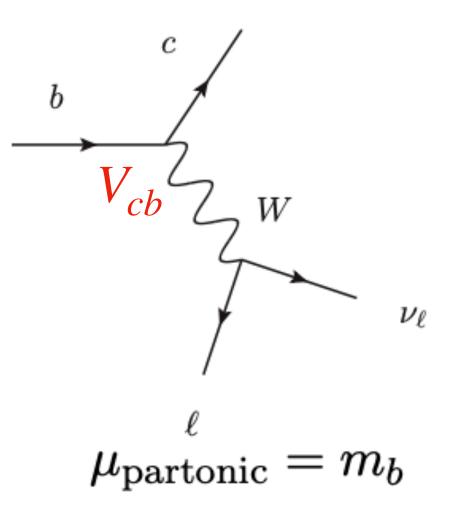
The interplay of V_{cb} evaluation and $b \to c\ell\nu$ phenomenology Nazila's Mini-Workshop Oct 2023 - IP2I

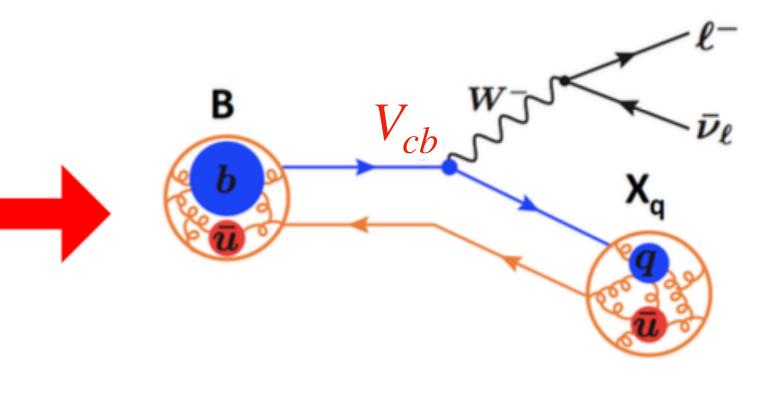
Alexandre Carvunis - 10/10/2023

The Vcb Puzzle Exclusive vs. Inclusive determination of Vcb



 $B \to X_c \ell \bar{\nu}$

Inclusive decay rate Measurement from B factories (Belle and Babar) Prospects for $\Lambda_b \to X_c \ell \bar{\nu}$ at LHCb



 $\mu_{\rm hadronic} = \Lambda_{\rm QCD}$

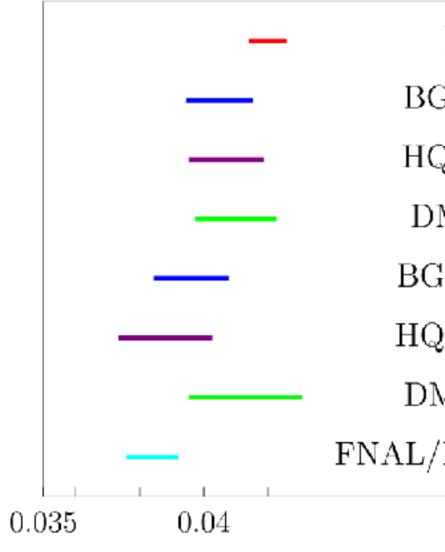
 $\bar{B} \to D^{(*)} \ell \bar{\nu}$

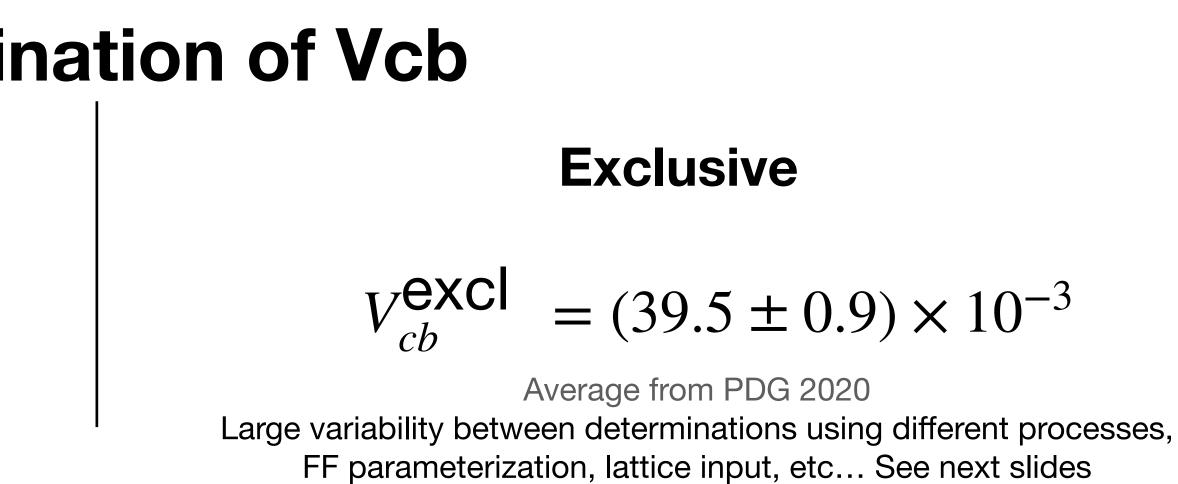
Exclusive decay rate $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ data from Belle $\bar{B}_s \rightarrow D_s^{(*)}$ data from LHCb

