Prospects for spectroscopic observations of Rubin detected counterparts of GW events from next generation interferometers

Sofia Bisero
Supervisor: Susanna Vergani
GEPI, Observatoire de Paris

In collaboration with Eleonora Loffredo and Marica Branchesi Gran Sasso Science Institute (GSSI)

Image credit: Rubin Obs./NSF/AURA

BNS beyond the Local Universe with ET

Ronchini+22

Larger volume of the Universe explored and higher number of BNS detections

Photometric observations with facilities like the Vera C. Rubin Observatory will be essential to provide **counterpart candidates**

BNS population

EM counterparts

- AT2017gfo-like KN
- theoretical KN
- GRB afterglows

light curves: AB magnitudes in Rubin g r i and z filters as a function of time (obs. frame)

BNS population

EM counterparts

- AT2017gfo-like KN
- theoretical KN
- GRB afterglows

light curves: AB magnitudes in Rubin g r i and z filters as a function of time (obs. frame)

Credits: Eleonora Loffredo and Nandini Hazra, GSSI

BLh gaussian

White: ET BNS detections in 10 years of operations Colored: Rubin detections

APR4 uniform

ET+CE: sky localisation

Credits: Eleonora Loffredo and Nandini Hazra, GSSI

ET alone

ET+Cosmic Explorer

White: **ET BNS detections** in 10 years of operations Colored: **Rubin detections**

Improved sky localisation

ET+CE: sky localisation

ET alone

ET+Cosmic Explorer

White: **ET BNS detections** in 10 years of operations Colored: **Rubin detections**

Afterglow contribution

Credits: Eleonora Loffredo and Nandini Hazra, GSSI

KN only

BLh gaussian

ET+CE

Such EM counterparts will have to be found within large GW error regions, among a huge number of contaminants

Afterglow contribution

KN only

KN+GRB afterglow

BLh gaussian

ET+CE

Spectroscopy: the bottleneck of gravitational wave multi-messenger science

The spectrum of AT2017gfo: important for the study of physics of the phenomenon, the environment, heavy elements nucleosynthesis and for the KN identification

The spectrum of **SN2019wxt**, a GW event counterpart candidate, then classified as SN

Agudo+23

Pian+17

The acquisition of multiple spectra at the same time can play a key role in identifying and characterising EM counterparts

Integral-field and multi-object spectroscopy

IFS and MOS with the Wide-field Spectroscopic Telescope

Large field of view and high multiplexing

Equipped with both IFU and fibres (MOS)

IFS and MOS with the Wide-field Spectroscopic Telescope

Science case "WST - ET synergies for BNS multi-messenger observations" within the WST Time Domain Working Group

Division 4 of the ET OSB: Multimessenger Observations

ET simulations

KN + GRB simulations

WST simulator

- explore the detectability and characterizations with WST of the EM counterparts of ET BNS
- analyse how the results depend on the observable and intrinsic properties of the population of ET BNS

Preliminary results

model 7gfo AT201

Sofia Bisero - Rubin-LSST France meeting - December 15th, 2023

Preliminary results

Comparison with Rubin

White: ET BNS detections in 10 years of operations

Grey: Rubin detections

Colored: WST detections

Preliminary results

Comparison with Rubin

White: ET BNS detections in 10 years of operations

Grey: Rubin detections

Colored: WST detections

Conclusions and future prospects

- Rubin photometric observations will provide a substantial amount of EM counterpart candidates; spectroscopy will be crucial to identify and characterise them
- IFS and MOS are well suited for the identification and characterisation of EM counterparts
- With WST, KN can be unveiled up to z~0.4 and AB magnitude ~25
- GRB afterglows contribution is observable at high redshift for systems with small viewing angle, up to ~15°
- This work can be adapted to make predictions for **LVK O5**, with IFS and MOS facilities available at the time of O5 operations

