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Progress in Ab Initio Calculations

�=��

�=��

�=��

�=��

�=��

�=��
�=��

�=�� �=��

�=��

�=���

� �� �� �� �� �� �� �� �� �� �� �� ��� ��� ��� ��� ��� ���

�

��

��

��

��

��

��

��

��

��

��

�

�

����

����
����
����
����
����
����
����

�=��

�=��

�=��

�=��

�=��

�=��
�=��

�=�� �=��

�=��

�=���

� �� �� �� �� �� �� �� �� �� �� �� ��� ��� ��� ��� ��� ���

�

��

��

��

��

��

��

��

��

��

��

�

�

����

����
����
����
����
����
����
����

[ cf. HH, Front. Phys. 8, 379 (2020) ]
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Decoupling in A-Body Space

goal: decouple reference state  
from excitations

⇥⇥Ǫ
�

|Ǫ� |Ǫa
i � |Ǫab

ij � |Ǫabc
ijk �

|Ǫ
ab

c
ijk

�
|Ǫ

ab ij
�

|Ǫ
a i�

|Ǫ
�

�
Ǫ

��H
��Ǫ� �

|Ǫ� |Ǫa
i � |Ǫab

ij � |Ǫabc
ijk �

|Ǫ
ab

c
ijk

�
|Ǫ

ab ij
�

|Ǫ
a i�

|Ǫ
�

�
Ǫ

��H(�)
��Ǫ� �

U(s)HU†(s)

s � �



|Ǫ� |Ǫa
i � |Ǫab

ij � |Ǫabc
ijk �

|Ǫ
ab

c
ijk

�
|Ǫ

ab ij
�

|Ǫ
a i�

|Ǫ
�

�
Ǫ

��H
��Ǫ� �

H. Hergert - FRIB IRL-NPA Kickoff Meeting, East Lansing, Dec 12, 2023

Flow Equation

d
dsH(s) =

�
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Operators

truncated at two-body level -

matrix is never constructed  

explicitly!
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“standard” IMSRG: build correlations on top of 

Slater determinant (=independent-particle state)
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Correlated Reference States

! IMSRG(2) IMSRG(3) IMSRG(4) IMSRG(5)

. . . 

Collective (aka static) correlations, e.g.

due to intrinsic deformation:
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Correlated Reference States

! MR-IMSRG(2)

. . . 

MR-IMSRG: build correlations on top of 

already correlated state (e.g., from a method that


describes static correlation well)

IMSRG

reference
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IMSRG-Improved Methods

XYZ 
define


reference

IMSRG 
evolve


operators

XYZ 
extract


observables

Could add

 self-consistency.

* mean field or 
explicitly correlated
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IMSRG-Improved Methods

XYZ 
define


reference

IMSRG 
evolve


operators

XYZ 
extract


observables

• IMSRG for closed and open-shell nuclei: IM-HF and 
IM-PHFB

• HH, Phys. Scripta, Phys. Scripta 92, 023002 (2017)


• HH, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. 
Rept. 621, 165 (2016)


• Valence-Space IMSRG (VS-IMSRG)                 

• S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Nucl. Part. Sci. 

69, 165 


• In-Medium No Core Shell Model (IM-NCSM)                                         

• E. Gebrerufael, K. Vobig, HH, R. Roth, PRL 118, 152503


• In-Medium Generator Coordinate Method (IM-GCM)                                               

• J. M. Yao, J. Engel, L. J. Wang, C. F. Jiao, HH PRC 98, 054311 (2018)


• J. M. Yao et al., PRL 124, 232501 (2020) 

symmetry adaptation & 
continuum in progress 



Merging IMSRG and CI:

Valence-Space IMSRG

Review: 
S. R. Stroberg, HH, S. K. Bogner, and J. D. Holt, Ann. Rev. Part. Nucl. Sci. 69, 165 
(2019)

Full CI: 
E. Gebrerufael, K. Vobig, HH, and R. Roth, Phys. Rev. Lett. 118, 152503 (2017)
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Insights on Effect of 3N Forces 

• effects of 3N forces incorporated into residual interaction 
via monopole corrections (Zuker) and  scaling (Brown 
& Wildenthal) 