The Vcb Puzzle **Exclusive vs. Inclusive determination of Vcb**

Inclusive

$$V_{cb}^{\text{incl}} = (42.2 \pm 0.8) \times 10^{-3}$$





Inclusive : 2107.0064

 $BGL B \rightarrow D : 1606.08030$

 $\mathrm{HQE}\,B \to D: \ 1912.09335$

 $DM B \to D: 2111.10582$

 $BGL B \to D^*$: 1905.08209

 $HQE B \to D^*$: 1912.09335

 $DM B \to D^*$: 2111.10582

 $FNAL/MILC B \rightarrow D^* : 2105.14019$

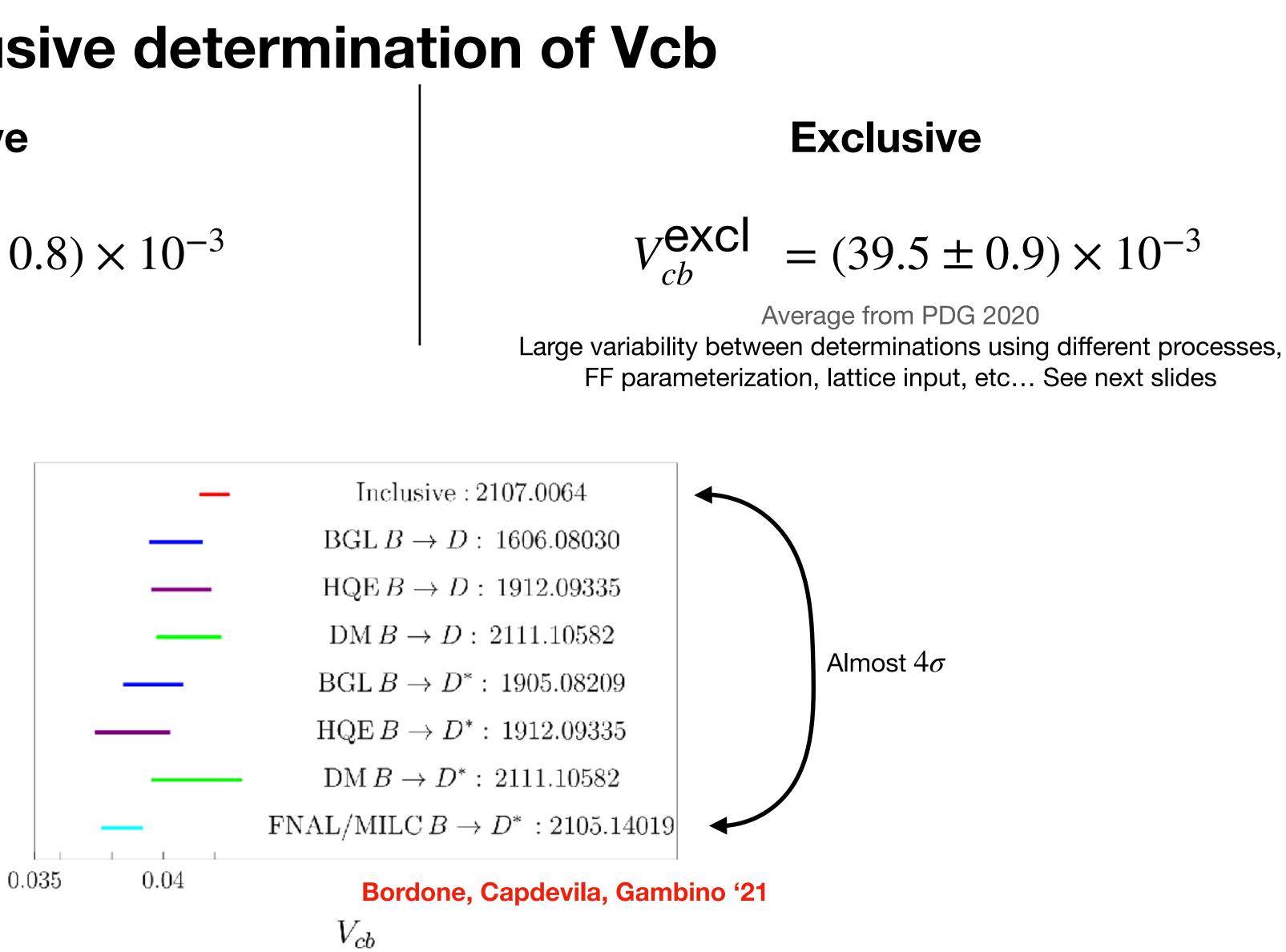
Bordone, Capdevila, Gambino '21

 V_{cb}

The Vcb Puzzle **Exclusive vs. Inclusive determination of Vcb**

Inclusive

$$V_{cb}^{\text{incl}} = (42.2 \pm 0.8) \times 10^{-3}$$



Exclusive Vcb: Theory prediction of $d\Gamma/dw(B \rightarrow D^* \ell \bar{\nu})$

