

Overview and performances of the MUGAST array at GANIL

IRL NPA Girard-Alcindor Valérian - IJCLab

Presentation of MUST2/MUGAST

- 300 µm Si detector
- 4x4 CsI crystals
- Up to 8 telescopes
- In use since: 2007

/AMOS 2019

ISE 2017

Presentation of MUST2/MUGAST

MUST2:

- 300 µm Si detector
- 4x4 CsI crystals
- Up to 8 telescopes
- In use since: 2007

SPEG 2007

MUGAST:

- 4 MUST2 telescopes (forward)
- 5 7 trapezoid-shape 500 μm DSSD (backward)
- 1 annular DSSSD (backward)
- 2 square shape 500 μ m DSSD + a 1.5 mm DSSD or 1 MUST2 (90°)
- First step toward the next generation Si detector: GRIT
- In use at GANIL since: 2019 ISOL + Fragmentation beam

MUGAST/VAMOS/AGATA Campaign

- 0° Detection: VAMOS
- AGATA Ge y-ray spectrometer
- 4 MUST2 telescopes (forward)
- 5-7 trapezoidal DSSD + 1 Annular DSSD (backward)
- 2 Square DSSD or 1 MUST2 at 90°
- Cryogenic-target compatible
- 5 experiments (2019-2021)
 - Shell-model
 - Drip-line
 - Nuclear astrophysics

Βρ

 Θ_i, ϕ_i

 $\begin{array}{c} X_{f_{,}} \, Y_{f} \\ \Theta_{f} , \phi_{f} \end{array}$

 $\begin{array}{c} X_{1,2,3,4} \\ Y_{1,2,3,4} \end{array}$

Drifts

chamber

"Heavy" fragments PID in VAMOS:

M. Assié Volume 1014, 21 October 2021, 165743

"Heavy" fragments PID in VAMOS:

M. Assié Volume 1014, 21 October 2021, 165743

Excellent background reduction:

12/12/2023

M. Assié Volume 1014, 21 October 2021, 165743

12/12/2023

Missing mass + gamma spectroscopy:

Highlights of the MUGAST/VAMOS/AGATA Campaign

E. Clément, A. Goasduf: Lifetime measurements of the 2⁺₂ and 3⁺₁ states in ²⁰O populated by direct nucleon transfer

Topic: Shell model Reaction: ¹⁹O(d,pγ) + DSAM

Goal:

- Constrain relative position of $s_{1/2}$ and $d_{3/2}$ in n-rich oxygen
- Probe the 3-body interaction
- Combination of DSAM + transfer to identify the entrance channel

<u>Motivation</u>: Oxygen drip-line anomaly explained microscopically by including three-nucleon force contribution in the nuclear interaction. <u>Predictions</u>: from Shell model and ab-initio (2N and 3N forces):

E. Clément, A. Goasduf: Lifetime measurements of the 2⁺₂ and 3⁺₁ states in ²⁰O populated by direct nucleon transfer

Topic: Shell model Reaction: ¹⁹O(d,pγ) + DSAM

Goal:

- Constrain relative position of $s_{1/2}$ and $d_{3/2}$ in n-rich oxygen
- Probe the 3-body interaction
- Combination of DSAM + transfer to identify the entrance channel

<u>Motivation</u>: Oxygen drip-line anomaly explained microscopically by including three-nucleon force contribution in the nuclear interaction. <u>Predictions</u>: from Shell model and ab-initio (2N and 3N forces):

12/12/2023

E. Clément, A. Goasduf: Lifetime measurements of the 2⁺₂ and 3⁺₁ states in ²⁰O populated by direct nucleon transfer

Topic: Shell model Reaction: ¹⁹O(d,pγ) + DSAM

Goal:

- Constrain relative position of $s_{1/2}$ and $d_{3/2}$ in n-rich oxygen
- Probe the 3-body interaction
- Combination of DSAM + transfer to identify the entrance channel

<u>Motivation</u>: Oxygen drip-line anomaly explained microscopically by including three-nucleon force contribution in the nuclear interaction. <u>Predictions</u>: from Shell model and ab-initio (2N and 3N forces):

