

Radioactive ion beams from SPIRAL1 and future developments

Mickaël Dubois for Target Ion Sources Group Operations and Developments Division

OUTLINE

GANIL facilities, Ion sources

- **SPIRAL 1**
 - Beam production
 - Charge Breeding, Acceleration
 - R&D on SPIRAL1

Stable Beam production

- Challenge for S³ beams
- R&D for Newgain

Canil - Spiral2 Ganil - Aribe

GANIL – SPIRAL2

Stable beams :

	Proton	Deuton	Heavy ion
A/Q	1	2	3
Particles	H+	D+	He - U
I max (mA)	< 5	< 5	<1
Max Energy (Mev/A)	33	20	<14.5
Max beam Power (kW)	165	200	44

LINAC (2019)

GANIL facilities, Ion sources

SPIRAL 1

- Beam production
- Charge Breeding, Acceleration
- R&D on SPIRAL1

Stable Beam production

- Challenge for S³ beams
- R&D for Newgain

Introduction – SPIRAL1

SPIRAL1

• The charge breeder

CIME

Nanogan III

Objective: production of radioactive gaseous ions (since 2001)

Nanogan 3 ECR ion source		
Frequency	10GHz	
Power <250W		
Туре	Direct injection	
HV plateform	34kV	
Magnetic fields	NdFeB	

advantage	inconvenient
Reliability	High emittance
Stable	Cost
Efficient	

Nanogan III

Objective: production of radioactive gaseous ions

- 87 tests/experiments with radioactive beams since 2001
- Beams of ^(6,8)He, ^(14,15,19-21)O, ^(17,18,20,21)F, ^(17-19,23-27)Ne, ^(31-35,41,43-46)Ar, ^(72-77,79,81m)Kr.
- No R&D

FEBIAD (slide credit P. Chauveau)

Objective: production of radioactive metallic ions (2018)

11 12 13 14 15 16

a radioactive isotope

73 74 75 76 Ta W Re Os

105 Dh

Elements for which we observed

42 43 44 45 46 47 Mo Tc Ru Rh Pd Ag

* $\begin{bmatrix} 57 \\ La \end{bmatrix}$ $\begin{bmatrix} 58 \\ Pr \end{bmatrix}$ $\begin{bmatrix} 59 \\ Nd \end{bmatrix}$ $\begin{bmatrix} 60 \\ Pm \end{bmatrix}$ $\begin{bmatrix} 61 \\ Sm \end{bmatrix}$ $\begin{bmatrix} 62 \\ Eu \end{bmatrix}$ $\begin{bmatrix} 63 \\ Gd \end{bmatrix}$ $\begin{bmatrix} 64 \\ Fb \end{bmatrix}$ $\begin{bmatrix} 65 \\ Dy \end{bmatrix}$ $\begin{bmatrix} 66 \\ Ho \end{bmatrix}$ $\begin{bmatrix} 7 \\ Ho \end{bmatrix}$ * $\begin{bmatrix} 89 \\ Ac \end{bmatrix}$ $\begin{bmatrix} 90 \\ Ph \end{bmatrix}$ $\begin{bmatrix} 91 \\ Pa \end{bmatrix}$ $\begin{bmatrix} 92 \\ Pa \end{bmatrix}$ $\begin{bmatrix} 93 \\ Pu \end{bmatrix}$ $\begin{bmatrix} 94 \\ Pm \end{bmatrix}$ $\begin{bmatrix} 95 \\ Am \end{bmatrix}$ $\begin{bmatrix} 96 \\ Pr \end{bmatrix}$ $\begin{bmatrix} 97 \\ Pk \end{bmatrix}$ $\begin{bmatrix} 98 \\ Ps \end{bmatrix}$ $\begin{bmatrix} 99 \\ Ps \end{bmatrix}$

77 78 Ir Pt

79 80 Au Hg

- 11 tests/experiments with radioactive beams
- FEBIAD TISSes have received ³⁶Ar (2013,2019,2022), ²⁰Ne (2018), ⁴⁰Ca (2018,2019), ⁴⁸Ca (2021), ⁸⁴Kr (2022) and ⁵⁰Cr (2023)
- 2 post accelerated beams : ^{38m}K (2019), ⁴⁷K (2021)
- 90+ radioactive isotopes/isomers seen, including around 60 at post-accelerable intensities (>1E5pps).

