



# SEARCH FOR ORPHAN GAMMA-RAY BURST AFTERGLOWS IN RUBIN LSST DATA WITH FINK

Rubin LSST France meeting

MARINA MASSON
JOHAN BREGEON

13 – 15 December 2023

## BRIEF OVERVIEW

- **1-** General context
- 2- Simulation of a population of GRBs
- 3- "Pseudo-observed" light curves and their analysis
- 4- Light curve feature-based orphan selection
- 5- Overlap with supernova and kilonova light curves
- **6-** Conclusions & perspectives

### THE ORPHAN AFTERGLOW: A GRB VIEWED OFF-AXIS



Afterglow = long-lasting and fading emission following the gamma prompt emission

Orphan afterglow = afterglow observed offaxis (without gamma-ray emission) ⇒ No orphan afterglow detected so far! (Some candidates but none confirmed)

#### Why study orphan afterglows?

- More information on the GRB physics and their progenitors
- Multi-messenger analysis with gravitational waves

#### SIMULATION OF A POPULATION OF GRBS

## MODEL OF GRB AFTERGLOW EMISSION

#### Identification of orphans based on their light curve





Forward shock model + electron synchrotron model (Van Eerten et al. 2010)

#### **Studied parameters:**

- Energy E<sub>0</sub>
- Circumburst medium density n<sub>0</sub>
- Redshift z
- Observer angle  $\theta_{obs}$
- Jet type (uniform or **structured**)
- Core angle  $\theta_c$
- Truncature angle  $\theta_w$



# POPULATION OF SHORT GRBS (TEMPORARY)

Goal: To simulate somewhat realistic distributions for short GRBs

#### **Studied parameters distributions:**

- Circumburst density n<sub>0</sub>: uniform distribution [1.0; 100] cm<sup>-3</sup>
- Observer angle  $cos(\theta_{obs})$ : uniform distribution [0; 1] (isotropic)









## POPULATION OF SHORT GRBS BASED ON THE SBAT4 CATALOGUE

**SBAT4 catalogue (D'Avanzo et al. 2014)** = selected sample of short GRBs observed by the Swift satellite up to June 2013

- Short GRBs detected by the Swift BAT instrument in the 15-150 keV energy band
- Selection criteria: peak flux PF<sub>64</sub> > 3.5 ph/s/cm<sup>2</sup>

**Method** = compute the flux of the prompt emission for a given configuration and applying the selection criteria of the SBAT4 catalogue

## POPULATION OF SHORT GRBS BASED ON THE SBAT4 CATALOGUE

SBAT4 catalogue (D'Avanzo et al. 2014) = selected sample of short GRBs observed by the Swift satellite up to June 2013

- Short GRBs detected by the Swift BAT instrument in the 15-150 keV energy band
- Selection criteria: peak flux PF<sub>64</sub> > 3.5 ph/s/cm<sup>2</sup>

**Method** = compute the flux of the prompt emission for a given configuration and applying the selection criteria of the SBAT4 catalogue

STILL IN PROGRESS



## BRIEF OVERVIEW

- 1- General context
- **2-** Simulation of a population of GRBs
- 3- "Pseudo-observed" light curves and their analysis
- **4-** Light curve feature-based orphan selection
- 5- Overlap with supernova and kilonova light curves
- **6-** Conclusions & perspectives

## SIMULATION OF AN OBSERVATION: METHOD

rubin\_sim package ⇒ Realisation of the scheduler simulation for the 10 years of LSST (<a href="https://github.com/lsst/rubin\_sim">https://github.com/lsst/rubin\_sim</a>)

- 1- Take time and coordinates of a GRB
- **2-** Keep only observations inside the Rubin/LSST field of view
- **3-** Compute spectra at observation time bins in magnitude with **afterglowpy** (Ryan et al. 2020)
- 4- Keep only "real" observation for the right filter
- 5- Plot pseudo observed light curve



# EXAMPLE OF A "PSEUDO-OBSERVATION"

GRB date: 12 March, 2030

#### **GRB (RA, Dec) coordinates:**

(19h00m55.04s, -53d23m42.38s)

#### **Parameters:**

- Power-Law jet
- $E_0 = 1.3 \times 10^{52} \text{ erg}$
- $\theta_{obs} = 21.2$  °
- $\theta_c = 2.9^{\circ}$
- $\theta_{\rm w} = 8.6^{\circ}$
- $n_0 = 0.45 \text{ cm}^{-3}$
- z = 0.001

⇒ Fraction of "pseudo-observable" orphans by the Rubin Observatory: a few %





- Minimal magnitude
- Time of the minimal magnitude



- Minimal magnitude
- Time of the minimal magnitude
- Duration between the first detection and the peak



- Minimal magnitude
- Time of the minimal magnitude
- Duration between the first detection and the peak
- Increase rate of the magnitude
- Decrease rates of the magnitude in the 1st third and the last third of the light curve



