error scales as $\mathcal{O}(1 / M)$ [as opposed to $\mathcal{O}(1 / \sqrt{M})$]
\rightarrow Various algorithms/implementations available
\rightarrow Basis of quantum Monte Carlo integration and $\mathcal{O}(1 / M)$ scaling

[Grinko, Gacon, Zoufal, Woerner; 1912.05559]
Resulting estimation error for $a=1 / 2$ and 95% confidence level with respect to the required total number of oracle queries.

Quantum integration

Extension to

$$
\mathcal{A}|0\rangle=\sum_{i} a_{i}\left|\Psi_{i}\right\rangle
$$

\rightarrow Definition of a piece-wise function with $f\left(x_{i}\right)=a_{i}$.

Quantum integration

Extension to

$$
\mathcal{A}|0\rangle=\sum_{i} a_{i}\left|\Psi_{i}\right\rangle
$$

\rightarrow Definition of a piece-wise function with $f\left(x_{i}\right)=a_{i}$.
So far used in finance for simple functions in 1D [Zoufal, Lucchi, Woerner; 1904.00043]
[Woerner and Egger; 1806.06893], [Stamatopoulos et al.; 1905.02666, 2111.12509], [Rebentrost, Gupt, Bromley; Phys.Rev.A 98 (2018) 022321]
\rightarrow Applicable to HEP? What are the limitations?

$$
I=\int \mathrm{d} x f(x) g(x)
$$

Quantum integration

Extension to

$$
\mathcal{A}|0\rangle=\sum_{i} a_{i}\left|\Psi_{i}\right\rangle
$$

\rightarrow Definition of a piece-wise function with $f\left(x_{i}\right)=a_{i}$.
So far used in finance for simple functions in 1D [Zoufal, Lucchi, Woerner; 1904.00043]
[Woerner and Egger; 1806.06893], [Stamatopoulos et al.; 1905.02666, 2111.12509], [Rebentrost, Gupt, Bromley; Phys.Rev.A 98 (2018) 022321]
\rightarrow Applicable to HEP? What are the limitations?

$$
I=\int \mathrm{d} x f(x) g(x)
$$

- In finance:
- f : probability
- g : payoff
- In HEP:
- $f:|\mathcal{M}|^{2}$
- $g: \Theta\left(\Phi-\Phi_{c}\right)$

Integration - 2D $\left[e^{+} e^{-} \rightarrow \mathbf{q}^{\prime} \mathbf{W}\right.$ with angles fixed]

Integration - 2D $\left[\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{q} \overline{\mathbf{q}}^{\prime} \mathbf{W}\right.$ with angles fixed]

Qubits number	Grid dim.	\mathcal{S}_{1}		\mathcal{S}_{2}	
4	4×4	0.55	0	0.70	-4.1
5	5×5	0.52	-4.92	0.53	-26.6
6	6×6	0.47	-14.1	0.79	9
6	7×7	0.62	-14.4	0.70	-3.0
6	8×8	0.55	0	0.78	7.6

\mathcal{S}_{1} : matching boundary of integration \mathcal{S}_{2} : no matching boundary of integration
[Agliardi, Grossi, MP, Prati; 2201.01547]
Working but control of uncertainty crucial!

Alternative to loading - [Chawdhry, MP; 2303.04818]

$$
\mathcal{M} \sim \sum \operatorname{Tr}\left(T^{a_{1}} \ldots T^{a_{n}}\right) \mathcal{K}(1, \ldots, n)
$$

- Kinematic part: made of spinors and tensors (and kinematic invariants)
- Colour part: made of $\operatorname{SU}(3)$ generators of QCD

Alternative to loading - [Chawdhry, MP; 2303.04818]

$$
\mathcal{M} \sim \sum \operatorname{Tr}\left(T^{a_{1}} \ldots T^{a_{n}}\right) \mathcal{K}(1, \ldots, n)
$$

- Kinematic part: made of spinors and tensors (and kinematic invariants)
- Colour part: made of $\operatorname{SU}(3)$ generators of QCD

Remarks

- First step towards a full quantum amplitude/Monte Carlo
- Useful for a quantum parton shower

