Gauge SU(2) flavour transfers

Luc Darmé IP2I – UCBL 10/10/2023

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101028626

Horizontal flavour gauge groups

- The SM has a large global $U(3)^5$ symmetry group
	- \rightarrow broken by the Yukawa interactions

 $\mathcal{L}_Y = -Y_{ij}^d \overline{Q_{Li}^I} \phi \, d_{Rj}^I - Y_{ij}^u \overline{Q_{Li}^I} \epsilon \phi^* u_{Rj}^I + \text{h.c.},$

- We can gauge a subset of this group ?
	- \rightarrow U(1) case: Frogatt-Nielsen constructions, $L_{\mu}-L_{\tau}$, flavons, etc…
	- \rightarrow The non-abelian case has been sparsely studied.
	- \rightarrow In any case the new gauge coupling is a free parameter

Flavour gauge groups are not part of big unification theories like SO(10) → *no reason to believe they should be of the same interaction strength as the EW or strong interactions*

SU(2) flavour gauge groups

• Starting point: add a new SU(2) gauge group in the SM, acting on flavour space

 \rightarrow The « charged» SM fermion can be either part of a doublets or a triplet

 \rightarrow Only the mixed $SU(2)_f^2\times U(1)_Y$ anomaly is non-zero

 $\mathcal{A} = ([C(Q_i) - C(L_i)] - [2C(u_{R,i}) - C(d_{R,i}) - C(e_{Ri})])$

In absence of new low-energy fermions, there is a finite (and quite small) number of possible combination ! LH, RH ; L, B ; and M1, M2

• Gauge boson masses are free parameters! \rightarrow Even with a large VEV, small gauge couplings (required by flavour constraints imply light new states

• For instance: left-handed scenario with $(12)_{\ell}(12)_{Q_L}$ interactions

 \rightarrow Reduce the number of fundamental fermions

 \rightarrow Couples both to LH leptons and LH quarks

$$
M_{V_1}^2 = M_{V_2}^2 = M_{V_3}^2 = \frac{g_f}{2} \sum_i v_\phi^2
$$

Flavour transfer - 1

• The key point: new flavour gauge boson do not « break » flavour, they only transfer it from one fermionic sector to another

For instance, the «W-like» flavour ℓ_{12} **i** $\begin{bmatrix} 0 & \cdots & \cdots & \cdots \end{bmatrix}$ **1 bosons carry a « flavour-charge** »

$$
V_p^{\nu}(\overline{\mu}\gamma_{\nu}e + \overline{s}\gamma_{\nu}d) + V_m^{\nu}(\overline{e}\gamma_{\nu}\mu + \overline{d}\gamma_{\nu}s)
$$

Grant an extremely strong protection against "pure" four-fermions FV processes

$$
\Rightarrow \text{Particularly for } M_{V_1} = M_{V_2} = M_{V_3}
$$

$$
\mathcal{L}_{\text{eff}} \supset -\sum_{a,f,f'} \frac{g_f^2}{8M_V^2} \frac{\left(2\delta^{il}\delta^{jk} + \delta^{ij}\delta^{kl}\right)}{\left(2\delta^{il}\delta^{jk} + \delta^{ij}\delta^{kl}\right)} \left(\overline{f}_i\gamma^\mu f_j\right) \left(\overline{f}_k'\gamma_\mu f_l'\right)
$$

Symmetry factor Flavour diagonal Flavour transfer !

 d

Flavour transfer - 2

• The presence of $SU(2)_f$ implies that the fermion mass matrices have a structure

For instance, in the case of down-type quarks
 $\mathcal{L}_Y = -Y_{ij}^d \overline{Q_{Li}^I} \phi d_{Rj}^I$ **M**_d $\sim \begin{bmatrix} \overline{\epsilon} & \overline{\epsilon} & \overline{\epsilon} \\ \overline{1} & 1 & 1 \end{bmatrix}$ **1** \rightarrow *For in the (LH) strate of the case of down-type quarks M*_d $\sim \begin{$ *exactly zero if the SU(2) flavour gauge in the (LH) scenarios is not broken*

