Détecteurs en Vrac

- 1/ Détecter quoi ↔ pourquoi (1h)
- 2/ Interaction particules matière (1h)
- 3/ Généralités sur les détecteurs (1h)
- 4/ Application sociétales (1h)
- 5/ Exemple avec D0/ATLAS (Fermilab/CERN) (1h)

Laurent Chevalier

CEA Saclay DRF/irfu/DPhP laurent.chevalier@cea.fr

CERN (CH)	LEP	DELPHI	1988-1992		
Mesures paramètres modèle standard					
FERMILAB (USA)	TeVatron	D0	1991-1995		
première observation du quark top					
CERN (CH)	LHC	ATLAS	1994-2024		
première observation du boson de Higgs					
Saclay (FR)		G-LEAD	2017-2024		
recherche matière sombre (DM) sous forme d'Axion_QCD					
Mainz (DE)		P2	2023-2024		
mesure de $sin^2(\theta) \sim 100$	MeV				

2/41

Références

http://pdg.lbl.gov

About PDG

PDG Authors

PDG Citation

News

The Review of Particle Physics (2018)

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

pdgLive - Interactive Listings

Summary Tables

Reviews, Tables, Plots

Particle Listings

Search

ORDER: Book & Booklet

DOWNLOAD: Book, Booklet, more

Previous Editions (& Errata) 1957-2017	Physical Constants	
Errata in current edition	Astrophysical Constants	
Figures in reviews	Atomic & Nuclear Properties	
Mirror Sites	Astrophysics & Cosmology	

Wikipédie libre

```
Équivalence entre Énergie
         Fréquence (longueur d'onde) \rightarrow E=hv
         Température
                                        \rightarrow E=kT
         Masse
                                        \rightarrow E=mc<sup>2</sup>
Énergies sont exprimées en électron Volts : MeV,GeV,TeV...
         1eV=1.610<sup>-19</sup>J
         h~4.10<sup>-24</sup> GeV.s constante de Planck
Les masses sont en MeV/c^2, GeV/c^2... (souvent on oublie le c^2!)
         proton = 0.938... GeV/c^2 = 1.672... 10^{-27} kg
         électron = 511.....keV/c^2 = 1.11.....10^{-31} kg
Les températures sont exprimées en énergie...
         1 eV = 11627 K , E=1/2KT par dégrée de liberté
         k~10<sup>-13</sup>GeV / K constante de Boltzman
```

```
Équivalence entre Énergie
         Fréquence (longueur d'onde) \rightarrow E=hv
         Température
                                 \rightarrow E=kT
                                        \rightarrow E=mc<sup>2</sup>
         Masse
Énergies sont exprimées en électron Volts : MeV,GeV,TeV...
         1eV=1.610<sup>-19</sup>J
         h~4.10<sup>-24</sup> GeV.s constante de Planck
Les masses sont en MeV/c^2, GeV/c^2... (souvent on oublie le c^2!)
         proton = 0.938... GeV/c^2 = 1.672... 10^{-27} kg
         électron = 511.....keV/c^2 = 1.11.....10^{-31} kg
Les températures sont exprimées en énergie...
         1 eV = 11627 K , E=1/2KT par dégrée de liberté
         k~10<sup>-13</sup>GeV / K constante de Boltzman
```

```
Équivalence entre Énergie
         Fréquence (longueur d'onde) \rightarrow E=hv
         Température
                                  \rightarrow E=kT
                                        \rightarrow E=mc<sup>2</sup>
         Masse
Énergies sont exprimées en électron Volts : MeV,GeV,TeV...
         1eV=1.610<sup>-19</sup>J
         h~4.10<sup>-24</sup> GeV.s constante de Planck
Les masses sont en MeV/c^2, GeV/c^2... (souvent on oublie le c^2!)
         proton = 0.938... \text{ GeV}/c^2 = 1.672... 10^{-27} \text{ kg}
         électron = 511....keV/c^2 = 1.11.....10^{-31} kg
Les températures sont exprimées en énergie...
         1 eV = 11627 K , E=1/2KT par dégrée de liberté
         k~10<sup>-13</sup>GeV / K constante de Boltzman
```

```
Équivalence entre Énergie
         Fréquence (longueur d'onde) \rightarrow E=hv
         Température
                                  \rightarrow E=kT
                                        \rightarrow E=mc<sup>2</sup>
         Masse
Énergies sont exprimées en électron Volts : MeV,GeV,TeV...
         1eV=1.610<sup>-19</sup>J
         h~4.10<sup>-24</sup> GeV.s constante de Planck
Les masses sont en MeV/c^2, GeV/c^2... (souvent on oublie le c^2!)
          proton = 0.938... \text{ GeV}/c^2 = 1.672... 10^{-27} \text{ kg}
         électron = 511.....keV/c^2 = 1.11.....10^{-31} kg
Les températures sont exprimées en énergie...
         1 eV = 11627 K, E=1/2KT par dégrée de liberté
         k~10<sup>-13</sup>GeV / K constante de Boltzman
```