Phase space factor

 $w = v \cdot v'$ product of initial and final velocities

$$\begin{aligned} \frac{\langle D^*(v',\epsilon) | \bar{c}\gamma^{\mu} b | B(v) \rangle}{\sqrt{m_B m_{D^*}}} &= h_V(w) \, \varepsilon^{\mu\nu\rho\sigma} v_{B,\nu} v_{D^*,\rho} \epsilon^*_{\sigma}, \\ \frac{\langle D^*(v',\epsilon) | \bar{c}\gamma^{\mu}\gamma^5 b | B(v) \rangle}{\sqrt{m_B m_{D^*}}} &= i h_{A_1}(w) \, (1+w) \epsilon^{*\mu} - i \left[h_{A_2}(w) v_B^{\mu} + h_{A_3}(w) v_{D^*}^{\mu} \right] \epsilon^* \cdot v_B \end{aligned}$$

$$P(w)|\mathcal{F}(w)|^{2} = |h_{A_{1}}(w)|^{2} \left\{ 2\frac{r^{2} - 2rw + 1}{(1-r)^{2}} \left[1 + \frac{w - 1}{w + 1}R_{1}^{2}(w) + \left[1 + \frac{w - 1}{1-r}(1 - R_{2}(w)) \right]^{2} \right\},$$

 $\frac{d\Gamma}{dw} \left(\bar{B} \to D^* \ell \bar{\nu}_{\ell} \right) = \frac{G_F^2 m_B^5}{48\pi^3} \left| V_{cb} \right|^2 \left(w^2 - 1 \right)^{1/2} P(w) \left(\eta_{ew} \mathcal{F}(w) \right)^2$ EW corrections Form Factor

 $r = m_{D^*}/m_B$

$$R_1(w) = rac{h_V(w)}{h_{A_1}(w)}, \quad R_2(w) = rac{h_{A_3}(w) + r h_{A_2}(w)}{h_{A_1}(w)}$$

Theory prediction of $d\Gamma/dw(B \rightarrow D^* \ell \bar{\nu})$ $\frac{d\Gamma}{dw}\left(\bar{B} \to D^* \ell \bar{\nu}_{\ell}\right) = \frac{G_F^2 m_B^5}{48\pi^3} \left| V_{cb} \right|^2$

- $\mathcal{F}(1) = 1$ from Heavy Quark Symmetry in the infinite quark mass limit (w=1 -> 0 recoil) • $\mathcal{F}(w)$ extrapolated from w = 1 using parameterizations:
 - From analycity and unitarity constraints: Boyd, Grinstein, and Lebed param. (BGL)

$$F(z) = \frac{1}{P_F(z)\phi_F(z)} \sum_{n=0}^{\infty} a_n z^n , \ z = (\sqrt{w+1} - \sqrt{2})/(\sqrt{w+1} + \sqrt{2})$$

$$h_{A_1}(w) = h_{A_1}(1) \left[1 - 8\rho^2 z + (53\rho^2 - 15) z^2 + (231\rho^2 - 91) z^3 \right]$$
 (one parameter)

$$\Big|^{2} \left(w^{2}-1\right)^{1/2} P(w) \left(\eta_{\mathrm{ew}} \mathcal{F}(w)\right)^{2}$$

• From BGL and using Heavy Quark Symmetry: Caprini, Lellouch, and Neubert param. (CLN)

Theory prediction of $d\Gamma/dw(B \rightarrow D^* \ell \bar{\nu})$ $\frac{d\Gamma}{dw}\left(\bar{B} \to D^* \ell \bar{\nu}_{\ell}\right) = \frac{G_F^2 m_B^5}{48\pi^3} \left| V_{cb} \right|^2$

- $\mathcal{F}(1) = 1$ from Heavy Quark Symmetry in the infinite quark mass limit (w=1 -> 0 recoil) • $\mathcal{F}(w)$ extrapolated from w = 1 using parameterizations:
 - From analycity and unitarity constraints: Boyd, Grinstein, and Lebed param. (BGL)

$$F(z) = \frac{1}{P_F(z)\phi_F(z)} \sum_{n=0}^{\infty} a_n z^n \text{ , } z = (\sqrt{w+1} - \sqrt{2})/(\sqrt{w+1} + \sqrt{2}) \text{ Typically used up to n=3}$$

$$h_{A_1}(w) = h_{A_1}(1) \left[1 - 8\rho^2 z + (53\rho^2 - 15) z^2 + (231\rho^2 - 91) z^3 \right]$$
 (one parameter)

$$\Big|^{2} \left(w^{2}-1\right)^{1/2} P(w) \left(\eta_{\mathrm{ew}} \mathcal{F}(w)\right)^{2}$$

• From BGL and using Heavy Quark Symmetry: Caprini, Lellouch, and Neubert param. (CLN)