Colour algebra in QCD - crash course

- $\left[T^{a}, T^{b}\right]=\mathrm{i} f_{a b c} T^{c}$.
- $T^{a}, T^{c}, \ldots: \mathrm{SU}(3)$ generators
- Gell-Mann matrices

$$
\begin{gathered}
T^{1}=\frac{1}{2}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad T^{2}=\frac{1}{2}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad T^{3}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad T^{4}=\frac{1}{2}\left(\begin{array}{cc}
0 & 0 \\
0 & 1 \\
0 & 0 \\
1 & 0 \\
0
\end{array}\right), \\
T^{5}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \quad T^{6}=\frac{1}{2}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad T^{7}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \quad T^{8}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{cc}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & -2
\end{array}\right) .
\end{gathered}
$$

Attention! T^{a} are not unitary!
\rightarrow In our example, colour factor: $T_{i j}^{a} T_{j i}^{a}=C_{F}$

Quantum implementation of colour

- Gluon: 8 colours $\rightarrow 3$ qubits $\left(2^{3}\right)$
- Quark: 3 colours $\rightarrow 2$ qubits $\left(2^{2}\right)$
\rightarrow Make non-unitary matrices unitary: extend dimension and modify them

$$
\begin{aligned}
& \overline{T^{1}}=\frac{1}{2}\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \overline{T^{2}}=\frac{1}{2}\left(\begin{array}{cccc}
0 & -\mathrm{i} & 0 & 0 \\
\mathrm{i} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \overline{T^{3}}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \overline{T^{4}}=\frac{1}{2}\left(\begin{array}{c}
0 \\
0 \\
1 \\
0
\end{array} \begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
1
\end{array}\right), \\
& \overline{T^{5}}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & -\mathrm{i} & 0 \\
0 & 1 & 0 & 0 \\
\mathrm{i} & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \overline{T^{6}}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \overline{T^{7}}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -\mathrm{i} & 0 \\
0 & \mathrm{i} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \overline{T^{8}}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array} \quad 0 \begin{array}{l}
0 \\
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

Example

- One-to-one correspondence between Feynman diagram and circuit
- Gates for $q q g(Q)$ and $\operatorname{ggg}(G)$ vertices to simulate QCD (colour) interaction

Example

- One-to-one correspondence between Feynman diagram and circuit
- Gates for $q q g(Q)$ and $\operatorname{ggg}(G)$ vertices to simulate QCD (colour) interaction

Example

- One-to-one correspondence between Feynman diagram and circuit
- Gates for $q q g(Q)$ and $g g g(G)$ vertices to simulate QCD (colour) interaction

Example

(real-life) Example

Total counts are: \{'00000010101': 226, '00010010011': 342, '00000010110': 225, '00000001101': 696, '0001 0010010': 362, 'ம0000010001': 872, '00010001101': 2006, '00000001100': 643, '00010001100': 2006, '000100 00110': 1051, 'ข0000001111': 638, 'ข0000010010': 904, '00010000010': 1057, '00100010101': 52353, '000100 10100': 3342, '00100000101': 6942, '00010000111': 1046, '00000010111': 210, '00100001101': 36223, '00100 010111': 51877, '00000001110': 543, '00010010000': 4838, '00000010100': 5421, '00010000100': 1035, '0010 0000000': 107280, '00010000011': 1075, '00100000111': 6795, '00100001011': 145043, '00100010010': 10275 '00010000000': 65548, '00000000000'; 27415, '00010001111'; 2031, '00100000110': 7004, '00000001011'; 25 51, '00100001111': 36471, '00010010111': 8865, '00010000101': 1077, '00100010110': 52220, '00010010110' 9080, '00100010100': 185856, '00100001100': 36173, '00010010101': 8860, '00100010000': 14129, '00100001 110': 36925, '00100000100': 6858, '00100010011': 10182, '00100000001': 6950, '00010001110': 2018, '00100 000011': 6983, '00000010011': 815, '00010001011': 7957, '00010010001': 340,' '00100010001': 10163, '00010 000001': 1092, '00100000010':
\rightarrow Trace defined in $|00000000000\rangle=\left|0_{11}\right\rangle$ state: $|\psi\rangle=\frac{\mathcal{C}}{\mathcal{N}}\left|0_{11}\right\rangle+\ldots$
$\Rightarrow \frac{27415}{N_{\text {shots }}=1000000}$
$\left(\frac{\mathcal{C}}{\mathcal{N}}=\frac{\left(N_{c}=3\right) C_{F}}{N_{c}^{n_{q}=1}\left(N_{c}^{2}-1\right)^{n_{g}=1}}\right)^{2}$
\rightarrow Colour factors encoded in one single state (as needed for QAE)
\rightarrow Any colour factor computable

Quantum Monte Carlo in high-energy physics

- Is it possible?
\rightarrow Yes.

