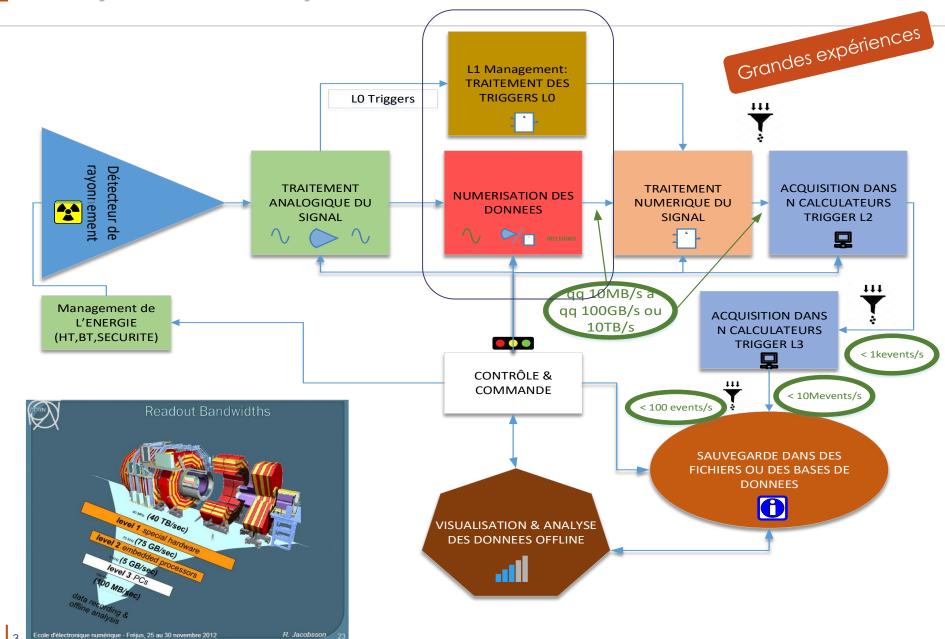


Sommaire

- Le « dominant Design » de l'instrumentation
- La Numerisation des signaux:
 - ➤ Numérisation 1 bits → discriminateurs
 - Principes
 - Echantillonneur
 - > ADC
 - > QDC
 - > TDC
 - Les imperfections
 - Modèle Mathématique

- Le Traitement Numérique des Signaux:
 - Les Filtres

Un Système d'acquisition actuel multicanaux



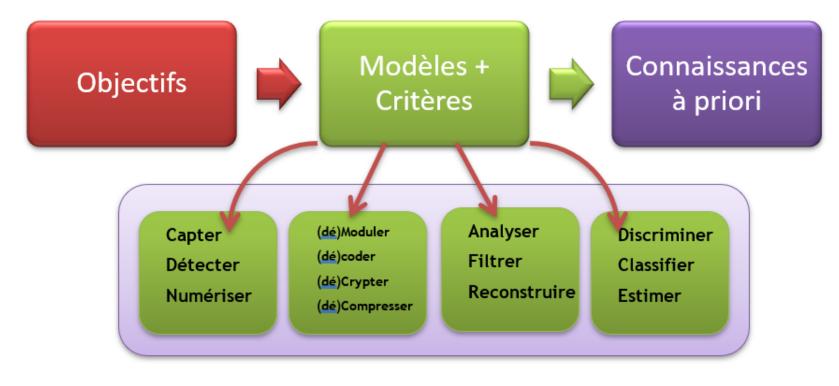
Systèmes Instrumentaux

Théorie du signal

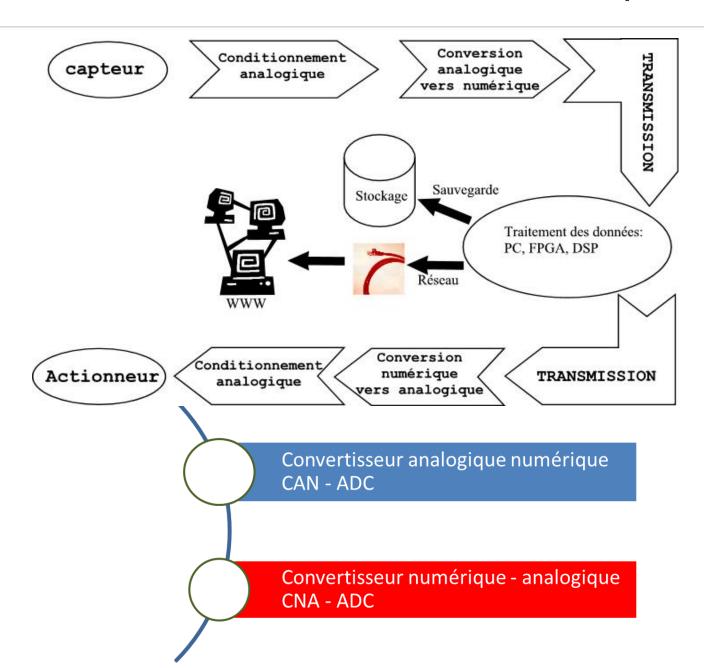
- Etude des signaux sous leur forme mathématique et modèlisant un phénomène physique
- x(t) = a.sin(w.t) + e(t)

Théorie de la décision

•Elaboration de modèles statistiques à partir de connaissances A PRIORI en vue de faire un choix optimal à partir des observations (prise de decision à partir de critères)



Les convertisseurs: monde réel vers monde numérique



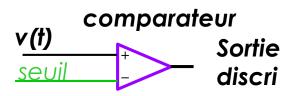
Numeriseur 1bit: Discriminateurs

Discriminateur :

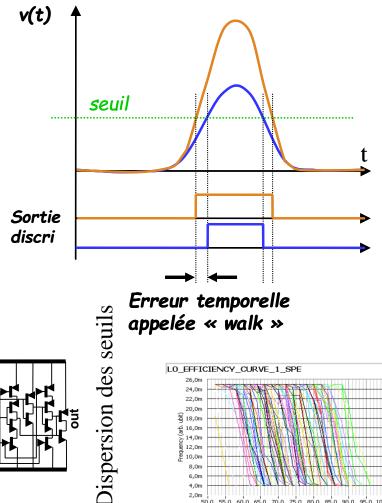
Amplificateur à gain élevé, rapide, fonctionnant en grand signaux (saturation, rétroaction positive):

Utilisation pour supprimer une partie du signal du détecteur (bruit de fond) ou pour détecter

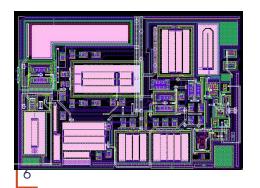
un temps de passage d'un événement.