Inconsistent with subleading terms in the $1/m_{c/b}$ expansion

Theory prediction of

$$\frac{d\Gamma}{dw} \left(\bar{B} \to D^* \ell \bar{\nu}_{\ell} \right) = \frac{G_F^2 m_B^5}{48\pi^3} \left| V_{cb} \right|$$

- From lattice, $\mathcal{F}(1) = 0.904 \pm 0.012$ (Fermilab/MILC + HPQCD)
- From sum rules, $\mathcal{F}(1) = 0.86 \pm 0.01 \pm 0.02$ (Gambino, Manuel, Uraltsev 2012) -> yields results closer to exclusive measurements
- Typically fit to data provides :

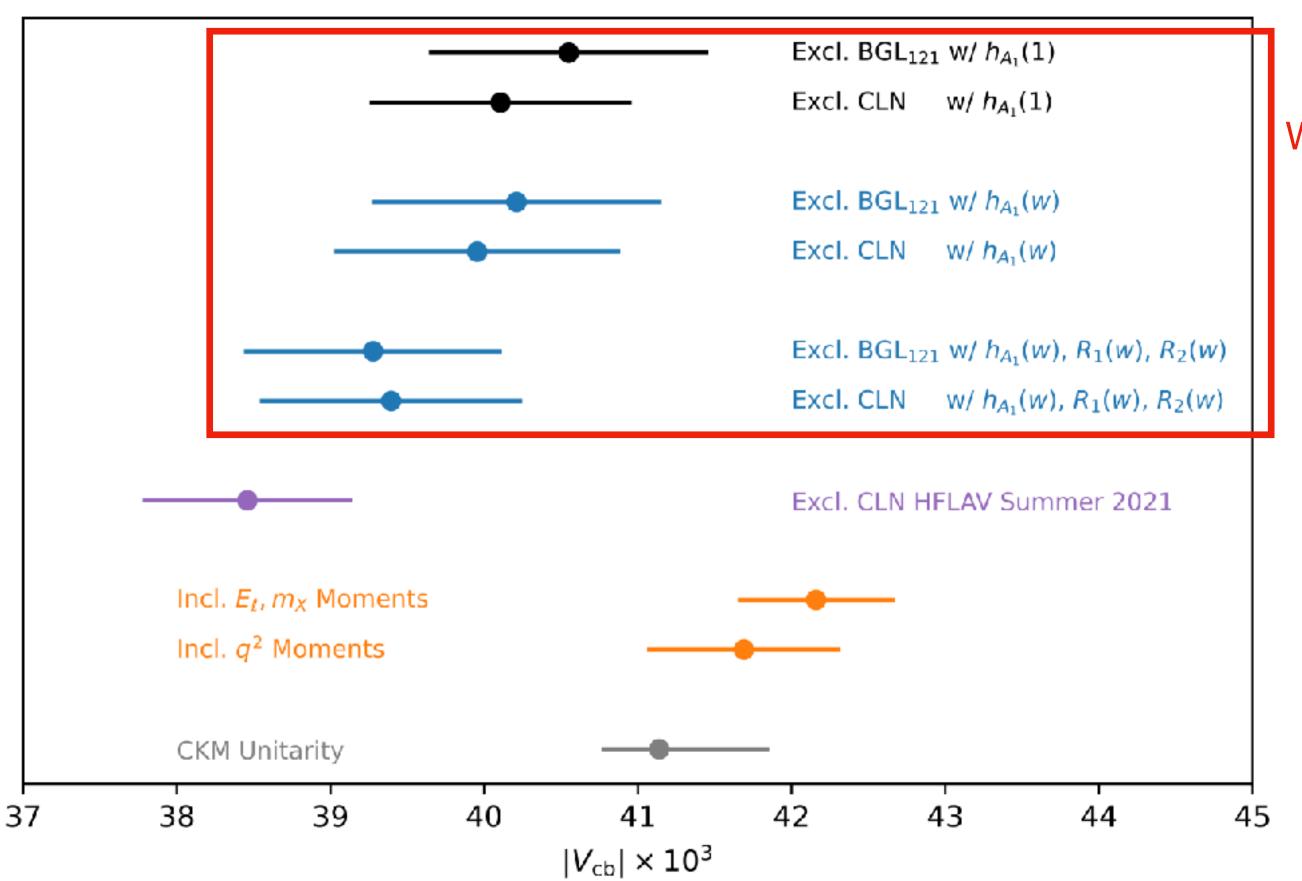
 $d\Gamma/dw(B \rightarrow D^* \ell \bar{\nu})$

 $\int_{0}^{2} \left(w^{2} - 1 \right)^{1/2} P(w) \left(\eta_{\text{ew}} \mathscr{F}(w) \right)^{2}$

$\eta_{\rm ew} \mathcal{F}(1) |V_{cb}| = (35.27 \pm 0.52) \times 10^{-3} ({\rm CLN}).$

