

Kickoff meeting of the CNRS-MSU International Research Laboratory on Nuclear Physics and Nuclear Astrophysics

Instrumentation GANIL/SPIRAL2

Hervé Savajols (GANIL/France)

Not exhaustive list

GANIL – SPIRAL2

Cyclotrons and their experimental equipment

Large variety spectrometers/detectors :

- VAMOS++ and the fission revival
- · LISE and the « tandem » mode
- MUST2/MUGAST
- ACTAR-TPC active target
- INDRA+FAZIA
- EXOGAM (AGATA)
- PARIS
- NEDA, ...

New SPIRAL1 beams New stable beams in future : Th & ²³⁵U

AGATA@GANIL.1

2015-2017

AGATA coupled to VAMOS, FATIMA, PARIS

Exotic nuclei spectroscopy by MNT transfer and fission reaction

2018

- 2π system by the end of the LNL campaign (~2025-2026)
- 3π array in 2030 AGATA back @ GANIL in 2026 ?

AGATA coupled to NEDA-DIAMANT

N~Z nuclei spectroscopy fusion evaporation

AGATA coupled to VAMOS MUGAST

40-41 capsules

2019-2021

Exotic nuclei spectroscopy by transfer reaction using RIB

AGATA coupled to VAMOS, EXOGAM, 2nd Arm, LEPS Exotic nuclei spectroscopy MNT transfer

821 UT have been performed over 29 experiments

Some highlights of AGATA@GANIL.1

M. Ciemala et al, Phys. Rev. C101, 021303(R) (2020)

LISE 2022

« Tandem » mode with ACTAR-TPC and EXOGAM-PARIS-ZDD: a world premiere with heavy ions

Simultaneous measurement of Coulomb and nuclear excitation for neutron-rich isotopes of Si and S

LISE 2022

Cocktail **RIB** Zero Degree Detection ACTAR TPC CATS EXOGAM 0° 8 PARIS 8 EXOGAM Annular Silicon detectors

Data analysis is under progress

Fission studies at VAMOS++

Fission studies at VAMOS++

Evolution of the VAMOS detection setups

ACTAR TPC : Design

Active target: (Gaseous) detector in which the atoms of the gas are used as a target

- ✓ Drift region: principle
 - Transparent to particles on 4 sides → Wire field cage
 - Homogeneous vertical drift electric field
 - \rightarrow Double wire field cage: 2 mm/1 mm pitch
- ✓ Amplification region: principle
 - Bulk Micromegas (CERN PCB workshop)
 - Local gain reduction via pad polarization
- ✓ Segmented pad plane
 - Micromegas
 - \rightarrow transverse multiplicity \approx electron straggling: 2x2 mm² pads
 - 16384 pads with very high density: challenge!
 - \rightarrow Two solutions investigated
- ✓ Electronics: GET

GET electronics:

- 512 samples ADC readout depth x 16384 pads
- \rightarrow volume sampling in 8 Mega voxel
- adjustable gain, peaking time, individual trigger: pad per pad

Physics cases addressed and performances

- □ Study of excitation functions (resonant scattering, etc...)
- \rightarrow thick target, need to differentiate the reactions channels
- \rightarrow Commissioning experiment: ¹⁸O(p,p) and ¹⁸O(p, α) excitation functions
- \rightarrow E_{cm} resolution dominated by the angular straggling of the ions in the gas: optimum with H₂ gas for proton target

□ Reactions with very negative Q-value in inverse kinematics

- \rightarrow recoil stops inside the target
- \rightarrow Study of GMR and Soft compression modes in ^{58,68}Ni through (α , α ') reaction
- \rightarrow Access to center-of-mass angles below 3°
- \rightarrow Resolution in E* dominated by the straggling in range, no possible amelioration

□ Reactions with (very) low intensity beams

- \rightarrow thick target, no loss of resolution due to the target thickness
- \rightarrow Measurement of the ¹⁹N(d,³He) reaction with D₂(90)+iC₄H₁₀(10) gas @ 1 bar: equivalent 11 mg/cm² CD₂

Time Projection Chamber mode

- \rightarrow Ideal for implantation/decay studies
- \rightarrow Study of the proton decay branches of the ^{54m}Ni and ^{53m}Co & study of the ^{48}Ni 2-proton radioactivity
- \rightarrow Validation of the techniques for lifetimes from ${\sim}100$ ns to more than 100 ms

INDRA + FAZIA

Full 4π set-up with high quality A & Z identification and E measurements

Already two campaigns performed at GANIL:

- 2019: E789
- 2022: E818

Two others to come 2025-

• E881 and E884

FAZIA:

12 blocks 1,8° -13,5° 192 telescopes Si-Si-CsI(Tl) Z identification 1-54 A resolution Z~20 PSA Z~25 ΔE-E

INDRA:

12 rings 14° -176° 240 CsI(TI) 96 Si detectors Z identification 1-54 A resolution Z=1-4 CsI, Z=1-6 Si-CsI

SPIRAL2 and the new experimental rooms

NFS (NEUTRONS FOR SCIENCE)

ions) FRANCE TOF room Converter room RANCE Accélérateur linéaire (LINAC) S³ (SUPER SEPARATOR SPECTROMETER) Beams : >> NEWGAIN FRANCE W GANU INTECTOR ION SOURCE