Features

- Efficient: routinely ≈ 20% on Ar
- Resilient : a 15 days endurance test showed no loss in performance
- Repeatable: comparable results and source behavior between 2 TISS

Latest test (⁵⁰Cr beam)

⁴⁸Cr rate ok (1.2E4pps/W) but very slow release (46min) at low beam power (30W)

advantage	inconvenient	
Resilient	Release time	
Many isotopes	Purity	

MonoNaKe (slide credit P. Jardin)

First on-line test with a Pt ionizer :

⁸Li⁺ rate = 2,2.10⁴ pps (or AIT efficiency~10⁻⁵ for 830 W of primary beam), to be compared to AIT efficiency of 0,05 obtained in 2007 with a carbon ionizer.

Two points to analyse :

- Transport in the beam line (results obtained in 20 minutes after the first ion was observed)
- Condensation of Li? at the exit of the tube observed during the off-line test

=> Pt and C ionizer will be compared during an off-line test planned in February and March 2024.

=> On-line test before production in April 2024

Basse-

AAPG ANR 2018

CES 31: Physique Subatomique (PRC)

(P. Jardin, M. MacCormick and the TULIP collaborators)

Objective of the TULIP project Normandie

- Production of short-lived neutron-deficient isotopes. ٠
- Production by fusion evaporation ٠
- Two main steps ٠
 - ✓ Proof of principle with $^{74-78}$ Rb⁺ in 2023
 - Extension to metallic isotopes \checkmark

Papyex (>125 µm), window in Diamond Like Carbon (2 µm)

- Primary beam power : ~100W ٠
- Irradiation time : 3 days. ٠
- => TISS still operating

٠

⁷⁴Rb⁺ production lower than expected. Under analysis

AAPG ANR 2018

CES 31: Physique Subatomique (PRC)

(P. Jardin, M. MacCormick and the TULIP collaborators)

MELODICA (MEsure en Ligne de cOefficients de Diffusion et de temps de Collage Atomique)

- Objective : to measure the diffusion coefficients of atoms out of different target of catcher materials in a "standardized" way (same experimental conditions) to make them easily comparable.
 - Use of stable ion beams at "low" energy (< Coulomb energy) to minimize nuclear safety constraints
 - Use of a pulsed beam to directly extract the diffusion coefficient from the release time measurement
 - Design on standby. Need of support to continue Plunger to adjust the cavity volume New Post-doc presently working on a base gathering diffusion coefficient data \Rightarrow Collaboration conditions must be discussed. Targe Cavity Diaphragms FEBIAD Slits ion source t (x7) Target Extraction and focussing lens Wien filter Electrostatic lens carrouss Detection el Pulsed (µCP) stable ion Design: M. Lalande. Ganil internal report beam

Beam production (status)

Experiences/Tests radioactifs at SPIRAL

Charge breeding status

Eff (I+T)

Charge state efficiency 5-20% depending on Z

laboratoire commun CEA/DRF

26/10/2023

GANIL facilities, Ion sources

SPIRAL 1 :

- Beam production
- Charge Breeding, Acceleration
- R&D on SPIRAL1

Stable Beam production

- Technical aspects
- Challenge for S3 beams
- R&D for Newgain

R&D on SPIRAL1

Beams measured and potentially available at SPIRAL1

Another important ingredient Nuclear astrophysics -> structure & reaction theory ⁵⁵Co(*d*,*p*) and ⁵⁷Ni(*d*,*p*) Type I X-ray bursts 59Cu 56Ni, 57Cu (3He,dy) Deformation & ⁵⁹Fe, ⁸⁵Kr, ⁷⁹Se (d,p) <-- surrogate > massive stars Shape coexistence at N~Z Sr(³He,ny)⁸⁰Sr shape (New) clustering ^{5,77}Br(d,ny) coexistence ^{8,9,11}Li (⁴He,p) & (⁴He,⁴He²) ^{10,12}Be (⁴He,p) & (⁴He,⁴He' underlying 14,16C (p,4He) 11,13B 2,73,74,75,76Sr(d,py) nuclear strut. 9,10C (t.6Li) 48Cr. 52Fe. 56Ni (d. 6Li) shell model & nuclear structure $^{17}F(p,\alpha)^{14}O$ **2p-emitters 3N** forces Ve(d,py) ⁻¹¹C, ⁵⁰Mn, ⁴⁶Cr, ⁴³Ti beams Pairing and np correlations → with ¹⁶O, ⁵⁰Cr and ⁴⁶Ti primary beams He(²⁰⁸Pb, ²¹⁰Pb)⁴He Si(³He.d)³⁵F He(¹¹⁶Sn, ¹¹⁸Sn)⁴He shell ^{3,70,72}...Ni(³He,d) Fe(d, 4Hey) evolution Si, 28S, 34-32Ar(p,t)22Si, 26S. 32-30Ar $^{60}Zn ({}^{3}He, p\gamma)$ → with increased intensity of ⁴⁰Ca, ³⁶Ar or ³²S and N=Z beams above Zn pairing