Exclusive measurement by Belle Collab. - 2301.07529

 $B \to D^* \ell \bar{\nu}_{\ell}$



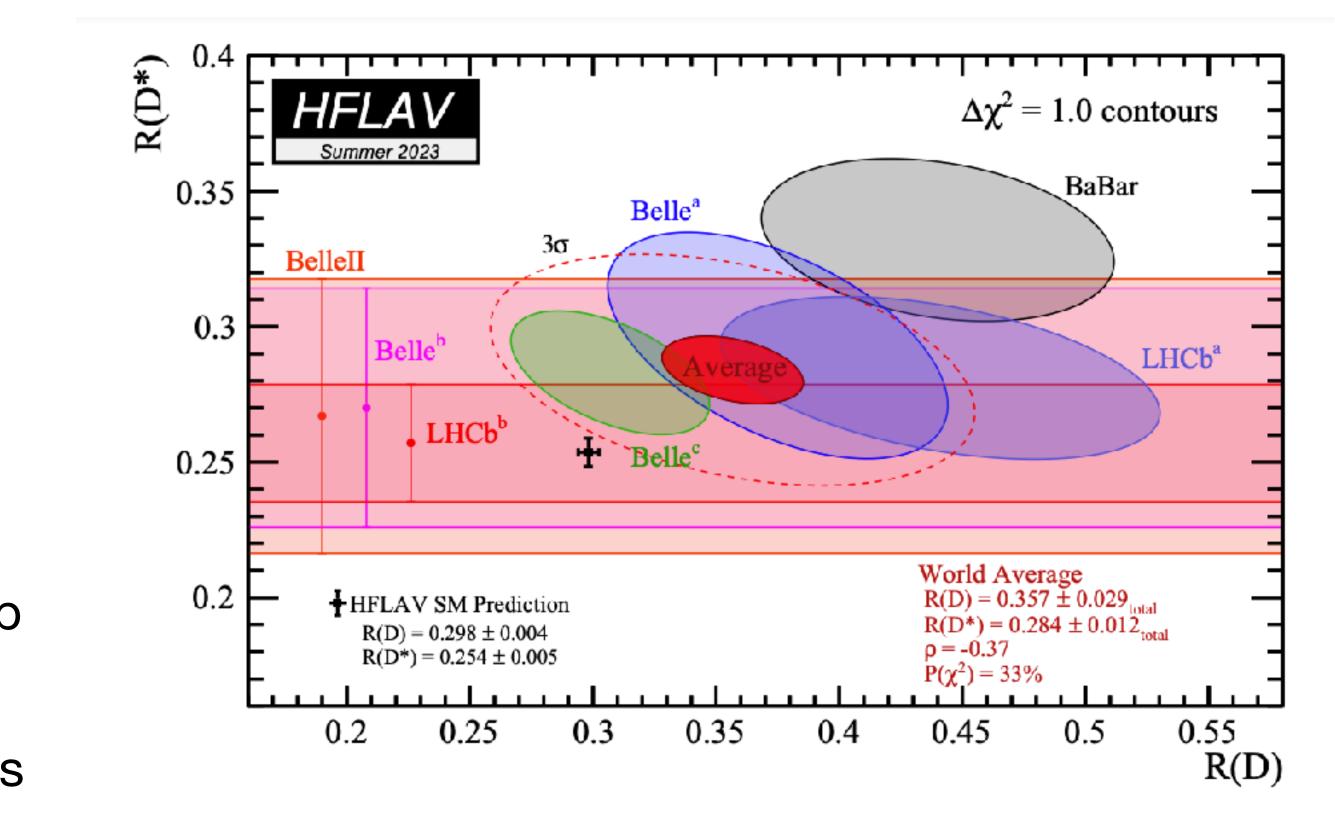
Take home message: Vcb is theory dependent

Belle 2023 With various FF parameterizations and LQCD inputs

Status of the $b \rightarrow c \ell \nu$ anomalies and recent data LFUV tests

$$R_{D^{(*)}} \equiv \frac{\mathscr{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathscr{B}(B \to D^{(*)}\ell\bar{\nu})}, \quad \ell = \mu, e$$

- Longstanding tension $\sim 3\sigma$, hinting at LFUV
- Particularly interesting in the light of hints of LFUV in neutral current B decays No LFUV in neutral current B decays anymore, but some b → sℓℓ anomalies are still standing.
- Ratios of BR($b \rightarrow c \ell \nu$) are independent of Vcb but depend on the form factor parametrization
- Hence in a global fit including RD-RD* and BRs must be consistent in the f.f. parametrization



Status of the $b \rightarrow c \ell \nu$ anomalies and recent data **LFUV** tests

• Other ratios are now available:

LHCb 2022: $\mathcal{R}(\Lambda_c^+) = 0.242 \pm 0.026 \pm 0.040 \pm 0.059$, LHCb 2017: $\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})} = 0.71 \pm 0.17 \text{ (stat) } \pm 0.18 \text{ (syst)}.$ CMS 2023: $R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \ \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \ u^+ \nu_{u})} = 0.17^{+0.18}_{-0.17} \ (\text{stat.})^{+0.21}_{-0.22} \ (\text{syst.})^{+0.19}_{-0.18} \ (\text{theo.}) = 0.17 \pm 0.33,$