PhD : I. Zanon : Accepted in PRL 21 November 2023

- $2^+ t_{1/2}$ < predictions and previous measurements
- 3+ t_{1/2} measured for the first time
- Strong constraints on the theoretical models
- Paves the way for similar measurements

MUGAST-VAMOS-AGATA

UNIVERSITE UNIVERSITE Sciences

<u>C. Diget, N. De Séréville: Determining the α +¹⁵O radiative capture rate</u>

Topic: Nuclear astrophysics Reaction: ¹⁵O(⁷Li,tγ)¹⁹Ne indirect measurement

Motivations:

- Breakout to rp-process ${}^{15}O(\alpha,\gamma){}^{19}Ne$ and ${}^{18}Ne(\alpha,p){}^{21}Na$
- Key beak-up route from the Hot-CNO
- Start-up of Type I X-ray burst depends upon this reaction rate
- Resonant reaction rate ${}^{15}O(\alpha,\gamma){}^{19}Ne$ expected to dominate through 4033 keV resonance (to be measured in AGATA)

Preliminary results:

- Observation of a gamma width to the alpha channel of: 4.8 μeV
- ${}^{15}O(\alpha,\gamma){}^{19}Ne$ reaction rate smaller than previous estimations
- The ${}^{18}Ne(\alpha,p){}^{21}Na$ must be a competitive breakout channel...

PhD : J. Sanchez Rojo

MUGAST-VAMOS-AGATA

UNIVERSITE UNIVERSITE Paris Cité

<u>C. Diget, N. De Séréville: Determining the α +¹⁵O radiative capture rate</u>

Topic: Nuclear astrophysics Reaction: ¹⁵O(⁷Li,tγ)¹⁹Ne indirect measurement

Motivations:

- Breakout to rp-process ${}^{15}O(\alpha,\gamma){}^{19}Ne$ and ${}^{18}Ne(\alpha,p){}^{21}Na$
- Key beak-up route from the Hot-CNO
- Start-up of Type I X-ray burst depends upon this reaction rate
- Resonant reaction rate ${}^{15}O(\alpha,\gamma){}^{19}Ne$ expected to dominate through 4033 keV resonance (to be measured in AGATA)

Preliminary results:

- Observation of a gamma width to the alpha channel of: 4.8 μeV
- ${}^{15}O(\alpha,\gamma){}^{19}Ne$ reaction rate smaller than previous estimations
- The ${}^{18}Ne(\alpha,p){}^{21}Na$ must be a competitive breakout channel...

PhD : J. Sanchez Rojo

MUGAST-VAMOS-AGATA

UNIVERSITE UNIVERSITE Paris Cité

<u>C. Diget, N. De Séréville: Determining the α +¹⁵O radiative capture rate</u>

Topic: Nuclear astrophysics Reaction: ¹⁵O(⁷Li,tγ)¹⁹Ne indirect measurement

Motivations:

- Breakout to rp-process ¹⁵O(α,γ)¹⁹Ne and ¹⁸Ne(α,p)²¹Na
- Key beak-up route from the Hot-CNO
- Start-up of Type I X-ray burst depends upon this reaction rate
- Resonant reaction rate ${}^{15}O(\alpha,\gamma){}^{19}Ne$ expected to dominate through 4033 keV resonance (to be measured in AGATA)

Preliminary results:

- Observation of a gamma width to the alpha channel of: 4.8 μ eV
- ${}^{15}O(\alpha,\gamma){}^{19}Ne$ reaction rate smaller than previous estimations
- The ${}^{18}Ne(\alpha,p){}^{21}Na$ must be a competitive breakout channel...

