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Infroduction
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Usual freatment

Equation of motion for the homogeneous field

Friedman’s equations:

Equation of state parameter:

¢+ 3Ho +nimi Fof ¢ =0
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What is fragmentation?
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(t,7) = B(t) + 66(1,T) ey G e +BHGVg(6) = 0
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8¢+ 3HIp — + k(k — 1)AMp M—) ¢ = 0  Up to first order
P

Valid until . d¢ ~ @ after that we need to solve the full non-linear dynamics

Fragmentation is the moment when the perturbation energy density take over the inflaton energy
density.
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Condensate or particles ¢

o(t) + So(t, )
Condensate: Classical field that oscillate at a Particle: Non homogeneous quantum field (usual
frequancy m, uniformly in space particles)
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Numerical Simulation
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CosmoLattice

User Manual: arXiv:2102.01031v2
Review of the simulation techniques: arXiv:2006.15122v3

The following numerical results only take into account the self motion of the inflaton
field
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Simulation result
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Simulation result
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Problematice

Depending on the potential what are the allowed processes to produce matter in the early
universe?

V(o) = Lint 7




Reheating after fragmentation
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arXiv:2308.16231v1 Fragmentation exclude reheating via decay to fermion if k>2




Reheating after fragmentation
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arXiv:2308.16231v1 There is no fragmentation problem for decay to boson.




Reheating after fragmentation
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Fragmentation has an important effect for the bound on the minimum value required for the coupling
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Conclusion

» Non linearifies in the early universe can produce a massive amount
of perturbation leading to radiation dominated universe.

®» The pertubations affects the processes that produce matter and
add constrains for reheating to happend in a specific way
depending on the model




Thank you!




Backup slides

All from: arXiv:2308.16231v1
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Figure 2: Kinematic parameter R as a function of the scale factor, for £ = 4,6, 8, 10. Left: fermionic
decays. The channel ¢¢ — bb can be recovered from these results upon changing y> — 20. Right:

bosonic decays.




(20, ¢ — ff,

mgff(t) = S 2up, ¢ — bb,
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In the case of fermionic decays, or scattering depletion, the decay rate
acquires a correction I'y o R1/2 if R > 1, resulting in a reduced efficiency of the inflaton decay.
On the other hand, for ¢ — bb, due to the tachyonic nature of the effective mass of b during half
of the inflaton oscillation, an enhancement of the dissipation rate appears, I'y o RY2 for R > 1.
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Figure 3: Dependence on the induced mass meqg of the inflaton and radiation energy densities, for
the ¢¢ — bb decay channel. The solid lines are computed by matching results using the Hartree
approximation prior to strong parametric resonance to results from a lattice simulation for the

backreaction regime.
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