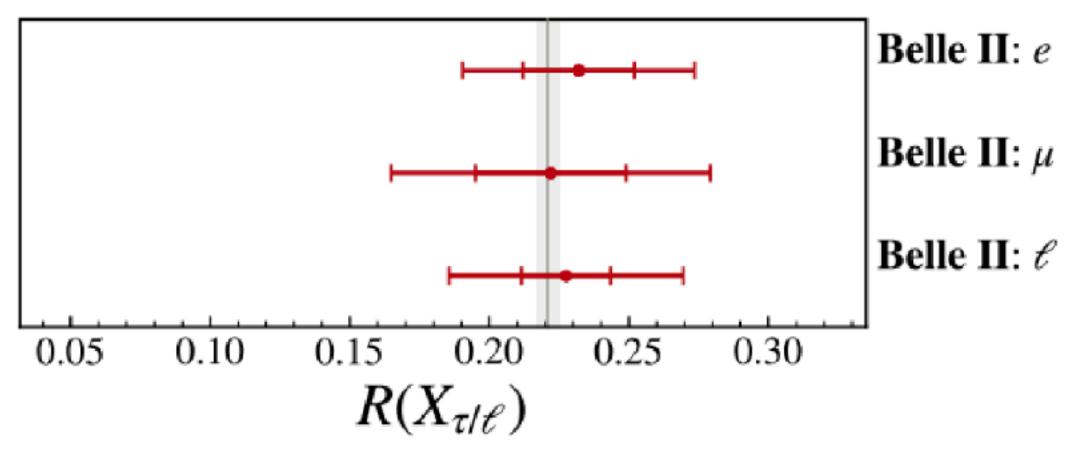
Belle II 2023: $R(X_c) \equiv \frac{B(B_c \to X_c \tau \nu)}{B(B_c \to X_c \ell \nu)}$

 $R(\Lambda_c^+)_{\rm SM} = 0.332 \pm 0.008$

 $R(J/\psi)_{\rm SM} = 0.259 \pm 0.004$

SM prediction

J. High Energy Phys. 11, 7 (2022)



Global fits for b->clv EFT assuming NP in the tau sector only

$\mathscr{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[(1 + C_{V_L}) O_{V_L}^{\tau} + C_{V_R} O_{V_R}^{\tau} \right]$ $+C_{S_R}O_{S_R}^{\tau}+C_{S_L}O_{S_L}^{\tau}+C_TO_T^{\tau}],$

Observables can conveniently be expressed in polynomials of WCs

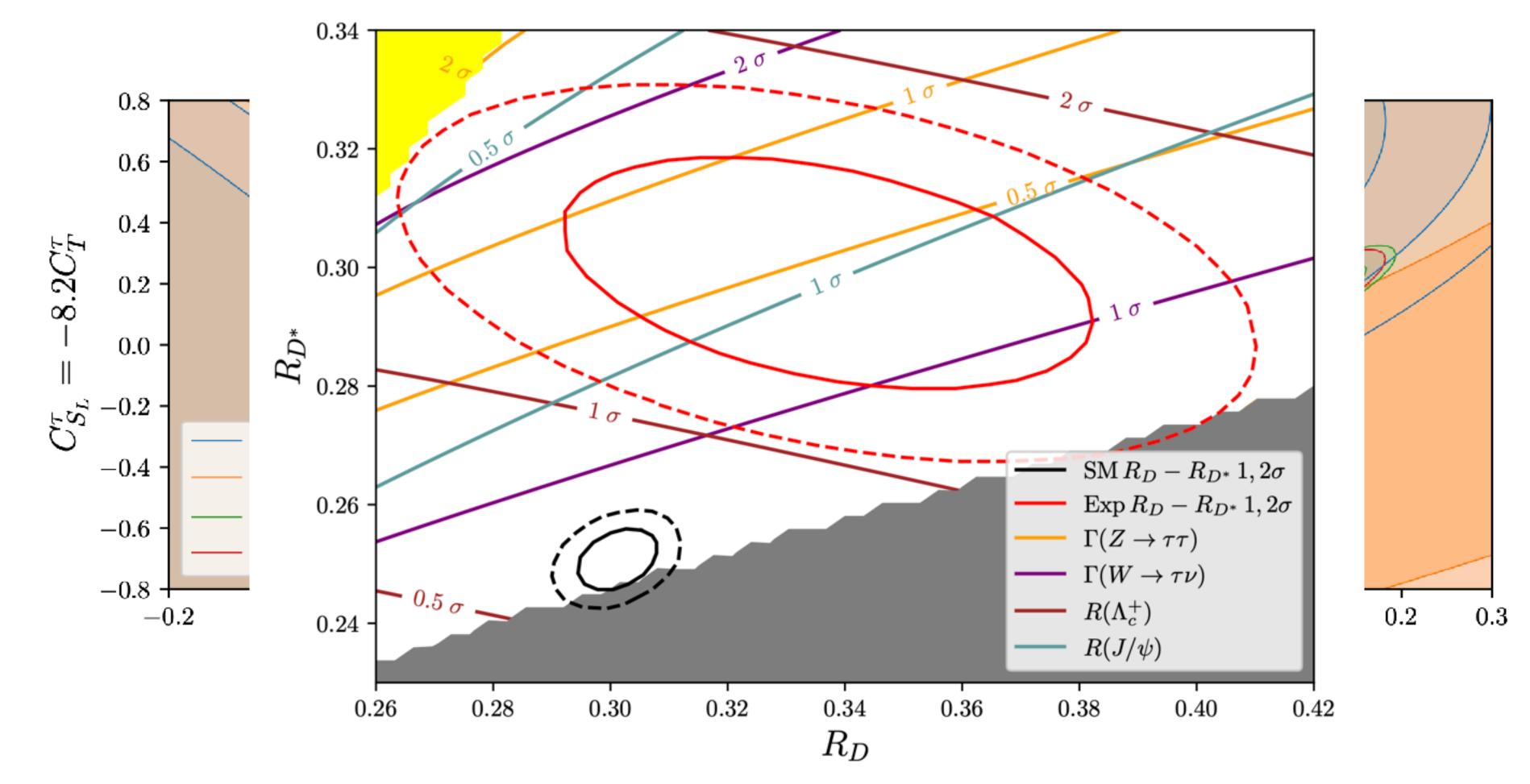
$$\begin{split} O_{V_{L,R}}^{\tau} &= (\bar{c}\gamma^{\mu}P_{L,R}b)(\bar{\tau}\gamma_{\mu}P_{L}\nu_{\tau})\\ O_{S_{L,R}}^{\tau} &= (\bar{c}P_{L,R}b)(\bar{\tau}P_{L}\nu_{\tau}),\\ O_{T}^{\tau} &= (\bar{c}\sigma^{\mu\nu}P_{L}b)(\bar{\tau}\sigma_{\mu\nu}P_{L}\nu_{\tau}) \,. \end{split}$$