PhD : J. Sanchez Rojo

MUGAST-VAMOS-AGATA: Highlights

W. Catford, A. Matta: Proton-neutron interactions across N = 28 via ⁴⁷K(d,p)⁴⁸K and implications for the most neutron-rich phosphorus

Topic: Shell model Reaction: ⁴⁷K(d,p)⁴⁸K neutron transfer

Motivations:

- N = 34 identified as a magic number (⁵⁴Ca)
- Significant gap expected between p1/2 and f5/2
- Odd proton $1s_{1/2}$ interaction with odd neutron above N = 28
- $\pi(\text{Od}_{3/2}) \otimes v(\text{fp})$ already measured
- First experimental measurement of exotic $\pi(s_{1/2}) \otimes v(fp)$

Preliminary results:

- Preliminary comparison with SDPF (shell model) models :
 - Fails to predict 1- ground state.
 - Measured SF consistently smaller than predicted.
- Qualitative observations suggest overestimation of N=34 gap.

PhD : C. Paxman

MUGAST-VAMOS-AGATA: Highlights

W. Catford, A. Matta: Proton-neutron interactions across N = 28 via ⁴⁷K(d,p)⁴⁸K and implications for the most neutron-rich phosphorus

Topic: Shell model Reaction: ⁴⁷K(d,p)⁴⁸K neutron transfer

Motivations:

- N = 34 identified as a magic number (⁵⁴Ca)
- Significant gap expected between p1/2 and f5/2
- Odd proton $1s_{1/2}$ interaction with odd neutron above N = 28
- $\pi(\text{Od}_{3/2}) \otimes v(\text{fp})$ already measured
- First experimental measurement of exotic $\pi(s_{1/2}) \otimes v(fp)$

Preliminary results:

- Preliminary comparison with SDPF (shell model) models :
 - Fails to predict 1- ground state.
 - Measured SF consistently smaller than predicted.
- Qualitative observations suggest overestimation of N=34 gap.

MUGAST-VAMOS-AGATA: Highlights

W. Catford, A. Matta: Proton-neutron interactions across N = 28 via ⁴⁷K(d,p)⁴⁸K and implications for the most neutron-rich phosphorus

Topic: Shell model Reaction: ⁴⁷K(d,p)⁴⁸K neutron transfer

Motivations:

- N = 34 identified as a magic number (⁵⁴Ca)
- Significant gap expected between p1/2 and f5/2
- Odd proton $1s_{1/2}$ interaction with odd neutron above N = 28
- $\pi(\text{Od}_{3/2}) \otimes v(\text{fp})$ already measured
- First experimental measurement of exotic $\pi(s_{1/2}) \otimes v(fp)$

Preliminary results:

- Preliminary comparison with SDPF (shell model) models :
 - Fails to predict 1- ground state.
 - Measured SF consistently smaller than predicted.
- Qualitative observations suggest overestimation of N=34 gap.

The new LISE campaign: 2023-2026?

Setup:

• CATS beam tracker

UNIVERSITE Sciences

Setup:

• CATS beam tracker

- CATS beam tracker
- 5 trapezoidal DSSD (backward)
- 4 MUST2 telescopes (forward)
 - 300 um DSSSD
 - CsI crystals

12/12/2023

MUGAST@LISE campaign 2023-2026?

- CATS beam tracker
- 5 trapezoidal DSSD (backward)
- 4 MUST2 telescopes (forward)
 - 300 um DSSSD
 - CsI crystals

12/12/2023

MUGAST@LISE campaign 2023-2026?

- CATS beam tracker
- 5 trapezoidal DSSD (backward)
- 4 MUST2 telescopes (forward)
 - 300 um DSSSD
 - Csl crystals
- Exogam Ge y-ray spectrometer

12/12/2023

MUGAST@LISE campaign 2023-2026?