• included in VS-IMSRG through normal ordering, but no 
“simple” A-dependence - partitioning of H not unique

A0.3
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Figure 8
(a) Single-particle energies in the sd shell obtained with the VS-IMSRG normal ordered with respect to a 28Si reference, using an NN
interaction, with or without the 3N piece. (b) Neutron–neutron and proton–neutron monopoles of the TBMEs, with and without the
3N force. (c) The difference between matrix elements obtained with NN only and NN+3N , with and without a monopole correction.
All calculations use the EM1.8/2.0 interaction of Reference 220. Abbreviations: TBME, two-body matrix element; USD, universal sd
shell; VS-IMSRG, valence-space in-medium similarity renormalization group.

obtained for oxygen isotopes and N = Z nuclei in the sd shell nuclei with the USDB interaction,
both with and without the mass scaling of the TBMEs. These are compared to the binding
energies of the same nuclei calculated using the VS-IMSRG with and without ENO. It is evident
that ENO has qualitatively the same effect as the scaling of the TBMEs, although an investigation
of the VS-IMSRG TBMEs reveals no such smooth scaling (the effect is largely captured in the
core and single-particle energies).

Figure 8 shows the single-particle energies and monopoles of TBMEs obtained for a 28Si
reference with and without explicit 3N forces. Including the 33N force has a signi!cant impact
on the single-particle energies; indeed, the neutron single-particle energies are shifted closer to
the USD (57) values (USD does not include the Coulomb interaction). Figure 8b shows that
the effect of the 3N interaction on the TBME monopoles is repulsive, as expected from binding
energy calculations, and that it shifts the monopoles toward the USDB values. Figure 8c shows
the difference between each of the TBMEs obtained with the NN-only and NN+3N interactions
and the difference when the NN-only monopoles have been shifted to the NN+3N values. The
monopole shift does not yield perfect agreement—there is still some scatter—but the remaining
discrepancy is approximately Gaussian and centered on zero. It is not unreasonable that there
would be moderate cancellation between the remaining terms, and that the monopole correction
would approximately account for the missing 3N forces, as claimed by Zuker (205). For a related
approach using density functionals to inform the monopole correction, see Reference 221.
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obtained for oxygen isotopes and N = Z nuclei in the sd shell nuclei with the USDB interaction,
both with and without the mass scaling of the TBMEs. These are compared to the binding
energies of the same nuclei calculated using the VS-IMSRG with and without ENO. It is evident
that ENO has qualitatively the same effect as the scaling of the TBMEs, although an investigation
of the VS-IMSRG TBMEs reveals no such smooth scaling (the effect is largely captured in the
core and single-particle energies).

Figure 8 shows the single-particle energies and monopoles of TBMEs obtained for a 28Si
reference with and without explicit 3N forces. Including the 33N force has a signi!cant impact
on the single-particle energies; indeed, the neutron single-particle energies are shifted closer to
the USD (57) values (USD does not include the Coulomb interaction). Figure 8b shows that
the effect of the 3N interaction on the TBME monopoles is repulsive, as expected from binding
energy calculations, and that it shifts the monopoles toward the USDB values. Figure 8c shows
the difference between each of the TBMEs obtained with the NN-only and NN+3N interactions
and the difference when the NN-only monopoles have been shifted to the NN+3N values. The
monopole shift does not yield perfect agreement—there is still some scatter—but the remaining
discrepancy is approximately Gaussian and centered on zero. It is not unreasonable that there
would be moderate cancellation between the remaining terms, and that the monopole correction
would approximately account for the missing 3N forces, as claimed by Zuker (205). For a related
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A. Zuker, PRL 92, 042502 (2003) 
B. H. Wildenthal, PPNP 11, 5 (1984); B. A. Brown and B. H. Wildenthal, ARNPS 38, 29 (1988) 