Global fits for b->clv Available data

Observable	Measurement
R_D	BaBar [403], Belle [183,404]
R_{D^*}	BaBar [403], Belle $[183, 404, 405]$, LHCb $[406, 407]$
$F_L(B_0 o D^* au ar{ u})$	Belle [408]
$BR(B_c \to \tau \nu)$	LEP [409]
$\frac{1}{\Gamma} \frac{d\Gamma}{dq^2} (B o D^{(*)} au ar{ u})$	BaBar [403], Belle [183]
$R_{J/\psi}$	LHCb [195]
R_{Λ_c}	LHCb [197]

+ 2023 data: CMS R(J/Psi), Belle II R(Xc), R(D*)

Global fits for b->clv Preliminary plots



To do

- State-of-the-art global fit of WET WCs of $b \rightarrow c \ell \nu$
- systematic uncertainty

• Study the impact of f.f. parametrization on the fit result, account for it as a

In collaboration with Peter Stangl and Marzia Bordone

Inclusive prediction for

• From the optical theorem:

• HQE:
$$\sum_{n,i} \frac{1}{m_b^n} \mathscr{C}_{n,i} \mathscr{O}_{n+3,i}$$

- $\mathscr{C}_{n,i} \propto y_i, z_i$ calculated perturbatively
- $\left\langle B(p) \middle| \mathcal{O}_{n+3,i} \middle| B(p) \right\rangle$ are non perturbative
 - Need to be determined with e.g. LQCD
 - Can be extracted from data
 - Large n -> loss predictive power

on for
$$B \to X_{\mathcal{C}} \mathscr{C} \overline{\mathcal{V}}$$

 $\Gamma_{tot} = \frac{1}{m_B} \operatorname{Im} \int d^4 x \left\langle B(p) \left| T \left\{ \mathscr{H}_{eff}^{\dagger}(x) \mathscr{H}_{eff}(0) \right\} \right| B(p)$

$$\begin{split} \Gamma = &|V_{cb}|^2 \frac{G_F^2 m_b^5(\mu)}{192\pi^3} \eta_{ew} \times \\ & \left[z_0^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_0^{(1)}(r) + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 z_0^{(2)}(r) + \cdots \right. \\ & + \frac{\mu_\pi^2}{m_b^2} \left(z_2^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_2^{(1)}(r) + \cdots \right) \right. \\ & + \frac{\mu_G^2}{m_b^2} \left(y_2^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} y_2^{(1)}(r) + \cdots \right) \\ & + \frac{\rho_{\mathrm{D}}^3}{m_b^3} \left(z_3^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_3^{(1)}(r) + \cdots \right) \\ & + \frac{\rho_{\mathrm{LS}}^3}{m_b^3} \left(y_3^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} y_3^{(1)}(r) + \cdots \right) + \ldots \right] \end{split}$$