Quantum Monte Carlo in high-energy physics

- Is it possible?
\rightarrow Yes.
- Is there a quantum advantage?
\rightarrow In principle, yes. In practice for now, no.

Quantum Monte Carlo in high-energy physics

- Is it possible?
\rightarrow Yes.
- Is there a quantum advantage?
\rightarrow In principle, yes. In practice for now, no.
- Is it more resource efficient than CPU/GPU?
\rightarrow At the moment, not known.

Road map for quantum Monte Carlo

- Reliable error estimate
\rightarrow Taking into account binning effects / multi-dimension integrand

Road map for quantum Monte Carlo

- Reliable error estimate
\rightarrow Taking into account binning effects / multi-dimension integrand
- More natural definition of objects to be computed
\rightarrow Example of colour algebra

Road map for quantum Monte Carlo

- Reliable error estimate
\rightarrow Taking into account binning effects / multi-dimension integrand
- More natural definition of objects to be computed
\rightarrow Example of colour algebra
- Estimate of resources needed for actual computation on near-term quantum computers (scaling, noise, connections, ...)
\rightarrow On-going collaboration with Quantinuum (Cambridge, UK)

Road map for quantum Monte Carlo

- Reliable error estimate
\rightarrow Taking into account binning effects / multi-dimension integrand
- More natural definition of objects to be computed
\rightarrow Example of colour algebra
- Estimate of resources needed for actual computation on near-term quantum computers (scaling, noise, connections, ...)
\rightarrow On-going collaboration with QuantinuUm (Cambridge, UK)
- Can there be quantum advantage for event generation? [Bravo-Prieto et al; 2110.06933]

Back-up slides

BACK-UP

Reviews

- [Gray, Terashi; Gray:2022fou] (selected topics)
- [Delgado et al:; 2033.08805] (Snowmass)
- [Klco et al:; 2107.04769] (lattice)

Selected references

- Amplitude/loop integrals: [Ramirez-Uribe et al.; 2105.08703], [Bepari, Malik, Spannowsky, Williams; 2010.00046], [Chawdhry, MP; 2303.04818]
- Parton shower: [Bauer, de Jong, Nachman, Provasoli; 1904.03196], [Bepari, Malik, Spannowsky, Williams; 2010.00046], [Williams, Malik, Spannowsky, Bepari; 2109.13975], [Chigusa, Yamazaki; 2204.12500], [Gustafson, Prestel, Spannowsky, Williams; 2207.10694], [Bauer, Chigusa, Yamazaki; 2310.19881]
- Machine learning: [Filipek et al; 2105.04582], [Bravo-Prieto et al; 2110.06933], [Alvi, Bauer, Nachman; 2206.08391]
- Others: [Ciavarella; 2007.04447], [Perez-Salinas, Cruz-Martinez, Alhajiri, Carrazza: 2011.13934], [Bauer, Freytsis, Nachman; 2102.05044], [Martenez de Lejarza, Cieri, Rodrigo; 2204.06496], [Agliardi, Grossi, MP, Prati; 2201.01547], [Martenez de Lejarza et al.; 2401.03023], [Cruz-Martinez, Robbiati, Carrazza; 2308.05657]

Loading of distribution / encoding into qubits

Encoding the distribution to be integrated into qubits

- Exact loading [Shende, Bullock, Markov, quant-ph/0406176] (resource intensive)
- Using quantum machine learning (qGAN) [Zoufal, Lucchi, Woerner; 1904.00043] (not exact)
- Example: Exact loadine $-1+x^{2}$
$\rightarrow 3$ qubits: $2^{3}=8$ bins

Quantum Amplitude Estimate (QAE)

$$
\mathcal{A}|0\rangle=\sqrt{1-a}\left|\Psi_{0}\right\rangle+\sqrt{a}\left|\Psi_{1}\right\rangle
$$

QAE estimates a with high probability such that the estimation error scales as $\mathcal{O}(1 / M)$ [as opposed to $\mathcal{O}(1 / \sqrt{M})$]
M : number of applications of \mathcal{A}

Quantum Amplitude Estimate (QAE)

$$
\mathcal{A}|0\rangle=\sqrt{1-a}\left|\Psi_{0}\right\rangle+\sqrt{a}\left|\Psi_{1}\right\rangle
$$