Anthropomorphisme C=299 792 458 m/s

unités naturelles

sérendipité

aptitude à faire par hasard une découverte inattendue et à en saisir l'utilité scientifique

Fullerènes Velcro Micro-onde

Infra-rouge Rayon X Radioactivité Noyau atomique

Aspirine Quinine Pénicilline Structure hélicoïdale de l'ADN

Détecteurs en Vrac

- 1/ Détecter quoi ↔ pourquoi (1h)
- 2/ Interaction particules matière (1h)
- 3/ Généralités sur les détecteurs (1h)
- 4/ Application sociétales (1h)
- 5/ Exemple avec D0/ATLAS (Fermilab/CERN) (1h)

1/ Détecter quoi ↔ pourquoi

- Pourquoi → comprendre
 - → engendre d'autres « Pourquoi »
 - → meilleures connaissances

- Quoi → ce qui est détectable ;-)
 - → avec quoi ?
 - → dépends de l'échelle d'énergie

étude de la nature

mathématique

champ: particules ↔ ondes

mesures & erreurs de mesures

échelle d'observation dimension → extension spatiale

- détection
- modélisation

étude de la nature

mathématique

champ: particules ↔ ondes

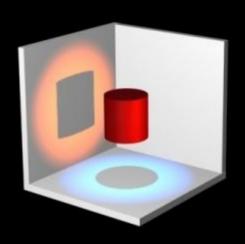
mesures & erreurs de mesures

échelle d'observation

 $\text{dimension} \ \rightarrow \ \text{extension spatiale}$

- détection
- modélisation

Particules † élémentaires pas de structure interne détectable


Particules

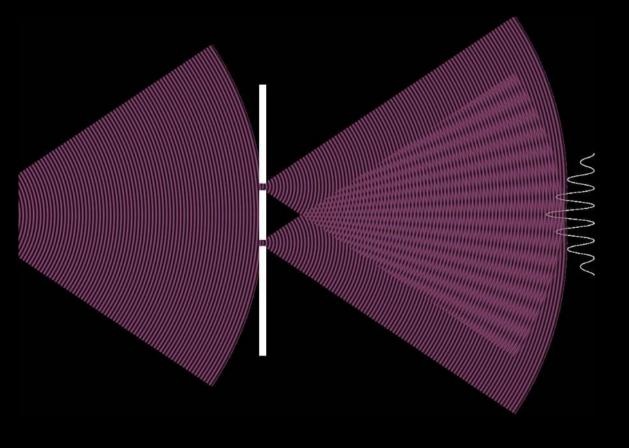
Dualité ondes/particules

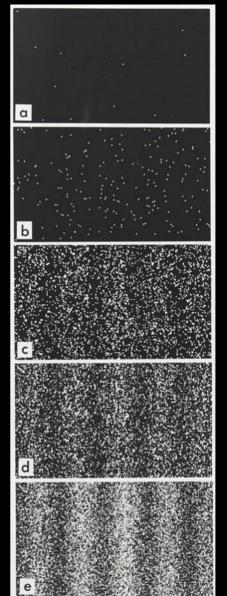
Ondes

Description mathématique

Champs

Particules


Dualité ondes/particules → fentes de Young


Ondes

Description mathématique

Champs

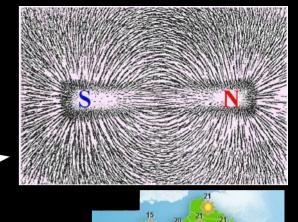
Fentes de Young

Particules

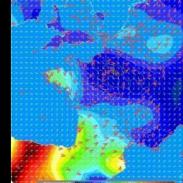
Dualité ondes/particules → fentes de Young

