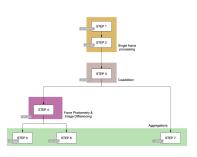


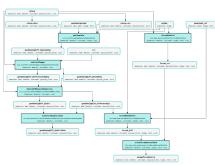
Optimizing the Rubin DRP CC-IN2P3, Lyon

J. Bregeon, D. Boutigny, F. Hernandez, Q. Leboulc'h, D. Parello, C

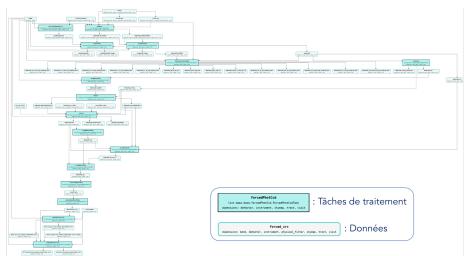
Context

- CC-IN2P3 is one of the 3 main Rubin LSST data center (35% US, 25% UK)
 - IN2P3 signed to process 40% of LSST data
 - Rubin DRP
- A lot of data
 - 6.4 GB per exposure, i.e. 16 TB per night
 - 15 PB of "catalogues" after 10 years





And a complex pipeline

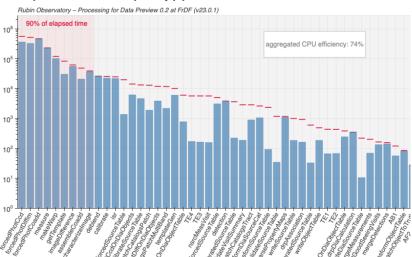


- 80 tasks in 7 main steps
- each task is a workflow of its own

really complex

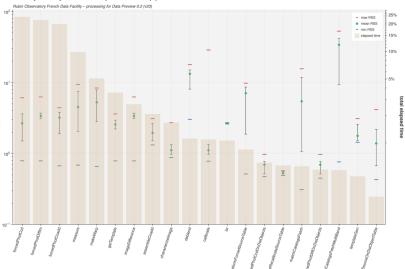
RubinOP

- Interdisciplinary Team
 - Quentin Leboulc'h @ CC-IN2P3
 - Camille Parisel @ APC
 - David Parello @ Univ. Perpignan & LIRMM (Researcher in Computer Science)
 - and Fabio, Dominique and myself...
- Goal: Optimize the DRP
 - CPU consumption
 - RAM requirements
 - disk space needs
- Expected results
 - reduce costs and carbon footprint of DRP
 - free some resources for cosmology analysis

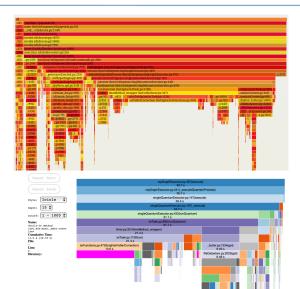


Task level CPU profiling

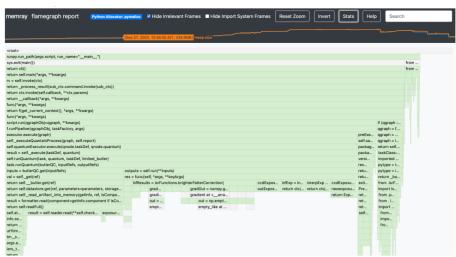
Elapsed and CPU time spent by pipetask kind



Task level memory profiling


Memory used by the most compute-intensive pipetasks

py-spy and cprofile on ISR



Memray on Isr

Conclusions

- Optimizing the code is good on all aspects
- Profiling first
- The team has made a lot of progress
 - \Rightarrow let's keep our momentum