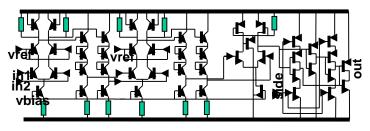


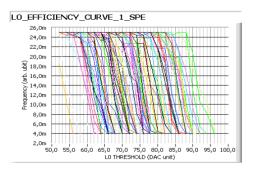
si v(t) > seuil ⇒ Sortie discri = « 1 » logique



Erreur temporelle appelée « walk »







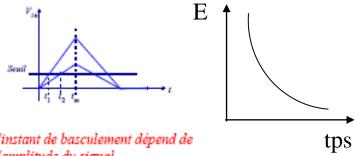
Numeriseur 1bit : Discriminateurs

Inconvénient du discriminateur commandé par front (leading edge) :

- -Précision de passage dépend de la hauteur du signal
- Sensible aux jitters sur le signal (bruit)
- -Nécéssite une pente infinie (consommation)

Time walk:

On a une corrélation entre amplitude (énergie et temps de passage) → correction soft possible



l'instant de basculement dépend de l'amplitude du signal

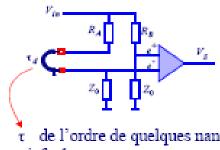
$$Vs = Ao . F . [Vin(t) - Vin(t-tau)]$$

Ao: amplitude de Vin

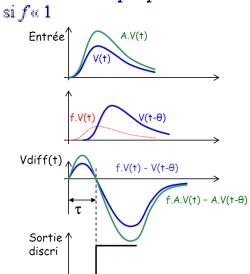
F: fraction prise <1

Tau: retard de Vin

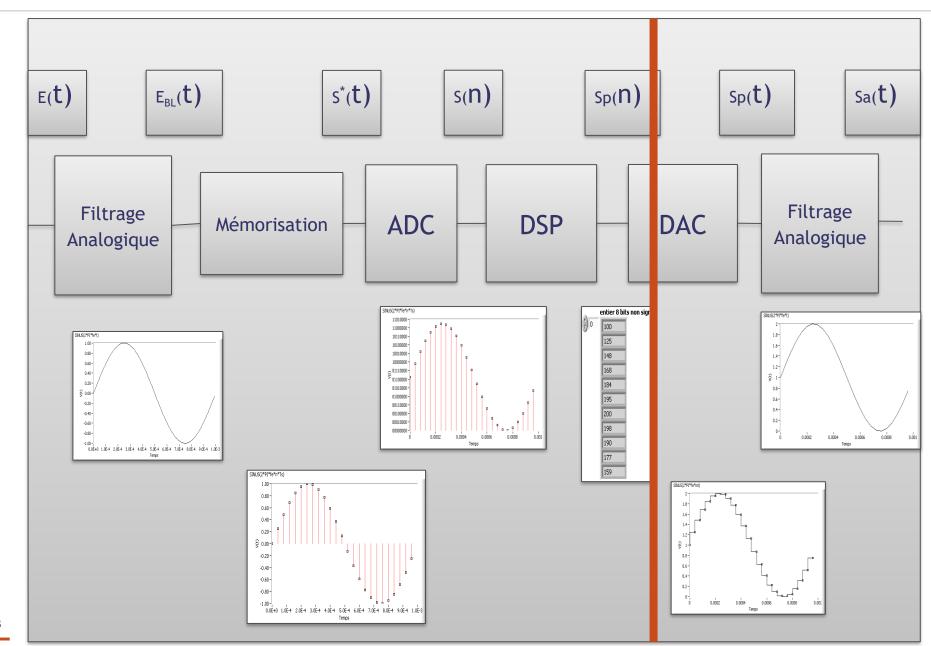
Discriminateur à fraction constante:



de l'ordre de quelques nanosecondes



Traitement de l'Information



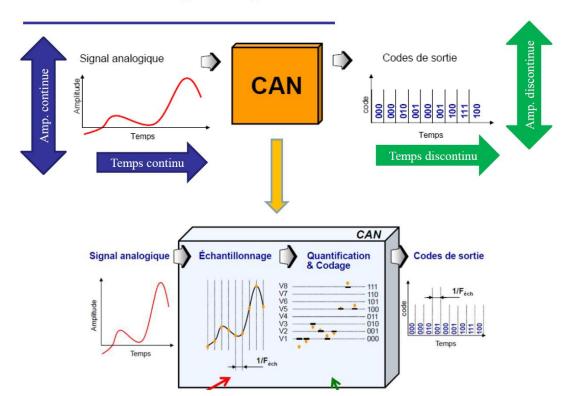
Les étapes ADC

Échantillonnage à temps discret : quantification

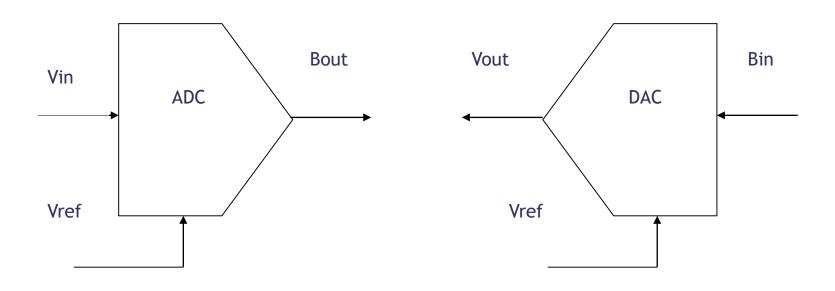
La résolution d'amplitudes finies : Bruit & Précision

Le codage de l'information

Le principe de la conversion



La fonction de transfert



$$V_{ref}(b_1...2^{-1} + b_2...2^{-2} + \dots + b_N...2^{-N}) = V_{in} \pm V_x$$

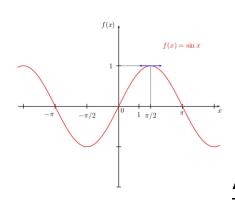
$$V_{LSB} = \frac{V_{ref}}{2^N}$$

$$V_{quantifi\'e} = V_{in} + V_Q$$

$$Vout = Vref(b_1 2^{-1} + b_2 2^{-2} + \dots + b_N 2^{-N}) = Vref \times Bin$$

Pourquoi y a-t-il besoin d'un échantillonnage?

Regardons quelle fréquence maximum d'échantillonnage est admissible sans commettre d'erreur sur le codage de l'information.



$$v(t) = \frac{q2^N}{2} \cdot \sin(2 \times \pi \times f \times t)$$

$$\frac{dv(t)}{dt} = \frac{q2^N}{2} \times 2\pi f \times \cos(2\pi f t)$$

$$\frac{\Delta V}{\Delta T}|_{max} = \frac{q2^N}{2} \times 2\pi f_{max} \Rightarrow \left| f_{max} \right| = \frac{\frac{\Delta V}{\Delta T}|_{max}}{q\pi. 2^N}$$

Application numérique:

$$\Delta T = 8\mu s \ et \ \Delta V = 1 \ LSB = q$$

$$f_{\text{max} = \frac{1}{\pi \times 8.10^{-6} \times 4096} = 9,7 \text{ Hz}}$$

Conclusion: Sans maintien (track and hold), même avec un codeur rapide, la fréquence du signal d'entrée reste très faible pour ne pas commettre d'erreur.