B. A. Brown and W. A. Richter, PRC 74, 034315 (2006) 
S. R. Stroberg et al., ARNPS 69, 307 (2019)

28Si
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Insights on Effect of 3N Forces 

 scaling in USDB / ensemble normal ordering in VS-IMSRG 
capture effects of 3N forces amongst valence nucleons
A0.3
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4.2. Mass Dependence of the Effective Interaction
A signi!cant consequence of the ENO procedure is that a different valence-space interaction is
obtained for each nucleus. It is important to emphasize here that because the procedure does not
involve any !tting to data, there is no loss of predictive power. The ENO should be considered
a technique for reducing the impact of the truncation to two-body operators. In terms of com-
putational effort, the need to generate a new interaction for each nucleus makes a study of the
full sd shell more laborious, but still manageable. For nuclei in the middle of the p f shell, the
exponential scaling of the valence-space diagonalization catches up with the polynomial scaling
of the VS-IMSRG, so generating the effective interaction takes about as long as the shell model
calculation that uses it.

The need for some mass dependence of the effective interaction has been known for a long
time. The sd shell interactions presented by Kuo & Brown (6) and Kuo (7) yielded a good de-
scription of spectroscopy for a few valence particles or valence holes, but agreement deteriorated
for midshell systems (219). Investigations by Wildenthal (10) and Chung (52) suggested that a
single phenomenological adjustment could not remedy the situation, and a scaling of the TBMEs
according toA0.3 was introduced.This prescription has been adopted inmany later treatments (11,
30, 134). The scaling is typically justi!ed in terms of the increasing nuclear radius changing the
optimal harmonic oscillator frequency (10, 11, 56, 144). While such an argument would suggest
that the core and single-particle energies should also change with mass, these effects could in prin-
ciple be absorbed into the scaling of the TBMEs (10). In contrast, the need for mass dependence
of TBMEs could be interpreted as a signal of nonnegligible three-body terms in the effective
interaction, and indeed this has been suggested a number of times (199, 200, 211).

We may expect that ENO should capture the effects of both a changing mean !eld and
the residual three-body effective interaction.15 Figure 7 displays binding energies per nucleon
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A
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VS-IMSRG
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VS-IMSRG, no ENO
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a   Oxygen isotopes b   N = Z nuclei in shell

Figure 7
Energy per nucleon for (a) the oxygen isotopes 16 ≤ A ≤ 28 and (b) the N = Z nuclei in the sd shell
obtained with VS-IMSRG using the EM1.8/2.0 interaction compared with the results obtained with the
USDB interaction. The thinner lines indicate the effect of turning off the ENO in the VS-IMSRG
calculation or of turning off the A0.3 scaling of two-body matrix elements in the USDB interaction.
Abbreviations: ENO, ensemble normal ordering; USD, universal sd shell; VS-IMSRG, valence-space
in-medium similarity renormalization group.

15Indeed, these effects are not entirely distinct; the induced three-body interaction depends on the choice of
reference.
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B. H. Wildenthal, PPNP 11, 5 (1984); B. A. Brown and B. H. Wildenthal, ARNPS 38, 29 (1988) 
B. A. Brown and W. A. Richter, PRC 74, 034315 (2006) 

S. R. Stroberg et al., ARNPS 69, 307 (2019)
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Description of sd-shell StatesNS69CH12_Stroberg ARjats.cls October 9, 2019 19:47
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energies in sd shell
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Figure 9
Deviation from experiment for excited states throughout the sd shell, obtained with (a) the EM1.8/2.0 interaction without
transformation, (b) the EM1.8/2.0 interaction transformed with the VS-IMSRG using ENO, and (c) the USDB interaction. The points
indicate the deviations between the computed and experimental energies for all of these levels, which contribute to the speci!ed
cumulative rms deviation between theory and experiment. Abbreviations: ENO, ensemble normal ordering; rms, root mean square;
USD, universal sd shell; VS-IMSRG, valence-space in-medium similarity renormalization group.

computed and experimental energies for all of these levels, which contribute to the speci!ed
cumulative rms deviation between theory and experiment. Figure 9a uses the bare matrix
elements of the EM1.8/2.0 interaction in the sd shell valence space, and Figure 9b shows the
results obtained by applying the VS-IMSRG with ENO, as described in Sections 2 and 4.1. Since
our starting interaction has been evolved to a low-resolution scale, correlations due to the strong
short-range repulsion and the tensor force have largely been accounted for. Thus, the shell model
picture is reasonable: Low-lying nuclear states are bound, and excitation energies are at least of
the correct order of magnitude, with a sizable rms deviation of 1,696 keV.