QAE estimates a with high probability such that the estimation error scales as $\mathcal{O}(1 / M)$ [as opposed to $\mathcal{O}(1 / \sqrt{M})$]
M : number of applications of \mathcal{A}
\rightarrow What the (orignal) algorithm provides:

- An estimate: $\tilde{a}=\sin ^{2}\left(\tilde{\theta}_{a}\right)$ with $\tilde{\theta}_{a}=y \pi / M, y \in\{0, \ldots, M-1\}$, and $M=2^{n}$
- A success probability (that can be increased by repeating the algorithm)
- A bound: $|a-\tilde{a}| \leq \mathcal{O}(1 / M)$

Applications

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$ (in QED)

$$
\sigma \sim \int_{-1}^{1} \int_{0}^{2 \pi} \mathrm{~d} \cos \theta \mathrm{~d} \phi\left(1+\cos ^{2} \theta\right)
$$

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}^{\prime} \mathrm{W}$

$$
\begin{aligned}
\sigma & \sim \int_{M_{W}^{2}}^{s} \int_{0}^{s_{1}^{\mathrm{Max}}} \int_{-1}^{1} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \Phi_{3}\left|\mathcal{M}_{\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow q \bar{q}^{\prime} \mathrm{W}}\right|^{2} \\
& \sim \int_{M_{W}^{2}}^{s} \int_{0}^{s_{1}^{\mathrm{Max}}} \mathrm{~d} \tilde{\Phi}_{3}\left|\mathcal{M}^{\prime}\right|^{2}
\end{aligned}
$$

with $\mathcal{M}^{\prime}=\mathcal{M}_{\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow q \bar{q}^{\prime} \mathrm{W}}\left(\cos \theta_{1}=0, \phi_{1}=\pi / 2, \phi_{2}=\pi / 2\right)$.

Integration - $1+x^{2}$

- Matching boundary of integration (3 qubits $\Rightarrow 2^{3}$ bins)

Domain	low stat.		high stat.		very high stat.		exact	
	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta[\%]$
$[-0.75 ; 0]$	0.345	-3.31	0.332	0.706	0.334	0.0331	0.334	-8.31×10^{-3}
$[-0.5 ; 0]$	0.215	-5.86	0.201	1.15	0.203	0.0986	0.203	-0.0161
$[-0.25 ; 0]$	0.112	-17.1	0.0939	1.87	0.0960	-0.284	0.0957	-0.0389

- Non-matching boundary of integration

	$[-0.7 ; 0.6]$				$[-0.625 ; 0.375]$				
Qubits number	high stat.			exact		high stat.		exact	
	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta[\%]$	
3	0.402	-28.0	0.406	-27.1	0.296	-28.1	0.299	-27.5	
4	0.463	-17.0	0.468	-16.0	0.408	-1.07	0.412	5.96×10^{-3}	
5	0.527	-5.46	0.532	-4.62	0.408	-1.07	0.412	5.96×10^{-3}	
6	0.542	-2.76	0.547	-1.81	0.408	-1.07	0.412	5.96×10^{-3}	

$$
\left.\begin{array}{c}
B_{1}(\alpha)=\left(\begin{array}{cc}
\sqrt{1-|\alpha|^{2}} & \alpha \\
-\alpha & \sqrt{1-|\alpha|^{2}}
\end{array}\right) \\
B(\alpha) A|k\rangle= \begin{cases}\alpha|0\rangle+\sqrt{1-|\alpha|^{2}}|1\rangle & \text { if } k=0 \\
|k+1\rangle & \text { if } 0<k<2^{N_{\mathcal{U}}-1} \\
\sqrt{1-|\alpha|^{2}}|0\rangle-\alpha|1\rangle & \text { if } k=2^{N_{\mathcal{U}}}-1\end{cases} \\
\left\langle\left.\Omega\right|_{\mathcal{U}} B(\alpha) A \mid \Omega\right\rangle_{\mathcal{U}}=\alpha
\end{array}\right\} \begin{array}{ll}
N_{\text {ops }} \\
& \left\langle\left.\Omega\right|_{\mathcal{U}} \prod_{i=1}^{N_{\text {ops }}}\left\{B\left(\alpha_{i}\right) A\right\} \mid \Omega\right\rangle_{\mathcal{U}}=\prod_{i=1}^{N_{\text {op }}} \alpha_{i} \tag{4}
\end{array}
$$