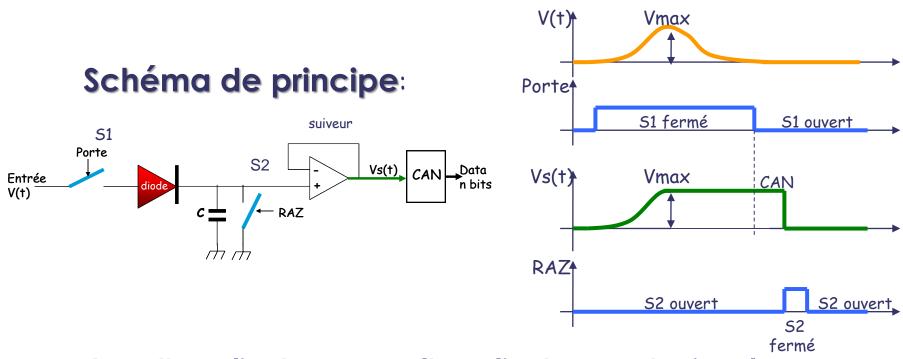
Les échantillonneurs

Rôle : assurer le traitement analogique du signal et la conversion analogique-numérique

Le codage numérique du signal analogique :

- Le codeur d'amplitude ADC : mesure l'amplitude du signal
- Le codeur de charge QDC : mesure l'intégrale du signal
- Le codeur de temps TDC : mesure un intervalle de temps

Le codeur d'amplitude ADC (pour la mesure d'énergie)



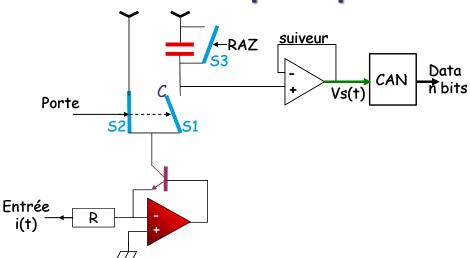
Le codeur d'amplitude capture l'amplitude max du signal analogique provenant du shaper.

Le schéma de principe présenté ici est celui d'un détecteur de crête.

La durée de la porte est généralement comprise entre qqs 10 ns à qqs 10 µs.

Le codeur de charge QDC (pour la mesure d'énergie)

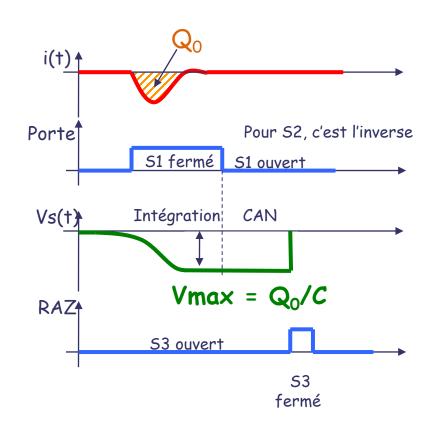
Schéma de principe:



On intègre le courant d'entrée pendant la durée de la porte (interrupteur \$1 fermé)

$$Vs(t) = \frac{1}{C} \int_{Porte} i(t)dt$$

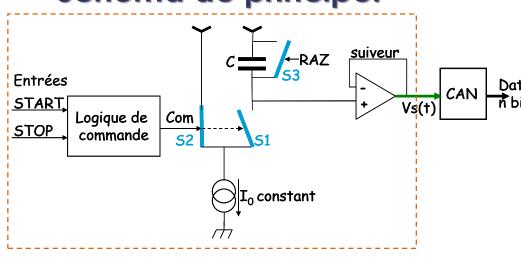
Intégrer = calculer l'aire entre la courbe et l'axe du temps pendant la durée de la porte = à la charge Q0



Par exemple, on utilisera un QDC si le signal en courant du détecteur est suffisamment élevé (PM), ou pour les forts taux de comptage, ou...

Le codeur de temps TDC (pour la mesure du temps de vol)

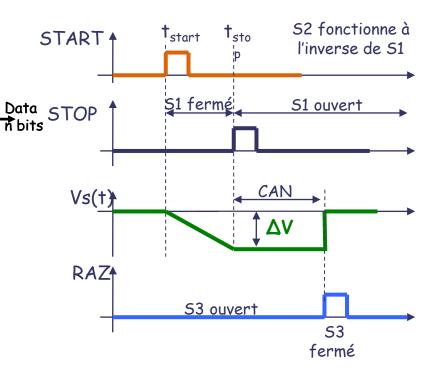
Schéma de principe:



TAC (Codeur Temps Amplitude)

Lorsque S1 est fermé, on décharge la capacité à courant 10 constant. La tension aux bornes de la capacité évolue comme une rampe ce qui donne:

$$\Delta Vs(t) = \frac{I_0}{C} . \Delta t$$

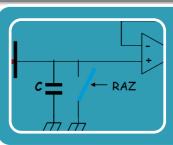


$$\Delta V = (I_0/C).(t_{stop} - t_{start})$$

Rq : Les signaux logiques START et STOP viennent généralement de discriminateur

Vocabulaire

- Principe
- Caractéristiques fondamentales (statique)
- Principe d'échantillonnage (théorie de l'information)



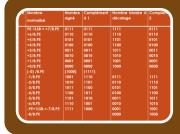
L'échantillonnage à temps discret

- Quantification
- capacité commutée

$$\begin{bmatrix} T/2 \\ -T/2 \end{bmatrix} V_Q^2 \cdot dt \end{bmatrix}^{1/2} = \left[\frac{1}{T} \int_{-T/2}^{T/2} V_{LSE}^2 \right]$$
$$\left(\frac{t^3}{3} \Big|_{-\frac{T}{2}}^{\frac{T}{2}} \right) \end{bmatrix}^{1/2} = \left[\frac{V_{LSB}^2}{T^3} \left(\frac{T^3}{12} \right) \right]^{1/2}$$

