

Impatiently awaited — What supernova explosions tell us about axion-like particles

Christopher Eckner (ceckner@ung.si) SMASH MSCA COFUND Fellow University of Nova Gorica, Center for Astrophysics and Cosmology 24th of January 2024

In collab. with: Francesca Calore, Pierluca Carenza, Maurizio Giannotti, Giuseppe Lucente, Alessandro Mirizzi, Eike Ravensburg Rencontres de Physique des Particules 2024 Sorbonne Université, LPNHE, Paris

Axion(-like) particles and the Primakoff effect

Axions and axion-like particles (ALPs) may contribute (at least a fraction) to the dark matter content of the universe.

Using stellar astrophysics to probe ALPs

Let us assume ALPs are only feebly coupled to photons.

- + Light particles, $m \leq T$, are efficiently thermally produced in the core of stellar objects.
- + Almost free-streaming in stellar environment.
 - → new channel of stellar energy losses (they cool too faster)
 - → effects are observationally accessible

The appeal of core-collapse supernovae (SNe)

Massive stars ($> 8 M_{\odot}$) burn their fuel until reaching an onion-like interior with a degenerate iron core in their centres.

Fusing nuclei heavier than iron requires energy, thus gravity wins over the radiation pressure from the core; a rapid collapse occurs.

How to directly detect ALPs

The one Galactic SN in modern times: SN 1987A

RPP 2024

Extragalactic Searches

Using extragalactic supernova explosions

Supernovae are not that rare on larger scales; their rates scales with the star-formation rate in the universe.

Observables:

- → The diffuse axion-like particle background ($m_a \sim O(10^{-9} \text{ eV})$),
- → individual events: SN 2023ixf ($m_a \sim O(MeV)$).

The Diffuse Supernova ALP Background

Cumulative cosmological SN flux

+ star-formation rate
+ numerical SN simulations
for different progenitors masses

[F. Calore, CE et al., PRD 105 (2022) 6]

electrostatic field of ions, electrons and protons

Milky Way's magnetic field —> conversion probability highly dependent on B-field structure

Christopher Eckner, ceckner@ung.si

The bound on the ALP parameter space

Constraints stronger than CAST (solar axion bounds) and can be improved with future gammaray measurements (MeV mission).

The decay of MeV-scale ALPs and SN 2023ixf

What about individual extragalactic SN events?

A recent type II supernova was optically detected in the Pinwheel galaxy (M 101, distance ~ 7 Mpc) on the 18th of May 2023 with a progenitor mass from 9 to 22 M_{\odot} .

- → Large scientific and publication attention, e.g. [C. D. Kilpatrick et al., ApJL 952 (2023) 1], [L. A. Sgro et al., Res. Notes AAS 7 (2023), 141]
- → As individual event too faint to detect signal of light ALPs, but MeV-scale ALPs are accessible via ALP decay!

The decay of MeV-scale ALPs and SN 2023ixf

photon coalescence

We accounted for photon coalescence was ignored in previous studies since it only becomes relevant above the MeV scale!

The decay of MeV-scale ALPs and SN 2023ixf

Prospects for future Galactic SNe

What if there where a Galactic supernova like 1987?

Photon coalescence was previously not accounted for when probing the parameter space of MeV-scale ALPs? Impact on constraints from ALP decay:

What if there where a Galactic supernova like 1987?

Photon coalescence was previously not accounted for when probing the parameter space of MeV-scale ALPs? Impact on constraints from ALP decay:

With modern instruments: Can we learn more about the ALP's properties from a future Galactic SN?

What if there where a Galactic supernova like 1987?

 10^{3}

 10^{1}

observed gamma rays

Signal shape depends on the ALP mass, can we infer the mass if a positive signal occurs?

- Case 1: $m_a = 1$ MeV - Case 2: $m_a = 100$ MeV

fit function: $\frac{d\Phi_{\gamma}}{d\omega_{\gamma}}$

Case 1: $m_a = 1$ MeV, $g_{a\gamma} = 1 \times 10^{-11}$ GeV⁻¹ Case 2: $m_a = 100$ MeV, $g_{a\gamma} = 4 \times 10^{-13}$ GeV⁻¹

 10^{2}

energy E [MeV]

Christopher Eckner, ceckner@ung.si

Fermi-LAT prospects for light ALPs $\sim O(\text{neV})$

What can we learn from a close Galactic supernova (~10 kpc) with a progenitor resembling Betelgeuse (~11 M_{\odot}) regarding ALPs with $m_a \sim O(1 \text{ neV})$, i.e. Primakoff production?

Christopher Eckner, ceckner@ung.si

Fermi-LAT prospects for light ALPs $\sim O(\text{neV})$

What can we learn from a close Galactic supernova (~10 kpc) with a progenitor resembling Betelgeuse (~11 M_{\odot}) regarding ALPs with $m_a \sim O(1 \text{ neV})$, i.e. Primakoff production?

Can we extract more information by adding couplings to further Standard Model particles?

SN prospects for light ALPs with nucleon couplings

Introduction ALP couplings to mesons and hadrons introduces a rich phenomenology:

$$\mathcal{L}_{\text{int}} = g_a \frac{\partial_\mu a}{2m_N} \left[C_{ap} \bar{p} \gamma^\mu \gamma_5 p + C_{an} \bar{n} \gamma^\mu \gamma_5 n + \frac{C_{a\pi N}}{f_\pi} (i\pi^+ \bar{p} \gamma^\mu n - i\pi^- \bar{n} \gamma^\mu p) + C_{aN\Delta} \left(\bar{p} \, \Delta^+_\mu + \overline{\Delta^+_\mu} \, p + \bar{n} \, \Delta^0_\mu + \overline{\Delta^0_\mu} \, n \right) \right]$$

SN prospects for light ALPs with nucleon couplings

Both processes contribute at different energies and introduce a time-dependence due to the evolution of the SN core (pion density).

Questions to answer:

- → Is the *Fermi*-LAT energy resolution good enough to observe a two-peak spectrum?
- → Can we re-construct the mean temperature of the spectrum? Tied to equation of state of SN core.

Outlook

- Lacking a Galactic SN, extragalactic SNe are capable of probing parts of the ALP parameter space.
- Observing the prompt gamma-ray emission from a future Galactic SN, allows us to study the properties of ALPs and learn about their nature.
- SN ALPs not only carry information about their own nature but also about the internal physics of the stellar progenitors.

Closing the MeV gap greatly enhances the access to ALP supernova phenomenology!