- We can parametrise SU(2) breaking by small spurions \rightarrow corresponds to angles in the quarks/lepton rotations matrices
- But even in absence of spurions, flavour-transfer processes will play an important role by generating many exotic flavourful processes.

$$
K \to \pi e \mu, \qquad K \to \pi \nu \nu
$$

$$
B \to K e \mu \qquad \tau \to \mu K
$$

$$
B \to \pi e \mu
$$

Etc … this depends on which generation is included in the SU(2)f doublet, and which type of fermions participate in the interaction

Kaonic decays

• With the above choice of flavour doublets, V_p , V_m bosons trigger the decays of kaons

 $BR(K_L \to \mu^{\pm} e^{\mp}) < 4.7 \times 10^{-12}$

In particular the process $K_L \rightarrow e \mu$, but $K_+ \rightarrow \pi_+ e \mu$ is *also similarly un-suppressed*

• The corresponding limit is at the 250 TeV level

$$
BR(K_L \to \mu^{\pm} e^{\pm}) = 1.2 \cdot 10^{-10} \left(\frac{100 \,\text{TeV}}{M_V/g_f}\right)^4 \times \begin{cases} 1 & \text{for } (12)_\ell \\ \theta_{\ell 23}^2 & \text{for } (13)_\ell \end{cases}
$$

SuperIso implementation

- Thanks to Nazila and Siavash, Kaonic observables have been included (+ some additions for LFV final states)
- Added several leptonic observables \rightarrow Not always generic at this stage, more work needed to have fully generic routines.
- Interface between the χ^2 routines of SuperIso and BSMArt (using MultiNest)

 \sim 212 observables included, (\sim 180 of Bphysics, ~ 15 of Kaons, ~ 15 of leptons

Some results

• First generations couplings are avoided as much as possible of course …

On LHC constraints

• LHC is « perfect » for the flavour transfer models since NP candidate can be produced from quark (or gluon) fusion, but decay leptonically to ensure detection.

$$
pp \to V + X, V \to \ell \ell
$$

- \rightarrow Standard searches : di-leptons and di-jets
- More exotic searches are additional viable: \rightarrow The proton contains enough sea-quarks to produce the off-diagonal flavour boson
	- \rightarrow Lepton flavour violation in the final states limit the QED background

LHC limits and flavour: LH - (12) _l (12) _O

- Use the (LH) scenario
	- \rightarrow Assume that 1st and 2d generations of lefthanded fermions are part of a flavour doublets
	- \rightarrow Production at LHC is huge !

• Limits from Kaonic and muon conversion in nuclei dominate, but LHC constraints are close

LFV decays of H and Z

- The best constraints arise from the recasting of LFV H and Z decays
	- \rightarrow Z \rightarrow e μ , e τ , $\mu\tau$ and $h \rightarrow e \mu, e \tau, \mu \tau$
	- \rightarrow We calibrate the signal on the Z and H one for the efficiency, then uses the side-band data to put a limit
- There is a $\sim 3\sigma$ anomay in the CMS data set, ATLAS data not precise enough to call

LHC limits and flavour: LH - (13) _l (12) _O

- Corresponds to a « muon as a third generation lepton » scenario.
- Now the strongest limits arise from Kaonic neutrino decays (since do not depend on the neutrino flavour)
- LHC constraints are also weakened

Putting everything together

- LHC contraints (and most importantly the recasting of $H \to e \mu$ and $Z \to e \mu$ limits) are close or overlapping with the flavour constraints
- HL-LHC could probe even deeper, as would dedicated resonance searches around and below the 100 GeV range

Conclusion

- FIPs have an extremely rich phenomenology in link with flavour and have been long used to fit various "precision anomalies" \rightarrow In a sense, flavour physics lives naturally at the scale of these NP particles
- Non-abelian flavour gauge symmetries naturally lead to GeV to TeV new vectors for small couplings
- Flavour transfer paradigm leads to very specific (and not often experimentally considered) signatures
- LHC has an important role to play for new vectors below the TeV

Backup

Second