La résolution d'amplitudes finies dû à la quantification

- Bruit
- Précision

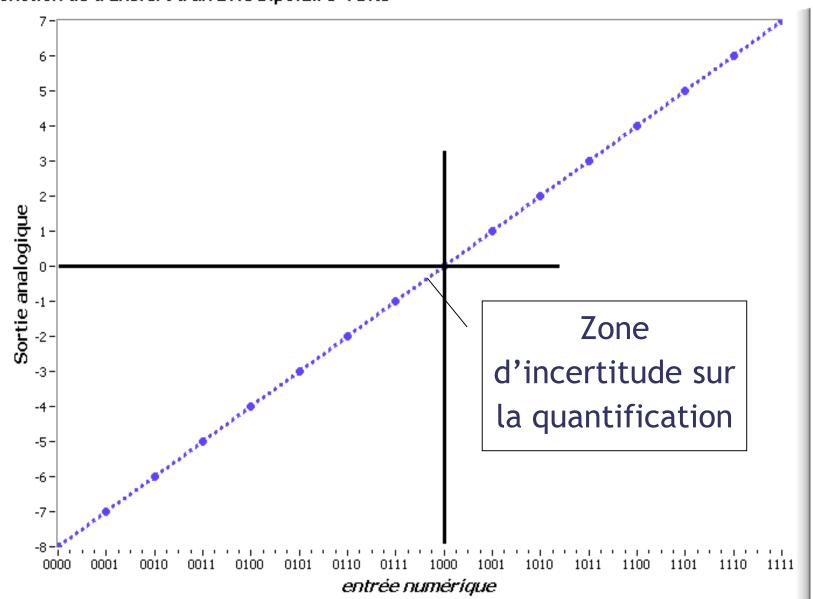


Le Codage de l'information

- code binaire
- complément à 2

CNA ou DAC

fonction de transfert d'un DAC bipolaire 4 bits



CNA ou DAC

Nombre	Nombre normalisé	Nombre signé	Complément à 1	Nombre binaire à décalage	Complément à 2
+7	PE-1LSB = +7/8.PE	0111	0111	1111	0111
+6	+6/8.PE	0110	0110	1110	0110
+5	+5/8.PE	0101	0101	1101	0101
+4	+4/8.PE	0100	0100	1100	0100
+3	+3/8.PE	0011	0011	1011	0011
+2	+2/8.PE	0010	0010	1010	0010
+1	+1/8.PE	0001	0001	1001	0001
+0	+0/8.PE	0000	0000	1000	0000
(-0)	(-0) /8.PE	(1000)	(1111)		
-1	-1/8.PE	1001	1110	0111	1111
-2	-2/8.PE	1010	1101	0110	1110
-3	-3/8.PE	1011	1100	0101	1101
-4	-4/8.PE	1100	1011	0100	1100
-5	-5/8.PE	1101	1010	0011	1011
-6	-6/8.PE	1110	1001	0010	1010
-7	-PE+1LSB =-7/8.PE	1111	1000	0001	1001
-8	-8/8.PE			0000	1000
2					

- ' -

CNA ou DAC: encodage

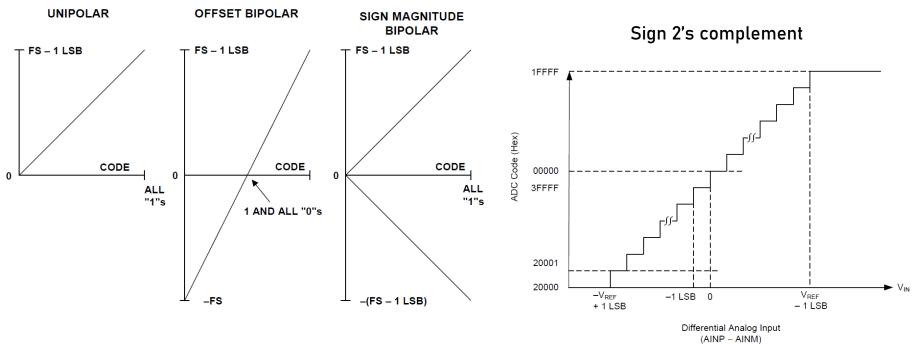
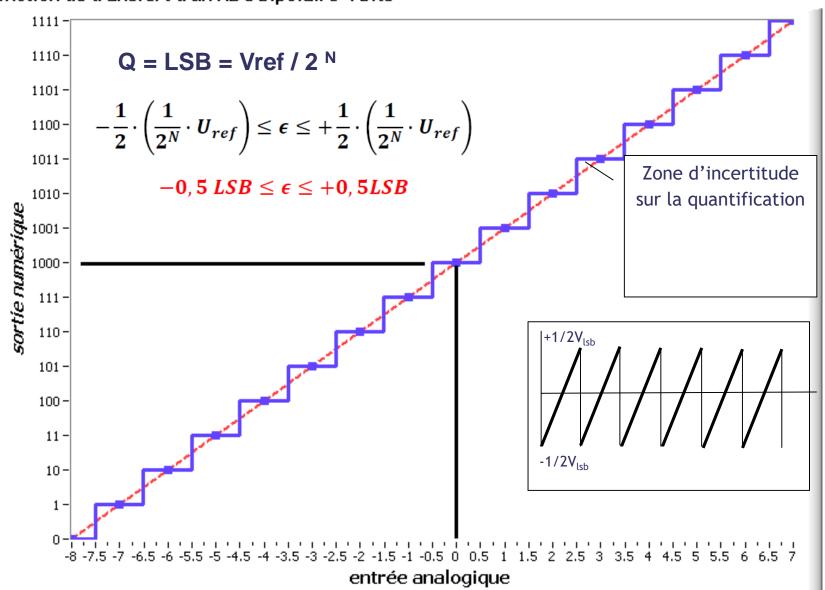


Figure 2.16: Unipolar and Bipolar Converters

CAN ou ADC

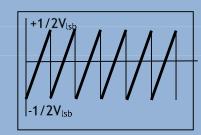
fonction de transfert d'un ADC bipolaire 4 bits



Résolution d'un ADC / erreur de quantification

Approche déterministe :

Si Vin est une rampe en fonction du temps, VQ est un signal périodique de période T (temps d'échantillonnage) limité en amplitude à $\pm \frac{1}{2}V_{LSB}$. En effet, VQ est la différence entre Vin et Vquantifié, signal en marche d'escalier (cf courbe cidessous).



Suivant VQ, on constate que la moyenne du signale est nulle. Sa valeur RMS est donnée par :

$$V_{Q(rms\,)} = \left[\frac{1}{T}\int_{-T/2}^{T/2}\!V_Q^2.\,dt\right]^{1/2} = \left[\frac{1}{T}\int_{-T/2}^{T/2}\!V_{LSB}^2\left(\frac{-t}{T}\right)^2.\,dt\right]^{1/2}$$

$$= \left[\frac{V_{LSB}^2}{T^3} \left(\frac{t^3}{3} \right|_{\underline{T}}^{\underline{T}} \right) \right]^{1/2} = \left[\frac{V_{LSB}^2}{T^3} \left(\frac{T^3}{12} \right) \right]^{1/2} = \frac{V_{LSB}}{\sqrt{12}}$$

Approche stochastique:

A partir de la densité de probabilité ci-dessous, calculons la moyenne et l'écart type :

$$V_{Q(AVG)} = \int_{-\infty}^{\infty} X. f_{Q}(X). dX = \frac{1}{V_{LSB}} \int_{\frac{-V_{LSB}}{2}}^{\frac{V_{LSB}}{2}} X. dX = 0$$

$$V_{Q(rms)} = \left[\int_{-\infty}^{\infty} X^2 . f_Q(X) . dX \right]^{\frac{1}{2}} = \frac{1}{V_{LSB}} \int_{\frac{-V_{LSB}}{2}}^{\frac{V_{LSB}}{2}} X^2 . dX = \frac{V_{LSB}}{\sqrt{12}}$$

$$\mathsf{Eq} = \frac{V_{LSB}}{\sqrt{12}}$$

$$B_{Th} = \sqrt{4kTR}$$

Nbre				
bit	Vref	Eq	BruitTh	Flash ADC
4	5	9,021E-02	4,07E-09	6,51E-08
8	5	5,638E-03	4,07E-09	1,04E-06
10	5	1,410E-03	4,07E-09	4,17E-06
12	5	3,524E-04	4,07E-09	1,67E-05
14	5	8,810E-05	4,07E-09	6,67E-05
16	5	2,202E-05	4,07E-09	2,67E-04
18	5	5,506E-06	4,07E-09	1,07E-03
20	5	1,377E-06	4,07E-09	4,27E-03

$$\begin{split} V_{Q(rms)} &= \left[\frac{1}{T} \int_{-T/2}^{T/2} V_Q^2 \, dt\right]^{1/2} = \left[\frac{1}{T} \int_{-T/2}^{T/2} V_{LSB}^2 \left(\frac{-t}{T}\right)^2 \, dt\right]^{1/2} \\ &= \left[\frac{V_{LSB}^2}{T^3} \left(\frac{t^3}{3}\Big|_{-\frac{T}{2}}^{\frac{T}{2}}\right)\right]^{1/2} = \left[\frac{V_{LSB}^2}{T^3} \left(\frac{T^3}{12}\right)\right]^{1/2} = \frac{V_{LSB}}{\sqrt{12}} \end{split}$$

$$SNR = 20.\log \frac{\frac{V_{ref}}{\sqrt{12}}}{\frac{V_{LSB}}{\sqrt{12}}} = 20.\log(2^N) = \mathbf{6.02} \ N \ dB$$