- CATS beam tracker
- 5 trapezoidal DSSD (backward)
- 4 MUST2 telescopes (forward)
 - 300 um DSSSD
 - Csl crystals
- Exogam Ge y-ray spectrometer

- CATS beam tracker
- 5 trapezoidal DSSD (backward)
- 4 MUST2 telescopes (forward)
 - 300 um DSSSD
 - Csl crystals
- Exogam Ge y-ray spectrometer
- 0° Detection: ZDD from LISE
 - Drift chamber (DC)
 - Ionization chamber (IC)
 - Plastic detector
 - Exogam

- CATS beam tracker
- 5 trapezoidal DSSD (backward)
- 4 MUST2 telescopes (forward)
 - 300 um DSSSD
 - CsI crystals
- Exogam Ge y-ray spectrometer
- 0° Detection: ZDD from LISE
 - Drift chamber (DC)
 - Ionization chamber (IC)
 - Plastic detector
 - Exogam

Preliminary results of the first two experiments

- Beam : ⁴⁸Cr at 30 MeV/u, 3×10⁵ pps, 90% purity
- Target : CH₂ 5 mg/cm²
- Reaction studied : ⁴⁸Cr(p,³He)⁴⁶V
- Topic: Influence of deformation on neutron-proton pairing

- Beam : ⁴⁸Cr at 30 MeV/u, 3×10⁵ pps, 90% purity
- Target : CH₂ 5 mg/cm²
- Reaction studied : ⁴⁸Cr(p,³He)⁴⁶V
- Topic: Influence of deformation on neutron-proton pairing

Lee J. et al. Ayyad Y. Phys. Rev. C, 2017. Chong Qi and Ramon Wyss, Physica Scripta, 2015.

- Beam : ⁴⁸Cr at 30 MeV/u, 3×10⁵ pps, 90% purity
- Target : CH₂ 5 mg/cm²
- Reaction studied : ⁴⁸Cr(p,³He)⁴⁶V
- Topic: Influence of deformation on neutron-proton pairing

Ratio of cross-section

Lee J. et al. Ayyad Y. Phys. Rev. C, 2017. Chong Qi and Ramon Wyss, Physica Scripta, 2015.

- Beam : ⁴⁸Cr at 30 MeV/u, 3×10⁵ pps, 90% purity
- Target : CH₂ 5 mg/cm²
- Reaction studied : ⁴⁸Cr(p,³He)⁴⁶V
- Topic: Influence of deformation on neutron-proton pairing

Lee J. et al. Ayyad Y. Phys. Rev. C, 2017. Chong Qi and Ramon Wyss, Physica Scripta, 2015.

12/12/2023

- Beam : ⁴⁸Cr at 30 MeV/u, 3×10⁵ pps, 90% purity
- Target : CH₂ 5 mg/cm²
- Reaction studied : ⁴⁸Cr(p,³He)⁴⁶V
- Topic: Influence of deformation on neutron-proton pairing

Lee J. et al. Ayyad Y. Phys. Rev. C, 2017. Chong Qi and Ramon Wyss, Physica Scripta, 2015. • ⁴⁸Cr(p,³He)⁴⁶V channel currently under analysis by Hugo... More to come soon!

⁴⁸Cr(p,d)⁴⁷Cr online analysis:

Courtesy of H. Jacob

⁴⁸Cr(p,d)⁴⁷Cr online analysis:

Courtesy of H. Jacob

TOF CATS-Plastics (Arb. Units)

⁴⁸Cr(p,d)⁴⁷Cr online analysis: Heavy recoil in ZDD Light particle in MUGAST $\Delta_{\!E} \, (\text{MeV})$

Eres (MeV)

Gamma in EXOGAM (Doppler corrected + AB) with ZDD CUT

Excitation Energy (MeV) Courtesy of H. Jacob

S. Koyama (GANIL), O. Sorlin (GANIL):

- Beam : ⁶⁸Ni at 18 MeV/u and 40 MeV/u, 10⁵ pps, 80% purity
- Target : CH₂ 5 mg/cm² and CD₂ 0.5 mg/cm²
- Reaction studied : ⁶⁸Ni(p, d)⁶⁷Ni, ⁶⁸Ni(d, p)⁶⁹Ni
- Phenomenon studied : SO splitting and N=40/50 shell gap