Ondes

Description mathématique


Champs

notion de champ


Champ électrique
Champ magnétique
Champ de gravitation
Champ de température
Champ de vitesse de vent

Le **champ** est un objet mathématique qui associe aux points de l'espace des valeurs (température, direction et sens du vent,...)

→ champ électromagnétique

scalaire (spin 0)

Vecteur (Spin-1)

étude de la nature

mathématique

champ: Particules ↔ Ondes

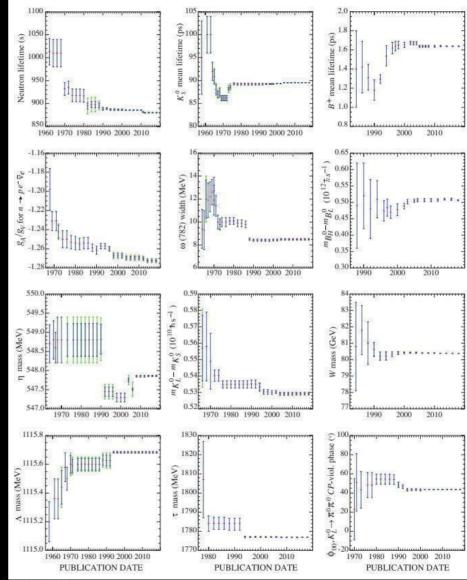
mesures & erreurs de mesures

échelle d'observation dimension → extension spatiale

- détection
- modélisation

étude de la nature & mesures

- 1. Observation (mesures: construction d'un détecteur)
 - 1. Chute d'une Pomme d'un arbre
 - 2. matière + forces
- 2. Modélisation (simulations)
 - 1. P=GmM/R²
 - 2. Modèle standard
- 3. Prédiction
 - 1. La position des planètes dans le ciel d'été
 - 2. Observation du boson de Higgs



mesures

erreurs de mesures

incertitudes de mesures

remarque :
relation d'incertitude d'Heisenberg
relation d'indétermination d'Heisenberg