Signaux dent de scie

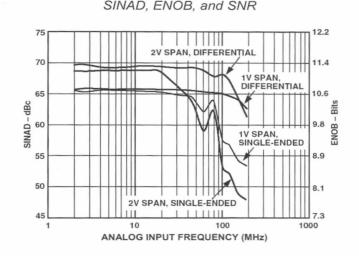
$$SNR = 20.\log \frac{\frac{V_{ref}}{2\sqrt{2}}}{\frac{V_{LSB}}{\sqrt{12}}} = 20.\log \left(\sqrt{\frac{3}{2}}2^{N}\right) = 6.02 N + 1.76 dB$$

Sinusoïde à Vmax

$$SNR = 20.\log \frac{\frac{V_{sin}}{2\sqrt{2}}}{\frac{V_{LSB}}{\sqrt{12}}} = 6.02 N + 1.76 dB + 20. Log(\frac{Vsin}{Vref})$$

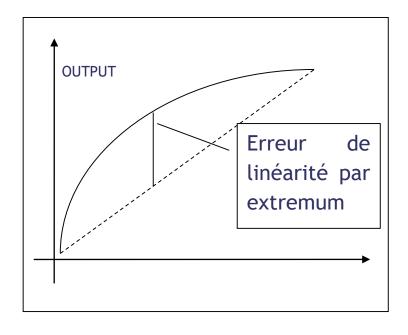
Sinusoïde Vamp

$$N_{effectif} = \frac{(SNR - 1.76dB)}{6.02}$$

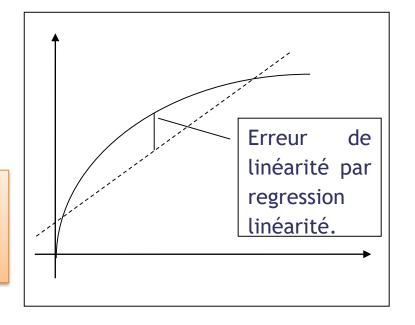


RESOLUTION N	2 ^N	VOLTAGE (10V PE)	ppm PE	% PE	dB PE
2-Bit	4	2.5 V	250000	25	-12
4-Bit	16	625 mV	62500	6.25	-24
6-Bit	64	156 mV	15625	1.56	-36
8-Bit	256	39.1 mV	3906	0.39	-48
10-Bit	1024	9.77 mV	977	0.098	-60
12-Bit	4096	2.44 mV	244	0.024	-72
14-Bit	16384	610 µV	61	0.0061	-84
16-Bit	65536	153 μV	15	0.0015	-96
18-Bit	262144	38 μV	4	0.0004	-108
20-Bit	1048576	9.54 μV	1	0.0001	-120
22-Bit	4194304	2.38 μV	0.24	0.000024	-132
24-Bit	16777216	596 nV	0.06	0.000006	-144

Linearité intégrale

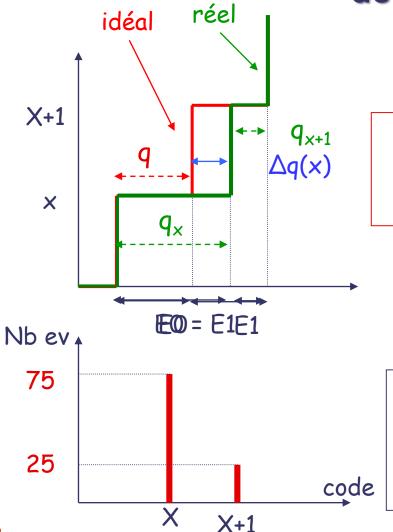


$$LinInt(i) = \sum_{j \le i} \frac{q_j - q}{q} \rightarrow Max[linInt(i)]$$



DNL: Non Linéarité Différentielle

Définition : écart maximal de la largeur de 2 marches successives en LSB



$DNL = \Delta q(x) max /q$

Cas idéal: DNL = 0

Un bon ADC : DNL $< \pm 1$ LSB sinon code manguant

Exemple:

si DNL = \pm 0,5 LSB alors 0,5 LSB < q_i < 1,5 LSB q_i : largeur de la marche i

Pour 100 évènements statistiquement répartis entre E_0 et E_1

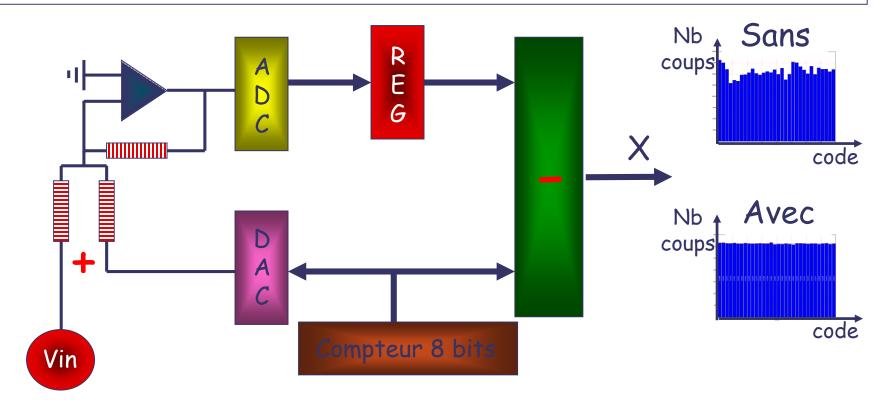
Pour une DNL nulle on aurait 2 pics de 50 coups chacun

Correction par Échelle Glissante

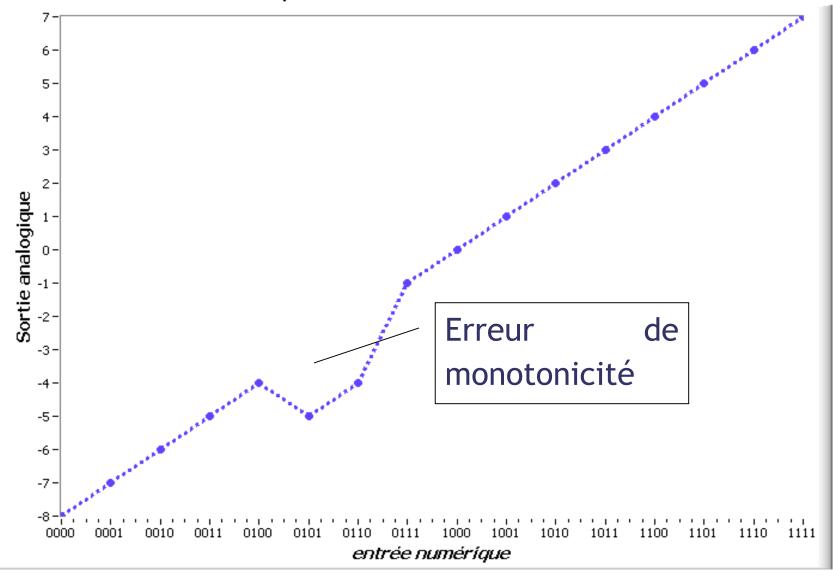
Remarque:

Cette Non Linéarité Différentielle est très néfaste dans notre domaine : Comme on utilise des histogrammes représentant le nombre de fois où l'énergie a été numérisée pour une voie.