Neutron Fermi surface at N=40

O. Sorlin, F. de Oliveira Santos, and J.P. Ebran. 2020 O Sorlin and M-G Porquet. Physica Scripta, 2013

S. Koyama (GANIL), O. Sorlin (GANIL):

- Beam : ⁶⁸Ni at 18 MeV/u and 40 MeV/u, 10⁵ pps, 80% purity
- Target : CH₂ 5 mg/cm² and CD₂ 0.5 mg/cm²
- Reaction studied : ⁶⁸Ni(p, d)⁶⁷Ni, ⁶⁸Ni(d, p)⁶⁹Ni
- Phenomenon studied : SO splitting and N=40/50 shell gap

S. Koyama (GANIL), O. Sorlin (GANIL):

- Beam : ⁶⁸Ni at 18 MeV/u and 40 MeV/u, 10⁵ pps, 80% purity
- Target : CH₂ 5 mg/cm² and CD₂ 0.5 mg/cm²
- Reaction studied : ⁶⁸Ni(p, d)⁶⁷Ni, ⁶⁸Ni(d, p)⁶⁹Ni ٠
- Phenomenon studied : SO splitting and N=40/50 shell gap

$g_{9/2}$ - $d_{5/2}$ spacing at N=40

-5

-7

-9

-11

N=50

Neutron

d_{5/2}

N=28

2022242628

Neutron

d5/2

g9/2

t,,,

-2

O Sorlin and M-G Porquet. Physica Scripta, 2013

Α

⁶⁸Ni(p,d)⁶⁷Ni online analysis:

⁶⁸Ni(p,d)⁶⁷Ni online analysis:

- $f_{5/2} f_{7/2}$ SO splitting
- $p_{1/2} p_{3/2}$ SO splitting
- Partial filling of the $g_{9/2}$ orbital

⁶⁸Ni(d,p)⁶⁹Ni online analysis:

- No selection in MUGAST yet
- Selection of Ni isotopes in ZDD

⁶⁸Ni(d,p)⁶⁹Ni online analysis:

- No selection in MUGAST yet
- Selection of Ni isotopes in ZDD

- $g_{9/2} d_{5/2}$ spacing
- g_{9/2} g_{7/2} SO splitting ?
- Only two visible states? Similar to previous experiments...

What's next?

<u>F. Galtarossa</u>: (To be scheduled end of April 2024) Evolution of the neutron $1d_{3/2}$ - $1d_{5/2}$ spin-orbit splitting in N = 19 isotones and Fermi surface in ³⁴Si

FIG. 3: Pictorial representation (left) and graphic (right) of the predicted variation of the difference between the $\nu p_{1/2}$ - $\nu p_{3/2}$ SO splitting in ³⁷S and in ³⁵Si as a function of the C²S of the $3/2^-$ state at 1.981 MeV in ³³Si.

F. Galtarossa: (To be scheduled end of April 2024) Evolution of the neutron $1d_{3/2}$ - $1d_{5/2}$ spin-orbit splitting in N = 19 isotones and Fermi surface in ³⁴Si

FIG. 3: Pictorial representation (left) and graphic (right) of the predicted variation of the difference between the $\nu p_{1/2}$ - $\nu p_{3/2}$ SO splitting in ${}^{37}S$ and in ${}^{35}Si$ as a function of the C²S of the $3/2^-$ state at 1.981 MeV in ${}^{33}Si$

V. Girard-Alcindor, D. Beaumel: (To be scheduled end of June 2024) Cluster structure of the ground state of light exotic nuclei beyond alpha-clustering

10

0.1 0.0 0.0 10⁻⁴ 10⁻³ 10⁻² 10⁻¹10 10 Clustering in Be isotopes

4He

Y = 0.1

0.1 0.2 0.3 neutron skin thickness [fm] Expected triton clustering in neutron rich isotopes

0.4

S 0.2

Prediction of Sa for C isotopes

 $0 0^+_1 \times 0$

♦ 2⁺₁ × 2

 $\diamond 2^+_2 \times 2$

 $\Box 4_1^+ \times 4$

180

(a) Sα

S.?