22/41

Laurent

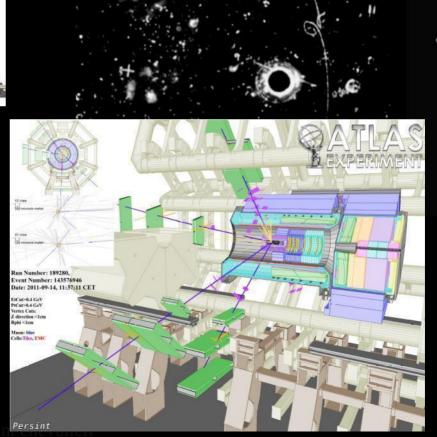
étude de la nature

mathématique

champ: Particules ↔ Ondes

mesures & erreurs de mesures

échelle d'observation


dimension → extension spatiale

- détection
- modélisation

Shower of particles due bremstrahlun

étude de la nature

mathématique

champ: Particules ↔ Ondes

mesures & erreurs de mesures

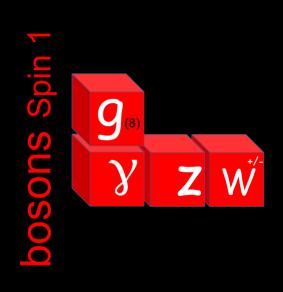
échelle d'observation

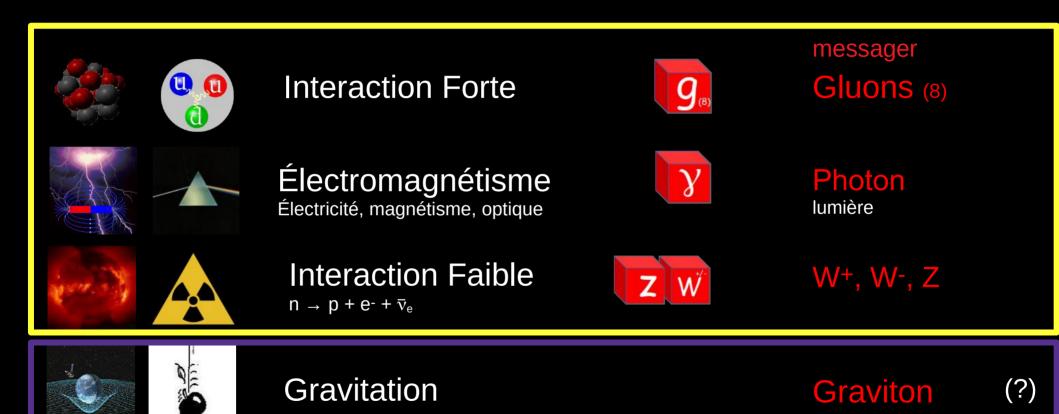
dimension → extension spatiale

- détection
- modélisation

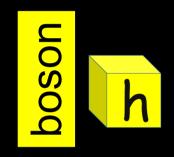
modélisation

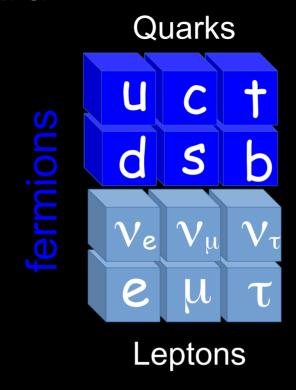
Matière

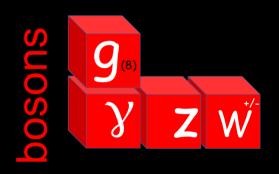



modélisation

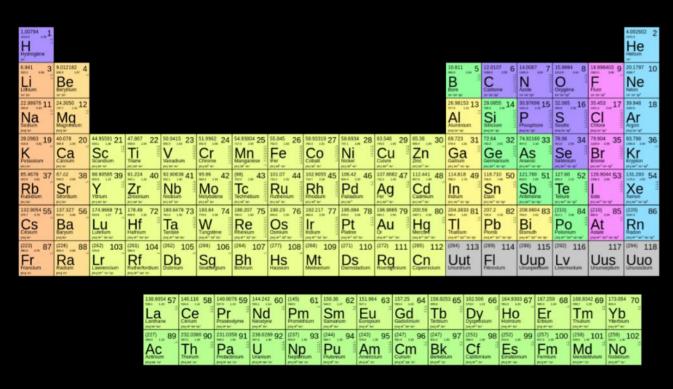
Interaction (force)