The deviations from experiment are reduced signi!cantly when we use the VS-IMSRG to de-
couple the sd shell valence space from other excitations, accounting for core polarization and other
types of long-range, many-body correlations (see Section 2). With an rms deviation of 647 keV,
we are not doing as well as the gold-standard USDB interaction, for which the deviation is merely
220 keV for the selected levels (and only ∼130 keV for all 600-plus measured sd shell levels). This
is not unexpected: USDB is essentially the best possible !t to experimental data under the cho-
sen model assumptions, including the choice of a valence space containing only the 1s1/2, 0d3/2,
and 0d5/2 orbitals; the mass dependence of the TBMEs; and the omission of residual three- and
higher-body effective interactions. The accuracy of the VS-IMSRG results is subject to the un-
certainties of the input interaction and the truncation used in the method. Both can and will be
systematically improved in future applications.

5.2. The Calcium Region
Soon after the successful application of perturbatively constructed shell model interactions in the
sd shell, the !rst results for the calcium isotopes followed, including a successful prediction of the
two-neutron separation energies at the subshell closure in 52Ca (133, 137, 239). More recently,
the masses of 55−57Ca were measured at RIKEN, showing the onset of a "at trend in the sepa-
ration energies beyond 54Ca that would be consistent with the !lling of the neutron 0 f5/2 shell

338 Stroberg et al.
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Radii

differential observables like the staggering of energies ( ) and radii ( ) 
or the charge radius difference of mirror nuclei, , are insensitive to 
variations of interaction cutoffs / resolution scale

Δ(3)
E Δ(3)

r
ΔRch

LETTERS NATURE PHYSICS

are shown in the inset of Fig. 1. The OES of the radii is quite pro-
nounced near N = 40, but our new data points reveal a reduction 
of the OES towards N = 50, starting at 74Cu. This is likely to be 
attributed to the change in the ground-state proton configuration. 
Indeed, as reflected in the ground-state spins and moments13,14, up 
to 73Cu, the odd proton resides predominantly in the πp3∕2 orbital, 
while from 74Cu onwards it occupies the πf5∕2 shell.

We will now demonstrate that modern density functional theory 
(DFT) and the valence-space in-medium similarity renormaliza-
tion group (VS-IMSRG) frameworks can both provide a satisfactory 
understanding of changes in the charge radii and binding energies 
of the copper isotopic chain between neutron numbers N = 29 and 
N = 49, down to the scale of the small OES. In the context of the 
following discussion, it is important to remember that the global 
(bulk) behaviour of nuclear charge radii is governed by the Wigner–
Seitz (or box-equivalent) radius r0 ¼ ½3=ð4πρ0Þ%

1=3

I
, which is given 

by the nuclear saturation density ρ0. On the other hand, the local 
fluctuations in charge radii, including OES, are primarily impacted 
by the shell structure and many-body correlations. The common 
interpretation of OES involves various types of polarization exerted 
by an odd nucleon, occupying a specific shell-model (or one-quasi-
particle) orbital15. In particular, the self-consistent coupling between 
the neutron pairing field and the proton density provides a coherent 
understanding of the OES of charge radii of spherical nuclei such as 
semi-magic isotopic chains5,16–18.

With measurements now spanning all isotopes between the two 
exotic doubly magic systems 56,78Ni, the copper isotopes represent 
an ideal laboratory for testing novel theoretical approaches in the 
medium-mass region. This region of the nuclear chart represents 
new territory for A-body theories based on two-nucleon (NN) and 

three-nucleon (3N) forces derived from chiral effective field the-
ory19,20. In general, OES of masses has only been sparsely studied 
within the context of nuclear forces and many-body methods21,22. 
However, the VS-IMSRG approach7,8 has now sufficiently advanced 
to study most nuclear properties in essentially all open-shell sys-
tems below A = 100, including masses, charge radii, spectroscopy 
and electroweak transitions23. The presence of a potential sub-shell 
closure at N = 40 (ref. 9) and the well-evidenced structural changes 
due to shell evolution as N = 50 is approached13 all serve to test such 
calculations even further. From the side of the DFT calculations, the 
recently developed Fayans functional, successful in describing the 
global trends of charge radii in the Sn (Z = 50) and Ca (Z = 20) mass 
regions3–5, has not been tested in this region of the nuclear chart, nor 
with data on odd-Z isotopes in general.