12/12/2023

<u>**F. Galtarossa</u>**: (To be scheduled end of April 2024) Evolution of the neutron $1d_{3/2}$ - $1d_{5/2}$ spin-orbit splitting in N = 19 isotones and Fermi surface in ³⁴Si</u>

FIG. 3: Pictorial representation (left) and graphic (right) of the predicted variation of the difference between the $\nu p_{1/2}$ - $\nu p_{3/2}$ SO splitting in ³⁷S and in ³⁵Si as a function of the C²S of the $3/2^-$ state at 1.981 MeV in ³³Si.

V. Girard-Alcindor, D. Beaumel: (To be scheduled end of June 2024) Cluster structure of the ground state of light exotic nuclei beyond alpha-clustering

Clustering in Be isotopes

Expected triton clustering in neutron rich isotopes

<u>**C. Diget, N. De Séreville</u>**: (To be scheduled in 2025) Determining the thermonuclear ¹⁸Ne(α ,p)²¹Na reaction rate by measurement of the ⁷Li(¹⁸Ne,t)²²Mg(p)²¹Na reaction</u>

Figure 1: Differential cross section for 2+ state with $C^2S = 1$ (left); triton kinematics for ²²Mg resonance (middle); and heavy-ion (²²Mg) angle against triton angle (right).

<u>**F. Galtarossa</u>**: (To be scheduled end of April 2024) Evolution of the neutron $1d_{3/2}$ - $1d_{5/2}$ spin-orbit splitting in N = 19 isotones and Fermi surface in ³⁴Si</u>

FIG. 3: Pictorial representation (left) and graphic (right) of the predicted variation of the difference between the $\nu p_{1/2}$ - $\nu p_{3/2}$ SO splitting in ³⁷S and in ³⁵Si as a function of the C²S of the 3/2⁻ state at 1.981 MeV in ³³Si.

V. Girard-Alcindor, D. Beaumel: (To be scheduled end of June 2024) Cluster structure of the ground state of light exotic nuclei beyond alpha-clustering

Clustering in Be isotopes

Expected triton clustering in neutron rich isotopes

<u>**C. Diget, N. De Séreville**</u>: (To be scheduled in 2025) Determining the thermonuclear ¹⁸Ne(α ,p)²¹Na reaction rate by measurement of the ⁷Li(¹⁸Ne,t)²²Mg(p)²¹Na reaction

Figure 1: Differential cross section for 2+ state with $C^2S = 1$ (left); triton kinematics for ²²Mg resonance (middle); and heavy-ion (²²Mg) angle against triton angle (right).

<u>A. Machiavelli, M. Assié</u>: (To be scheduled in 2025) The tetra-neutron Isobaric Analog State in ⁴H : The case for the ⁶He(p,³He) reaction

12/12/2023

GRIT 2026/27-?

GRIT - AGATA@SPES: 2026 - ?

GRIT: Granularity, Resolution, Identification and Transparency

- $\sim 4\pi$ silicon detector
- Coupled to AGATA
- Missing mass
- With PSA identification

Integration challenge:

- GRIT is inside the 450 mm sphere of AGATA
 - 90 electronics card
 - 24 silicon detectors
- To be ready in 2026/27

Combination of light-particle + gamma-ray + Residue detection:

- Measuring all the particles is very powerful
- Opens up many new possibilities (high precision DSAM...)
- Can study a broad range of topics (shell-model, astrophysics, drip-line...)
- > Can lead to nearly background free missing mass and gamma spectroscopy studies
- MUGAST is a first step toward the new generation of highly segmented silicon arrays
- More is coming : 4+ experiments in GANIL
- GRIT@SPES after 2026/2027
- Are similar device developed for GRET(I)NA? FAUST? Others?

Thank you for your attention!