modélisation

modélisation

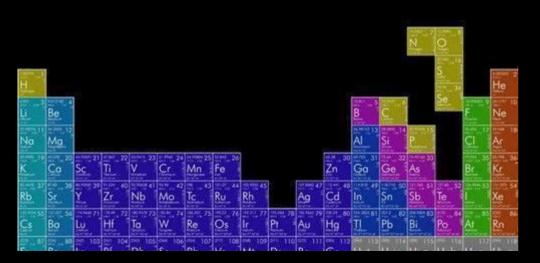


Spin 0

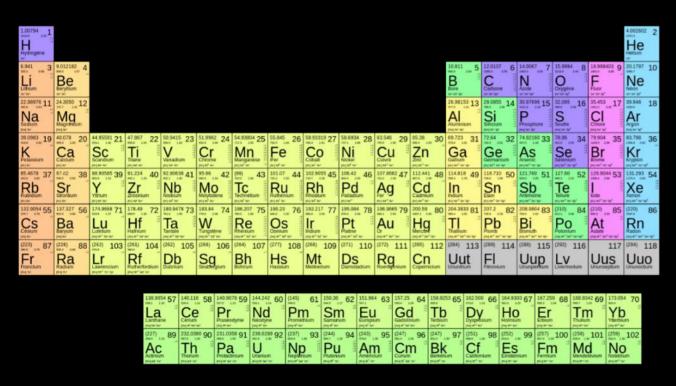
spin 1/2

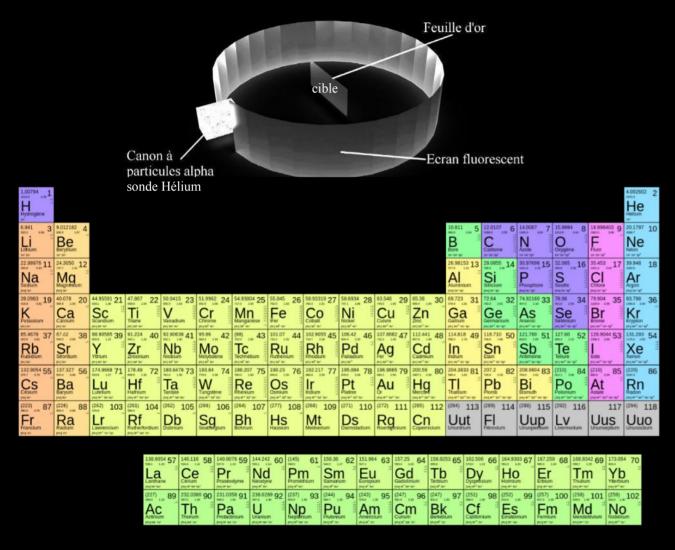
spin 1

Détecter quoi ↔ pourquoi ?

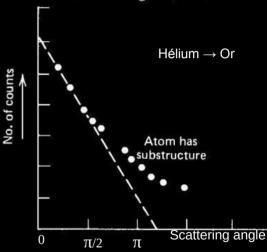

Détecter quoi ↔ pourquoi ?

```
Hydrogène = proton + e-
                                   Proton = u+u+d
                                   Neutron = u+d+d
 Ma
 Ba
```

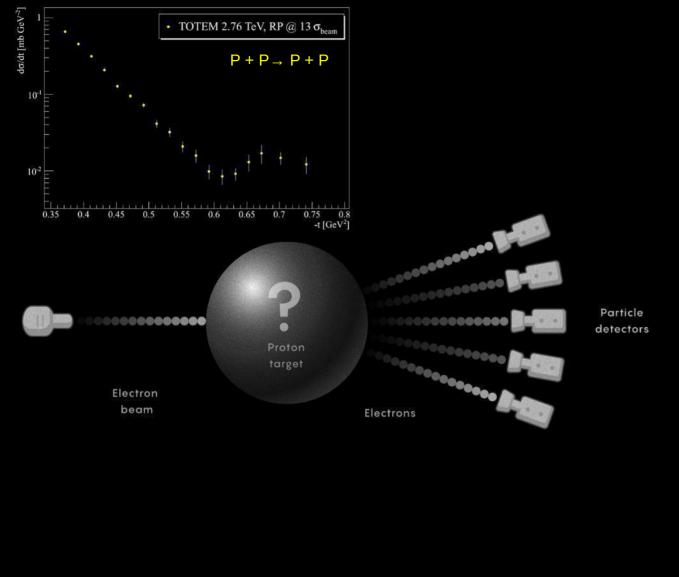


...and this is how, in 1869, Dmitri Mendeleev completed the first periodic table.