Details on both the DFT and VS-IMSRG calculations can be 
found in the Methods, but a few key aspects will be mentioned. The 
DFT calculations were carried out with the Fayans energy density 
functional24, which—importantly—reproduces the microscopic 
equations of state of symmetric nuclear matter and neutron matter. 
The inclusion of surface and pairing terms dependent on density 
gradients has been shown to be crucial for reproducing (the OES 
of) the calcium charge radii5. The VS-IMSRG calculations were per-
formed with two sets of NN+3N forces derived from chiral effec-
tive field theory, the PWA and 1.8/2.0(EM) interactions of ref. 25. 
Both are constrained by only two-, three- and four-body data, with 
3N-forces specifically fit to reproduce the 3H binding energy and 
4He charge radius.

The absolute charge radii of the copper isotopes are compared 
to the theoretical calculations in Fig. 2a. These total charge radii are 
obtained using the reference radius1 r65 = 3.9022(14) fm. Excellent 
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sd shell pf shell

Quenching of Gamow-Teller Decays

• empirical Shell model calculations require quenching factors 
of the weak axial-vector couling 


• VS-IMSRG explains this through consistent renormalization of 
transition operator, incl. two-body currents

gA

LETTERSNATURE PHYSICS

of 2BCs in A ≤ 7 nuclei is similar to what was found in the Green’s 
function Monte Carlo calculations of ref. 26. We find a rather sub-
stantial enhancement of the 8He Gamow–Teller matrix element due 
to the 2BC. Let us mention, though, that this transition matrix ele-
ment is the smallest of those presented in Fig. 2. We note that, for the 
other Hamiltonians employed in this work, the 2BCs and 3N were 
not fit to reproduce the triton half-life; nevertheless, the inclusion of 
2BCs for most of these cases also improves the agreement with data 
for the light nuclei considered in Fig. 2 (see Supplementary Fig. 9 
for results obtained with NNLOsat and NN-N3LO + 3Nlnl). The case 
of 10C is special because the computed Gamow–Teller transition is 
very sensitive to the structure of the Jπ = 1+ state in the 10B daughter 
nucleus. Depending on the employed interaction, this state can mix 
with a higher-lying 1+ state, greatly impacting the precise value of 
this transition. We finally note that benchmark calculations between 

the many-body methods used in this work agree to within 5% for 
the large transition in 14O. For smaller transitions discrepancies can 
be larger (see Supplementary Information for details).

Historically, the most extensive evidence for the quenching 
of Gamow–Teller β-decay strength comes from medium-mass 
nuclei14,16,27, and we now show that our calculations with these 
consistent Hamiltonians and currents largely solve the puzzle here 
as well. We use the valence-space in-medium similarity renor-
malization group (VS-IMSRG) method8 (see Methods for details) 
and compute Gamow–Teller decays for nuclei in the mass range 
between oxygen and calcium (referred to as sd-shell nuclei) and 
between calcium and vanadium (lower pf-shell nuclei), focusing on 
strong transitions. Here, we highlight the NN-N4LO + 3Nlnl interac-
tion and corresponding 2BCs.