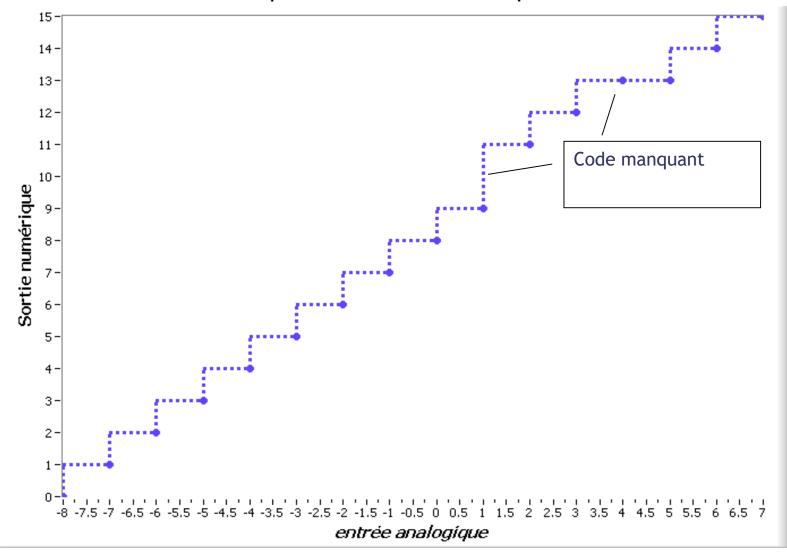
Une mauvaise DNL peut créer des pics parasites ou masquer des pics caractéristiques



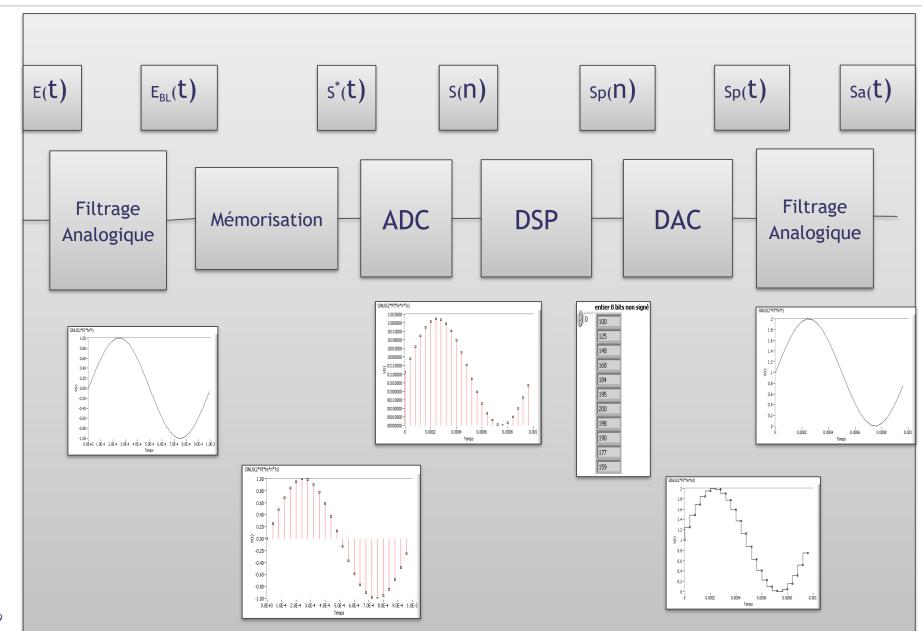
fonction de transfert d'un DAC bipolaire 4 bits non monotonic



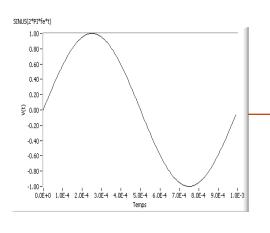
fonction de transfert d'un ADC bipolaire 4 bits avec code manquant

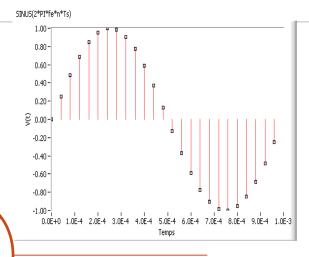


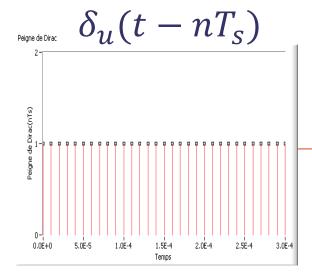
Traitement de l'Information

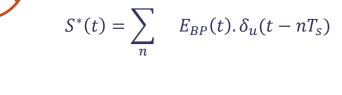


$E_{BP}(t) = A.\sin(2\pi f_e.t)$

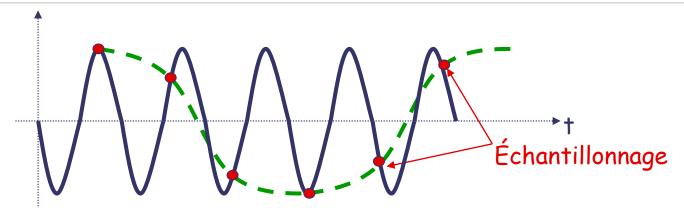








Critère de Nyquist / Théorème de Shannon



Quel est le nombre d'échantillons minimaux à prendre (quelle est la fréquence d'échantillonnage maximum) pour permettre une bonne restitution du signal d'entrée ?

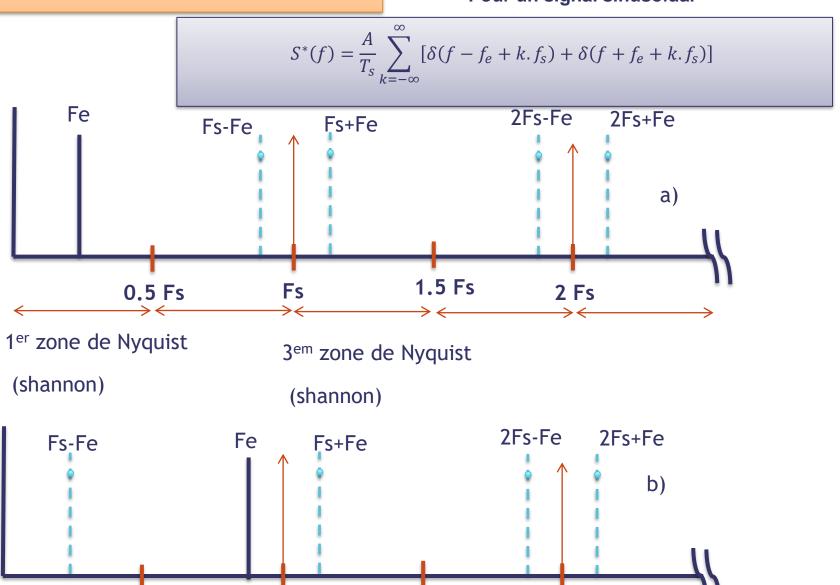
- Fs > 2*Bfanalogique on utilise Fourrier, Laplace, la transformée en Z pour étudier le système.
- Fs < 2*Bfanalogique
 on a du repliement en fréquence. On l'utilise dans les communications et les radars.