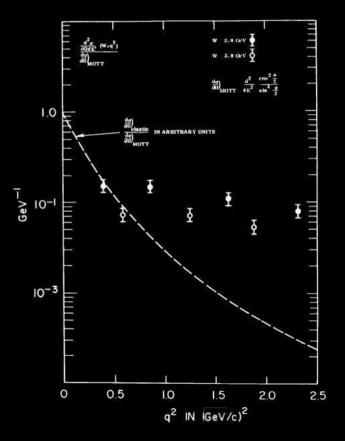


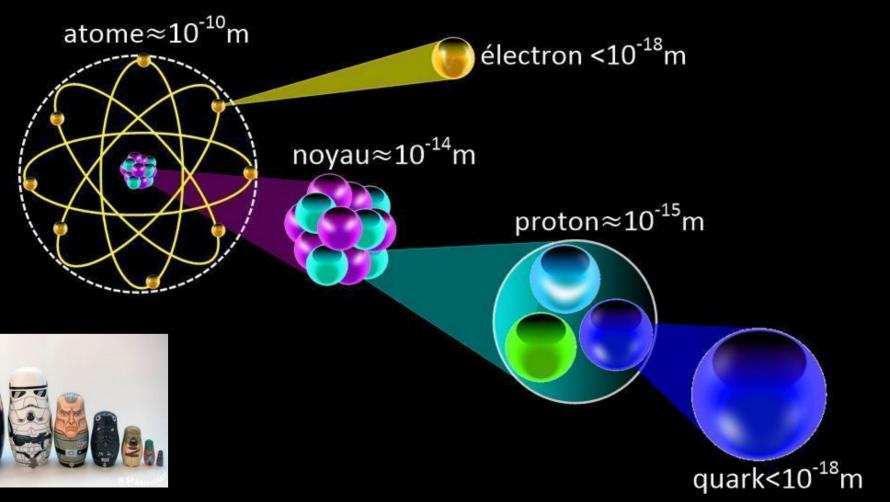
Détecter quoi ↔ pourquoi ?

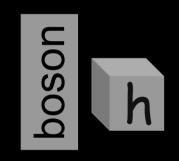


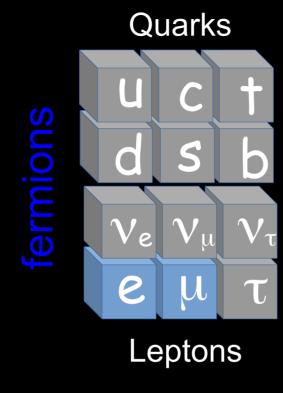
Rutherford 1911

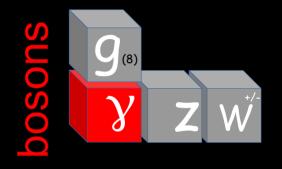











35/41 section efficace de Mott ± diffusion de particules sans structures chargées par des potentiels électrostatiques

Détecter quoi ↔ pourquoi ?

Spin 0

Spin 1/2

Spin 1

Particules élémentaires Particules hadrons (mésons & baryons) États liés p, π± ,k± n,π^0,λ Pions : $u\overline{d}$, $d\overline{u}$, $(u\overline{u}-d\overline{d})$

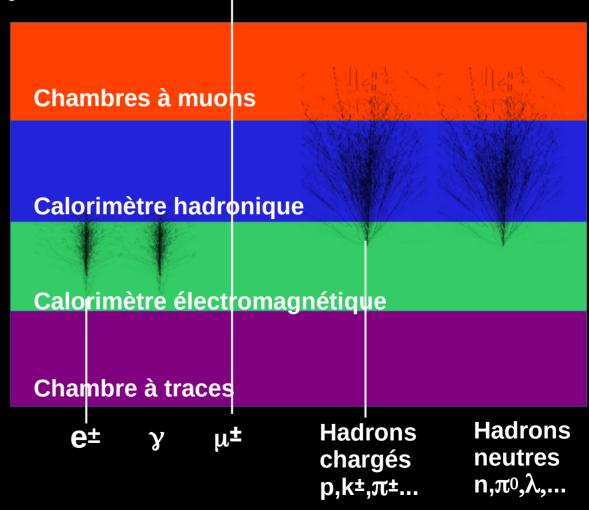
Particules détectables

- + modèle standard
- + logique
- + mesures
- + erreurs de mesures

Durée de vie

muon	μ	$\tau \sim 2.2 \ 10^{-6} \ s$	cτ ~ 660m
pion		$\tau \sim 2.6 \ 10^{-8} \ s$ $\tau \sim 8.5 \ 10^{-17} \ s$	
		$\tau \sim 880 \text{ s}$ $\tau > 10^{41} \text{ s}$	

Détecter quoi avec quoi?


Détecteur

Réponse schématique d'un détecteur mesure partielle & destructive (dans un collisionneur)

Gerbe :

électromagnétique ou hadronique

Trace chargée : mesurée par le détecteur

Détecteurs en Vrac

- 1/ Détecter quoi ↔ pourquoi (1h)
- 2/ Interaction particules matière (1h)
- 3/ Généralités sur les détecteurs (1h)
- 4/ Application sociétales (1h)
- 5/ Exemple avec D0/ATLAS (Fermilab/CERN) (1h)