Collaboration:

 IJCLab Orsay: M. Assié, D. Beaumel, Y. Blumenfeld, N. De Séréville, V.Girard-Alcindor, J. Guillot, F. Hammache, H. Jacob, A.Korichi, L. Lalanne, I. Stefan INFN-Padova, LNL: D. Brugnara, J.Casal, F. Galtarossa, A Goasduff, A. Gottardo, D. Mengoni, D. Testov INFN-Legnaro: A. Raggio, A. Montanera Piza, I. Zanon INFN-Milano: S.Leoni, B.Million
 GANIL: E. Clément, A. Lemasson, D. Ramos, M. Rejmund, O. Sorlin, F. de Oliveira, C.Fougères, G. De France, B. Bastin, S. Leblond LPC Caen: F. Delaunay, J.Dudouet, F. Flavigny, C.Lenain, A.Matta, F.Noury, N.Orr IRFU-CEA-Saclay: M.Siciliano
 IPHC Strabourg: K. Rezynkina, G. Duchêne, F. Didierjean University of York: C. Diget, A. Laird, J.S. Rojo
 University of Surrey: W. Catford, G. Lotay, C. Paxman HHNIPNE Magurele: R.Borcea, F. Rotaru, M.Stanoiu University of Santiago: B. Fernandez-Dominguez University of Valencia: A. Gadea

BACKUP SLIDES

Brief (recent) history of MUGAST at GANIL

Last LISE (fragmentation) campaign:

- MUST2@LISE:
 - MUST2 + ZDD
 - 4 experiments (2017-2018)
 - 5 publications

ISOL campaign:

- MUGAST/VAMOS/AGATA:
 - 5 experiments (2019-2021)
 - 3 Publications
 - More to come!
 - See talk of:
 - Irene Zanon
 - Charlie Paxman

New LISE campaign:

- MUGAST + ZDD + Exogam
- 6+ experiments:
 - 2 performed (2023)
 - 4 scheduled (2024-2025)
 - Currently open to GANIL PAC!

12/12/2023

IRL NPA - V. Girard-Alcindor

MUST2@LISE: 2009, 2014, 2017 - 2018

- 4 8 MUST2 telescopes
- y-ray detectors:
 - Csl
 - LaBr3
 - 4 EXOGAM
- 0° Detection (MUST2 or DC/IC)
- Cryogenic target compatible

- Broad range of topics:
 - Shell model
 - Drip-line
 - Clustering

O. Sorlin, D. Suzuki, M. Assié: Colossal mirror energy difference between ³⁶Ca and ³⁶S evidenced through transfer reactions

```
Topic: Shell model
Reaction: <sup>37</sup>Ca(p,d)<sup>36</sup>Ca and <sup>38</sup>Ca(p,t)<sup>36</sup>Ca
Goal: Study of MED between <sup>36</sup>Ca and <sup>36</sup>S
Specificities: Use of LH2 target (S. Koyama et al., NIM A 1010,165477 (2021)
```

Motivations:

- Colossal MED (-700 keV) predicted between 0⁺₁ and 0⁺₂ states in ³⁶S ³⁶Ca
- Explained by the very different configuration between the spherical ground state and the intruder 0⁺₂ state - Valiente-Dobon et al., PRC 98 (2018)

PhD : L. Lalanne

- -500 keV MED for the 0⁺₂ the <u>largest</u> one ever observed
- -250 keV MED for the 2+ and 1+ states.
- 1st time evidence of MED breaking in shape coexistence

L. Lalanne et al., PRL 129 122501 (2022)

Beam tracking

Beam tracking: CATS

Mask on CATS:

12/12/2023

Particle identification

IRL NPA - V. Girard-Alcindor

Gamma spectroscopy

Exogam:

Exogam cluster before mounting

Exogam clusters around the trapezoids EnergyAddBackDoppler (Si_E>0&&Csl_E>0&&CzDDRaw(0)>0&&IC_ZDDRaw(1)>0&&IC_ZDDRaw(2)>0&&IC_ZDDRaw(3)>0&&IC_ZDDRaw(4)>0&&TC_CATS_PL>0&&CUT_Cr)

Example of online add-back doppler corrected spectra

Decay station

Isomer identification: ZDD Exogam

- Beginning of beam time, large contamination from ⁶⁷Ni isomer
- Contamination estimated thanks to the decay station
- Help diagnose and reduce the contamination !
- The decay station is also of interest for reaction induces by isomers
 - To estimate their production
 - To subtract the "isomer-induced" background

3645.6

3175.9

2454.3

1080.0

Courtesy of L. Dienis

12/12/2023