<u>Corrollaire</u>: Si un signal a des composantes fréquentielles comprises entre fb et fa, alors Fs > 2*(fb-fa) pour prévenir le chevauchement des composantes fréquentielles pour le signal numérisé.

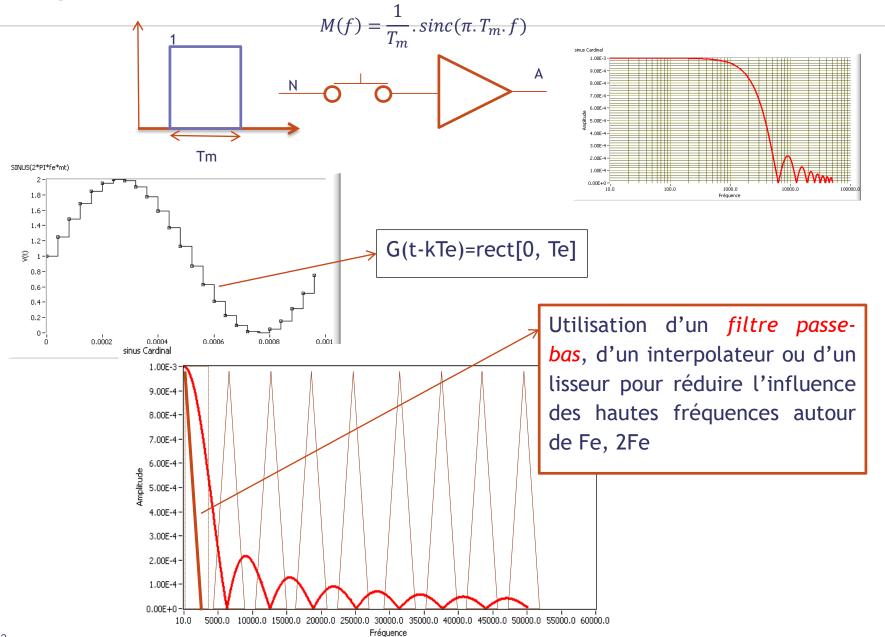
> Filtrage anti-repliement limitant la bande passante du signal

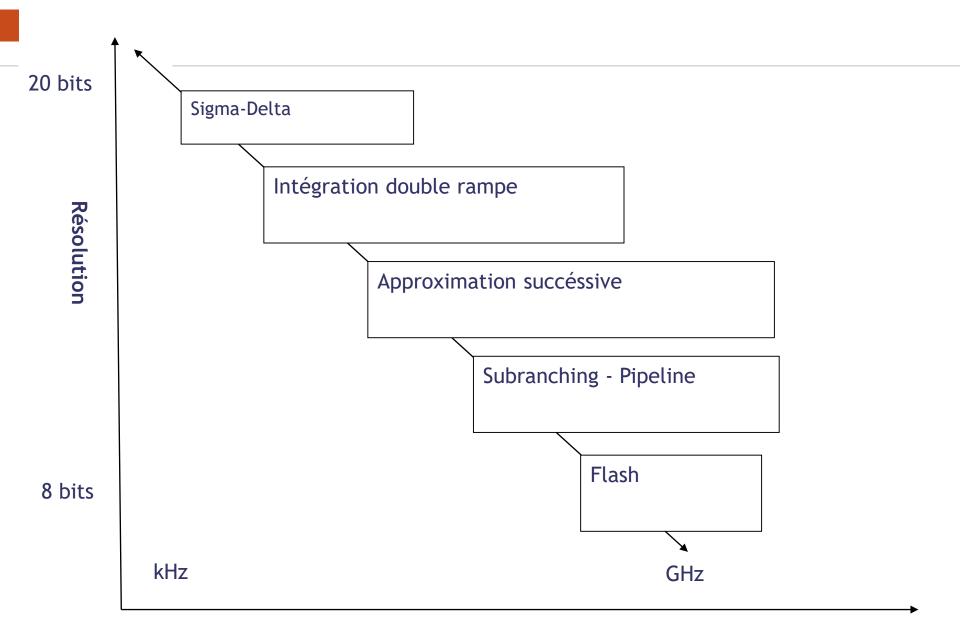
$$S^*(f) = \frac{1}{T_e} \sum_{n} E_{BP}(f - nT_S) \mid_{f = \nu.f_S}$$

Pour un signal sinusoïdal



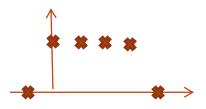
DAC





Analyse de données

Troncature:



 $x_N[k] = x_\infty[k] \cdot w_T[k]$ avec wT la fonction de Derichlet :

En fréquence, on obtient un produit de convolution :

$$X_N(\mathbf{v}) = (X_\infty * W_N)(\mathbf{v})$$

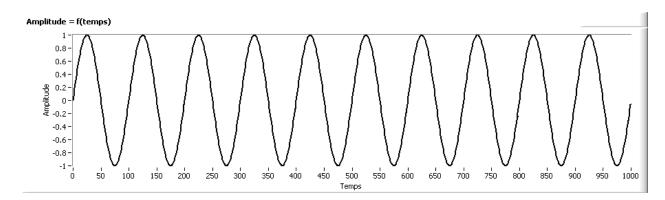
avec

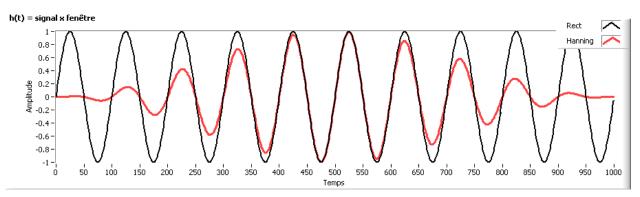
$$W_N(v)$$

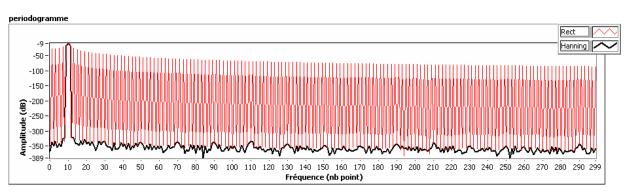
$$= N \cdot \frac{\sin(\pi N \nu)}{N \cdot \sin(\pi \nu)} e^{-i2\pi \nu \frac{N-1}{2}}$$

→ Principe de Gabor : On ne peut être localisé en temps si on est localisé en fréquence :

$$\Delta t^2 \cdot \Delta f^2 \ge \frac{1}{16\pi^2}$$



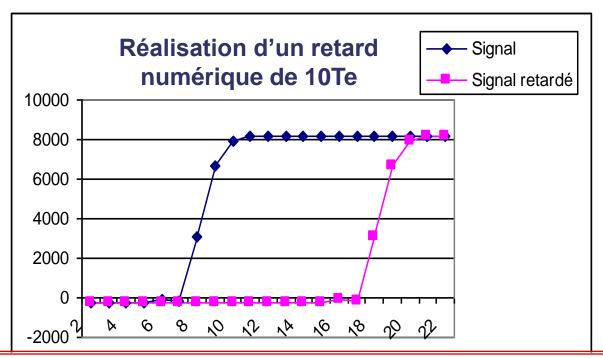




Une fois que l'on a numérisé le signal, « on fait ce que l'on en veut ou presque...»