Figure 3 shows the empirical values of the Gamow–Teller tran-
sition matrix elements versus the corresponding unquenched 
theoretical matrix elements obtained from the phenomenological 
shell model with the standard Gamow–Teller στ operator and the 
first-principles VS-IMSRG calculations. Perfect agreement between 
theory and experiment is denoted by the diagonal dashed line. The 
results from the phenomenological shell model clearly exemplify 
the state of theoretical calculations for decades13–16,27; as an example, 
in the sd-shell shell, a quenching factor of q ≈ 0.8 is needed to bring 
the theory into agreement with experiment14. The VS-IMSRG cal-
culations without 2BCs (not shown) exhibit a modest improvement, 
with a corresponding quenching factor of 0.89(4) for sd-shell nuclei 
and 0.85(3) for pf-shell nuclei, pointing to the importance of con-
sistent valence-space wavefunctions and operators (Supplementary 
Fig. 10). As in 100Sn, the inclusion of 2BCs yields an additional 
quenching of the theoretical matrix elements, and the linear fit of 
our results lies close to the dashed line, meaning our theoretical pre-
dictions agree, on average, with experimental values across a large 
number of medium-mass nuclei.

Another approach often used in the investigation of Gamow–
Teller quenching is the Ikeda sum-rule: the difference between the 
total integrated β− and β+ strengths obtained with the στ∓ operator 
yields the model-independent sum-rule 3(N – Z). We have com-
puted the Ikeda sum-rule for 14O, 48Ca and 90Zr using the coupled-
cluster method (see Methods for details). For the family of EFT 
Hamiltonians used for 100Sn we obtain a quenching factor aris-
ing from 2BCs that is consistent with our results shown in Fig. 3  
and the shell-model analyses from refs. 14–16,27. (Supplementary 
Fig. 7). We note that the comparison with experimental sum-rule 
tests using charge-exchange reactions28,29 is complicated by the 
use of a hadronic probe, which only corresponds to the leading 
weak one-body operator, and by the challenge of extracting all 
strength to high energies. Here, our developments enable future 
direct comparisons.

It is the combined proper treatment of strong nuclear correla-
tions with powerful quantum many-body solvers and the consis-
tency between 2BCs and three-nucleon forces that largely explains 
the quenching puzzle. Smaller corrections are still expected to 
arise from neglected higher-order contributions to currents and 
Hamiltonians in the EFT approach we pursued, and from neglected 
correlations in the nuclear wavefunctions. For beyond-standard-
model searches of new physics such as neutrino-less double-β-
decay, our work suggests that a complete and consistent calculation 
without a phenomenological quenching of the axial-vector coupling 
gA is called for. This Letter opens the door to ab initio calculations of 
weak interactions across the nuclear chart and in stars.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41567-019-0450-7.
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shell (a) and lower pf-shell (b). Theoretical results were obtained using 
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shaded bands indicate one standard deviation from the average quenching 
factor. Experimental uncertainties, taken from ref. 30, are shown as vertical 
error bars.
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stantial enhancement of the 8He Gamow–Teller matrix element due 
to the 2BC. Let us mention, though, that this transition matrix ele-
ment is the smallest of those presented in Fig. 2. We note that, for the 
other Hamiltonians employed in this work, the 2BCs and 3N were 
not fit to reproduce the triton half-life; nevertheless, the inclusion of 
2BCs for most of these cases also improves the agreement with data 
for the light nuclei considered in Fig. 2 (see Supplementary Fig. 9 
for results obtained with NNLOsat and NN-N3LO + 3Nlnl). The case 
of 10C is special because the computed Gamow–Teller transition is 
very sensitive to the structure of the Jπ = 1+ state in the 10B daughter 
nucleus. Depending on the employed interaction, this state can mix 
with a higher-lying 1+ state, greatly impacting the precise value of 
this transition. We finally note that benchmark calculations between 

the many-body methods used in this work agree to within 5% for 
the large transition in 14O. For smaller transitions discrepancies can 
be larger (see Supplementary Information for details).