 $r \equiv m_c/m_b$

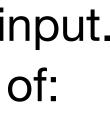


Inclusive prediction for $B \to X_c \ell \bar{\nu}$

$$\begin{split} \Gamma = &|V_{cb}|^2 \frac{G_F^2 m_b^5(\mu)}{192\pi^3} \eta_{\rm ew} \times \\ & \left[z_0^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_0^{(1)}(r) + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 z_0^{(2)}(r) + \cdots \right. \\ & + \frac{\mu_\pi^2}{m_b^2} \left(z_2^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_2^{(1)}(r) + \cdots \right) \right. \\ & + \frac{\mu_G^2}{m_b^2} \left(y_2^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} y_2^{(1)}(r) + \cdots \right) \\ & + \frac{\rho_{\rm LS}^3}{m_b^3} \left(z_3^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_3^{(1)}(r) + \cdots \right) \\ & + \frac{\rho_{\rm LS}^3}{m_b^3} \left(y_3^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} y_3^{(1)}(r) + \cdots \right) + \ldots \right] \end{split}$$

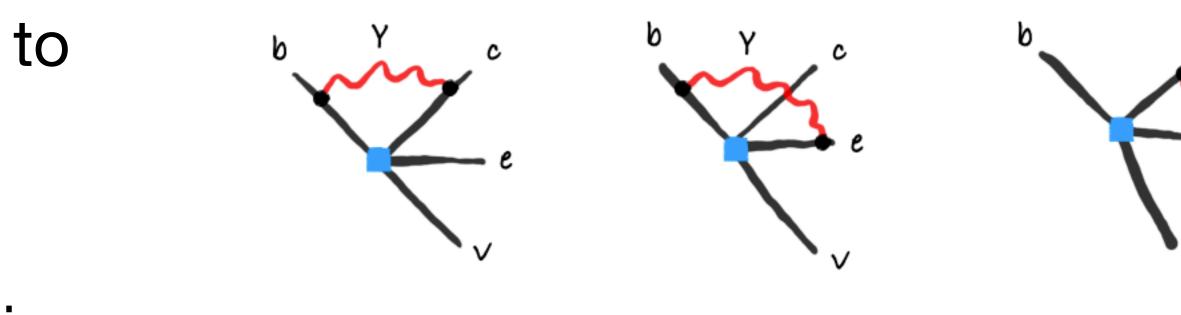
Parameters μ_{π} , μ_{G} , ρ_{D} , ρ_{LS} are the non-perturbative input. Can be fitted on the moments of the distributions of: charged-lepton energy, hadronic invariant mass, ...

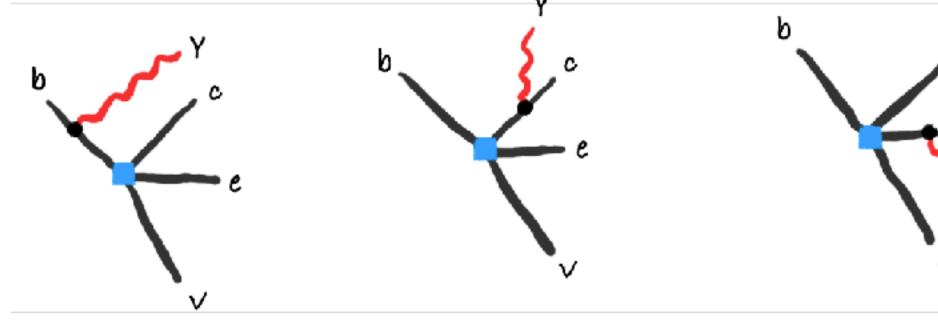
$$\langle E_e^n \rangle_{E_e > E_{\rm cut}} = \int_{E_{\rm cut}}^{E_{\rm max}} \frac{d\Gamma}{dE_e} E_e^n dE_e \left/ \int_{E_{\rm cut}}^{E_{\rm max}} \frac{d\Gamma}{dE_e} dE_e \right|$$



QED effects in inclusive semi-leptonic B decays Bigi, Bordone, Gambino et al. - 2309.02849

- Compute soft QED $O(\alpha)$ correction to $B \rightarrow X_c e \nu$ including real and virtual corrections
- Improvement over PHOTOS which is currently used by BaBar and Belle to subtract photon radiation
- Roughly decrease the value of V_{ch} by 0.4 %





To do

- the HQE global fits to experimental data
- Exclusive Vcb: Similar computation needs to be done for EW and QED corrections to $B \to D^* \ell \nu$

 Inclusive Vcb: Generalize the correction to the moments of the hadronic and leptonic invariant mass distribution, these moments play an important role in

In collaboration with Paolo Gambino and Martin Jung

Thanks!

The Cabibbo-Kobayashi-Maskawa matrix

 $\gamma = \phi_3$

(0,0)

 $-\mathscr{L}_{\text{Yukawa}} = Y_d^{ij} \bar{Q}_L^i H d_R^j + Y_u^{ij} \bar{Q}_L^i \tilde{H} u_R^j + \text{h.c.}$

 $M_{\rm diag}^f = V_L^f Y^f V_R^{f\dagger}(v/\sqrt{2}) \qquad V_{CKM} \equiv V_L^u V_L^{d\dagger}$

$$\mathcal{L}_{\mathsf{SM}} \supset \begin{pmatrix} \bar{u} & \bar{c} & \bar{t} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \Gamma^{\mu} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\bar{\rho} = \rho(1 - \lambda^2/2 + \dots)$$

$$\bar{\eta} = \eta(1 - \lambda^2/2 + \dots)$$