DESIR (Decay, Excitation and storage of radioactive

A new accelerator ramping up:

-First operation experimental area and the first neutrons at GANIL/SPIRAL2: NFS first campaigns and results

-Super Separator Spectrometer

-DESIR project

-Second injector (NEWGAIN)

33 MeV protons 40 MeV deutons <14,5 MeV/nucleon ions lourds

Physics of the fission process and characterization of fission products of actinides

Fundamental physics

- Excitation energy sharing
- Deformation at scission
- Role of the structure effects

Nuclear application

· Characterization of fission products of actinides

- detect both fragments in coincidence
- measure their kinetic energy
- identify their mass pre & post evaporation
- provide information on their nuclear charge

Fission fragment detection based on low-pressure gaseous detectors

- SED-MWPC detectors : s(t) = 120 ps & s(xy) = 2 mm
- Axial Ionisation chamber: s(E)/E ~ 1 %

Pre-evap. fragment masses (2V): $\sigma(A)$ ~1 uma Post-evap. fragment masses (EV): $\sigma(A)$ ~2 uma

TOF detectors

E814 experiment: ²³⁵U Fission fragment study with FALSTAFF at NFS

Velocity (cm/ns)

expected in 2025

³ Super Separator Spectromer

Study of rare events in nuclear and atomic physics

- Develop a comprehensive model of atomic nuclei How do we understand the structure and stability of atomic nuclei?
- Inderstand the origin of elements
- Ise of atomic nuclei to test fundamental symmetries and properties

3 Super Separator Spectrometer

Main equipment and detection setups

Basic properties and functionalities

Two basic optical modes of operation:

High transmission vs high mass resolution

 \rightarrow The momentum achromat (MA) optic is common to all modes

In future :

- Online optics Bayesian optimization
- Implementation of machine learning

Convergent Mode (CM)

¹⁰⁰Sn transmissions 65%

High Resolution Mode (HRM)

¹⁰⁰Sn transmissions 40%

 $\Delta dp/p=16\%$ $\Delta \Theta = 45 \text{mrad}$

(10x10cm)

 $\Delta \phi = 140 \text{mrad}$

m/q dispersion = 8 mm/%

3 charge states & $M/\Delta M = 500$

Reference beam : A=100, Q=24+, σ_p = 3.7%, σ_{θ} = 18mrad

(Spectroscopy & Indentification of Rare lons Using S³)

Decay spectroscopy of VHE/SHE

α , SF, e⁻, γ decay spectroscopy

- Time of flight ($\Delta t < 1ns$) and tracking (Δx) <0.5mm) of (super)heavy ions
- Implantation decay correlation (10x10cm2, 128x128ch DSSD)
- Digital electronics for fast decays (low gain/high gain switching) ΔE_{α} <20keV

ු[ු] LEB (Low Energy Branch)

Laser, decay spectroscopy & Mass measurement

- Pure & low energy beams
- · Species not available by other techniques

- Nuclear Moments / Charge radii / Spin
- Mass
- Decay spectroscopy

੍ਹੇ^ਤੇ LEB – Laser developments GISELE @ GANIL

Development of laser spectroscopy methods System of different linewidths available

- New injection-locked Ti:sa cavity in collaboration with JGU Mainz ($\Delta\lambda$ < 50 MHz)
- New continuous wave Ti:sa laser in collaboration with Uni. Nagoya
- Day-1 laser spectroscopy developments : Er, Sn, Pd

J. Romans, NIMB 536 (2023) 72 A. Ortiz-Cortes, PhD defense, 26/01/2023

^{112,114,115,116,117,118,119,120,122-124}Sn isotope shifts

DESIR

Low energy (< 60 keV) 1⁺ RIBs from SPIRAL1 and S³

PIPERADE

Laboratoire commun CEA/DSM SOLICI CNRS/IN2P3

Purification and mass measurements

⁴¹K vs ³⁹K ~ 3.10⁻⁹

Double penning trap

- Purification : 10⁵ ions/bunch, 2-20 Hz
- Mass measurements TOF-ICR and PI-ICR (10⁻⁸ 10⁻⁹ precision)

Next steps

nucleus

A non-zero *D* can arise from CP violation

T reversal odd

D correlation measurement in ²³Mg, ³⁹Ca decays to the 10⁻⁵ level with some beam, laser and trapping R&D

26

Conclusion

Large variety of spectrometers and detectors

- VAMOS++ and the new Super Separator Spectrometer
- MUGAST-GRIT, INDRA FAZIA, PISTA, SIRIUS
- ACTAR-TPC
- FALSTAFF

The rise of low/thermal energy physics has trigged new developments

- Gas-cell technology (S³-LEB, FRIENDS³ R&D, ...)
- Laser spectroscopy techniques (in gas jet, collinear, ...)
- Trap devices (MR-ToF-MS, double Penning trap, ...)
- Trap assisted decay spectroscopy (under development with MLLTrap)
- Ion trap-based device (MORA)

Next generation of electronics and DAQ

Examples where synergies between the IRL partners are possible (not exhaustive list)