Physic cases with accelerated radioactives ions beams M. Assié : Workshop Target Ion Source, Sept. 2023

Logic of beams development:

- Accepted proposal/Endorsed Lol Specific beam development ٠
- Probing the community (LoI WS 2016 / WS 2023 / • discussions with physicists / what we know we can do)

Broadband beam development

Access to primary beam limitation : Should we work on Batch Mode Ion Source? •

R&D on SPIRAL1

Limits and improvements

- Primary beam power
- Fragmentation cross-section
- \Rightarrow ¹²C on new target(s)

 \Rightarrow Molecular extraction

Technical developments	Objectives
New Target + 12C beam	Increase in target intensities (postdoc position)
MonoNaKe-Pt	^{8/9} Li beam experiment
FEBIAD	Fe-Co-Ni Beams (hot target)
Molecular Beam with FEBIAD	Ca beam, selectivity
TULIP + FEBIAD	Metallic shot lived isotopes

GANIL facilities, Ion sources

SPIRAL 1 :

- Beam production
- Charge Breeding, Acceleration
- R&D on SPIRAL1

Stable Beam production

- Challenge for S³ beams
- R&D for Newgain

Stable beam production @ GANIL cyclotrons

Long experience in the production of metallic beams \Rightarrow Sharing technical knowledge to improve beams at GANIL and FRIB

S³ primary beams challenge A/Q < 3 injectors : high charge state

Phoenix V3 ECR	A/Q<3
High Voltage extraction	60kV
RF (18GHz)	2kW
Plasma Volume	1.41

- Control impurities into ion source
 - Isotope very pure

Sample expensive (1g : ⁷⁰Zn: 22k€, ⁶⁴Ni: 49k€) or not available ⁴⁸Ca

- \Rightarrow Development of chemical preparation & recycling techniques
 - Oven technique

Project to design and build a second injector at SPIRAL2 with A/Q=7

Budget obtained by ANR/France in 2021 Planning : 2023-2030

Element	A/q	Operational Beam Current (µA)	Particle Current (pµA)	1 σ RMS normalized (π.mm.mrad)
⁴⁸ Ca ¹¹⁺	4.36	150	15	0.25
238U34+	7	170	5	0.10
0	,	170	5	0.10

Beams of reference for ions source and plateform design

- 28 GHz + 18GHz ion source on a HV platform ~70 kV
 - Design study under progress
 - Project team : LPSC, CEA/DACM, GANIL, LPC

SPIRAL2 : »NEWGAIN

ASTERICS : A new superconducting ECRIS for SPIRAL2 T. Thuillier (LPSC) et al, ICIS23, Vancouver

High temperature oven GANIL On-line in ECR4M First beam of ²³⁸U

Development of SC-ECRIS T. Thuillier, LPSC

RF Equipments :

٠

- o DC Breakers
- Mode converter
- Pressure windows
- Techniques to maintains and align ion source sub-systems
- 28GHz Plasma Chamber designs

Operation with SC-ECRIS and metallic beams

Share feedback on SC-ECRIS

- Metallic oven designs : resistive, inductive
- Metal sputtering for SC-ECRIS
- Cryogenic operation
- Safety procedure and parameters to control
- Limits in operation : ion source parameters, tuning

Superconducting lons Sources @ FRIB G. Machicoane, Workshop Target lons Source, 2023, Caen

23

SUMMARY

GANIL facilities, Ion sources

SPIRAL 1

- Beam production
- Charge Breeding, Acceleration
- R&D on SPIRAL1

Stable Beam production

- Challenge for S3 beams
- R&D for Newgain

Conclusions

Stable beams

Technique around ion beam production with ECR

- High Temperature oven for RT and SC-ECRIS
- Recycling technique for rare isotope
- Stability detectors for operation (OES, X-rays detectors)
- Metallic beams techniques

Share feedback on SC-ECRIS- Joint R&D

- R&D on specific device like plasma chamber, RF,
- Operation with SC-ECRIS and it specificities

ISOL Technique

Share informations about ISOL TISS

- Thin or thick Target/Cavity
- Ion sources (ECR, FEBIAD, IS)
- Purity
- Batch Mode Ion Source ?

Collaboration on Diffusion coefficient data base

- Share data between FRIB and GANIL to construct database
- Participation on construction of specific device to measure diffusion coefficient.

Thank you for your attention !