Exemple de traitement numérique du signal:

Le plus simple et en plus très utile...



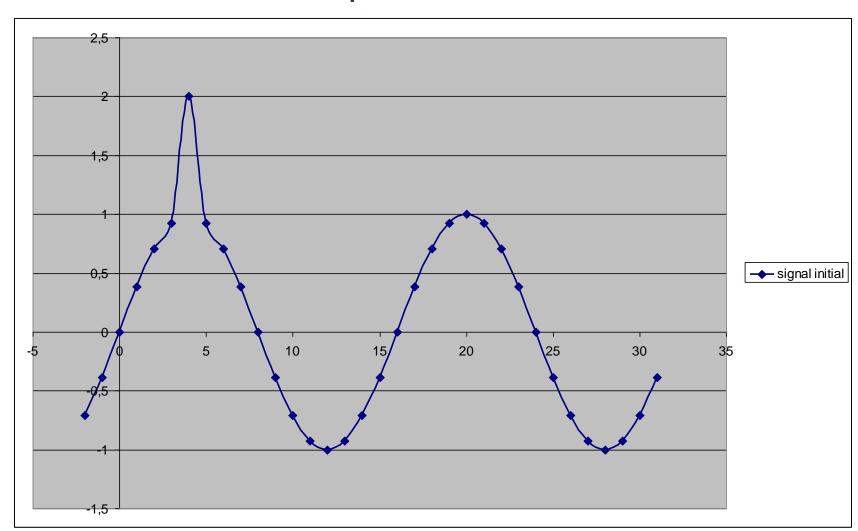
Plus facile que de mettre du câble pour retarder le signal!

Petit calcul: si Te = 10 ns (Fe = 100 MHz) ⇒ 10Te = **100 ns**= 20 m de câble!!!

Autre exemple: un filtre numérique

(En numérique, on peut faire du filtrage comme en analogique).

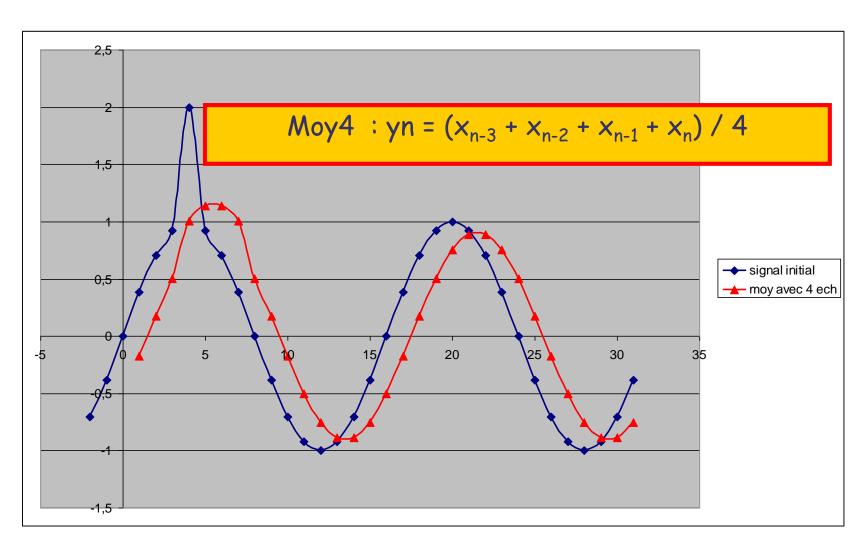
Le Filtre à moyenne mobile (filtre MA, Moving Average)
Filtre passe bas



Autre exemple: un filtre numérique

(En numérique, on peut faire du filtrage comme en analogique).

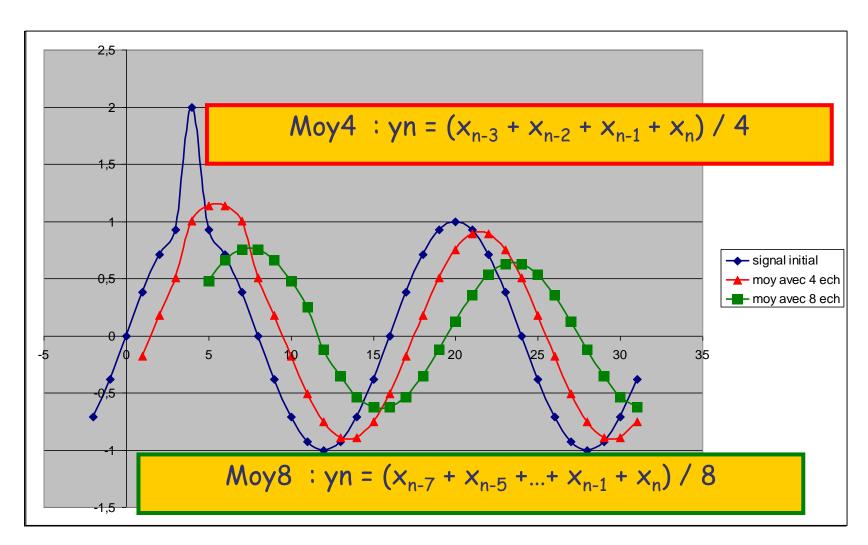
Le Filtre à moyenne mobile (filtre MA, Moving Average) Filtre passe bas



Autre exemple: un filtre numérique

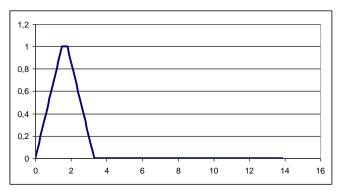
(En numérique, on peut faire du filtrage comme en analogique).

Le Filtre à moyenne mobile (filtre MA, Moving Average) Filtre passe bas



Autre exemple: Le filtre trapézoïdale (Gated integrator)

Ce type de filtre est très utilisé dans la mesure d'énergie.



Bruit:

presque optimal, dépend de la largeur du plateau

Empilements:

excellentes performances

Déficit balistique :

rigoureusement insensible (durée de plateau > variation balistique)

Commentaires:

Filtre de réalisation très aisée en numérique. Il représente, en numérique, l'équivalent du CR(RC)⁴ analogique.

 $CEB = 1,075 \rightarrow 1,15 . CEB_{\infty}$

Suivant largeur du plateau

Conclusion