- Minimal magnitude
- Time of the minimal magnitude
- Duration between the first detection and the peak
- Increase rate of the magnitude
- Decrease rates of the magnitude in the 1st third and the last third of the light curve
- g-r color (expected value for synchrotron emission ~ 0.3)

#### PSEUDO-OBSERVATION ANALYSIS

# CORRELATIONS BETWEEN THE DEFINED FEATURES



**⇒** Correlations between rates and magnitude



## BRIEF OVERVIEW

- 1- General context
- **2-** Simulation of a population of GRBs
- **3-** "Pseudo-observed" light curves and their analysis
- 4- Light curve feature-based orphan selection
- 5- Overlap with supernova and kilonova light curves
- **6-** Conclusions & perspectives

## ELASTICC DATA CORRELATIONS



## ELASTICC DATA CORRELATIONS



#### (1 month of ELAsTiCC data)



## ELASTICC DATA CORRELATIONS







## EXAMPLE OF A CUT ON THE COLOR



## EXAMPLE OF A CUT ON THE COLOR



#### Removes

- ~ 98% of ELAsTiCC data
- ~ 28% of orphans



## FIRST STAB AT BASIC CUTS

#### **CUTS**

#### **Color:**

0.16 < color < 0.34 mag

#### Decrease rate:

rate < 0.15 mag/day

#### Increase rate:

rate > -0.18 mag/day

Duration between the first detection and the peak:

dt < 25 days



## FIRST STAB AT BASIC CUTS

#### **CUTS**

#### **Color:**

0.16 < color < 0.34 mag

#### Decrease rate:

rate < 0.15 mag/day

#### **Increase rate:**

rate > -0.18 mag/day

Duration between the first detection and the peak: dt < 25 days

#### What remains

- ELAsTiCC data: 163 / ~2 millions events (but for 1 month...)
- Orphans: 1884 / ~200,000 events (~ 30 years...)



## EVENTS THAT PASS AND DON'T PASS THE CUTS

#### **ELAsTiCC** data that pass the cuts



## EVENTS THAT PASS AND DON'T PASS THE CUTS

#### **ELAsTiCC** data that pass the cuts



# "Good" orphan (> 10 points) that does not pass the cuts



⇒ Work needed on feature design and selection cuts!

## BRIEF OVERVIEW

- **1-** General context
- **2-** Simulation of a population of GRBs
- **3-** "Pseudo-observed" light curves and their analysis
- **4-** Light curve feature-based orphan selection
- 5- Overlap with supernova and kilonova light curves
- **6-** Conclusions & perspectives

# KILONOVA (KN) AND SUPERNOVA (SN) OVERLAP





# KILONOVA (KN) AND SUPERNOVA (SN) OVERLAP





#### Collaboration with the Osservatorio Astronomico di Brera, Italy



- **⇒** Orphan light curve "hidden" by the SN light curve
- ⇒ Impact of the orphan on the SN light curve seen at later times

# KILONOVA (KN) AND SUPERNOVA (SN) OVERLAP





#### Collaboration with the Osservatorio Astronomico di Brera, Italy



- **⇒** KN light curve may appear at early times
- **⇒** Quantify impact of KN on light curve features

#### All the codes can be accessible on GitLab

## CONCLUSION & PERSPECTIVES

#### **CONCLUSION**

#### Simulation of a population of GRBs

- Choose parameter distributions
- Work on a short GRB population based on SBAT4 catalogue

STILL IN PROGRESS

#### Simulation of "pseudo-observations"

- Just a few % of "pseudo-observations" will be observable by the Rubin Observatory
- Expected number of observed orphans by the Rubin LSST ~ 10 orphan/yr (compatible with Ghirlanda et al. 2015)

#### Characterize "pseudo-observed" light curve of orphan GRBs

- Compute some features to describe the shape of the light curve and their correlations
- Compare to ELAsTiCC data and define some cuts to discriminate orphans
- Study of the impact of a SN or KN light curve STILL IN PROGRESS

#### **PERSPECTIVES**

Develop a first version of a filter for FINK to identify OAs



## STUDY OF THE MODEL: PARAMETERS IMPACT

Scan of the model parameters  $\Rightarrow$  study their impact on the observability of the afterglow







- ⇒ Some parameters may balance out each other
- **⇒** The parameters space is very large

## THEORETICAL ORPHAN LIGHT CURVES



Orphans from structured (power-law) jets observable for at least 7 days

Large diversity of light curves:

- Bright and short orphans
- Faint and long orphans
- ..

⇒ Characterizing orphan light curves will be complex

## HO MEASUREMENT



$$d_L(z) = \frac{c(1+z)}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda (1+z')^{3(1+w(z'))}}}$$

When z << 1:

$$d_L(z) = \frac{cz}{H_0}$$