Historically, the most extensive evidence for the quenching 
of Gamow–Teller β-decay strength comes from medium-mass 
nuclei14,16,27, and we now show that our calculations with these 
consistent Hamiltonians and currents largely solve the puzzle here 
as well. We use the valence-space in-medium similarity renor-
malization group (VS-IMSRG) method8 (see Methods for details) 
and compute Gamow–Teller decays for nuclei in the mass range 
between oxygen and calcium (referred to as sd-shell nuclei) and 
between calcium and vanadium (lower pf-shell nuclei), focusing on 
strong transitions. Here, we highlight the NN-N4LO + 3Nlnl interac-
tion and corresponding 2BCs.
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sition matrix elements versus the corresponding unquenched 
theoretical matrix elements obtained from the phenomenological 
shell model with the standard Gamow–Teller στ operator and the 
first-principles VS-IMSRG calculations. Perfect agreement between 
theory and experiment is denoted by the diagonal dashed line. The 
results from the phenomenological shell model clearly exemplify 
the state of theoretical calculations for decades13–16,27; as an example, 
in the sd-shell shell, a quenching factor of q ≈ 0.8 is needed to bring 
the theory into agreement with experiment14. The VS-IMSRG cal-
culations without 2BCs (not shown) exhibit a modest improvement, 
with a corresponding quenching factor of 0.89(4) for sd-shell nuclei 
and 0.85(3) for pf-shell nuclei, pointing to the importance of con-
sistent valence-space wavefunctions and operators (Supplementary 
Fig. 10). As in 100Sn, the inclusion of 2BCs yields an additional 
quenching of the theoretical matrix elements, and the linear fit of 
our results lies close to the dashed line, meaning our theoretical pre-
dictions agree, on average, with experimental values across a large 
number of medium-mass nuclei.

Another approach often used in the investigation of Gamow–
Teller quenching is the Ikeda sum-rule: the difference between the 
total integrated β− and β+ strengths obtained with the στ∓ operator 
yields the model-independent sum-rule 3(N – Z). We have com-
puted the Ikeda sum-rule for 14O, 48Ca and 90Zr using the coupled-
cluster method (see Methods for details). For the family of EFT 
Hamiltonians used for 100Sn we obtain a quenching factor aris-
ing from 2BCs that is consistent with our results shown in Fig. 3  
and the shell-model analyses from refs. 14–16,27. (Supplementary 
Fig. 7). We note that the comparison with experimental sum-rule 
tests using charge-exchange reactions28,29 is complicated by the 
use of a hadronic probe, which only corresponds to the leading 
weak one-body operator, and by the challenge of extracting all 
strength to high energies. Here, our developments enable future 
direct comparisons.

It is the combined proper treatment of strong nuclear correla-
tions with powerful quantum many-body solvers and the consis-
tency between 2BCs and three-nucleon forces that largely explains 
the quenching puzzle. Smaller corrections are still expected to 
arise from neglected higher-order contributions to currents and 
Hamiltonians in the EFT approach we pursued, and from neglected 
correlations in the nuclear wavefunctions. For beyond-standard-
model searches of new physics such as neutrino-less double-β-
decay, our work suggests that a complete and consistent calculation 
without a phenomenological quenching of the axial-vector coupling 
gA is called for. This Letter opens the door to ab initio calculations of 
weak interactions across the nuclear chart and in stars.
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shaded bands indicate one standard deviation from the average quenching 
factor. Experimental uncertainties, taken from ref. 30, are shown as vertical 
error bars.

NATURE PHYSICS | www.nature.com/naturephysics

P. Gysbers et al., Nature Physics 15, 428 (2019) 
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Transitions
S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Part. Nucl. Sci. 69, 307 (2019) 

N. M. Parzuchowski, S. R. Stroberg et al., PRC 96, 034324 (2017) 
S. R. Stroberg et al. PRC 105, 034333 (2022)

• B(E2)s too small: missing collectivity due to intermediate 3p3h, 
… states that are truncated in IMSRG evolution (static 
correlation)

NS69CH12_Stroberg ARjats.cls October 9, 2019 19:47
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Figure 13
Electric quadrupole transition matrix element 〈0+‖E2‖2+〉 in 14C, 22O, and 32S, computed using the
valence-state in-medium similarity renormalization group with several choices of input chiral interaction.
Also shown are the energy of the 2+

1 state and the point proton radius squared. Experimental radii are from
Reference 252; energies and transition matrix elements are from Reference 243. Abbreviations: N2LO,
next-to-next-to-leading order; N3LO, next-to-next-to-next-to-leading order.

An early application of this approach was to electromagnetic transitions in light andmedium-mass
nuclei (123), which showed that the observables were well converged with respect to the model-
space truncation (i.e., frequency and number of major shells included in the initial harmonic os-
cillator basis). However, the computed values for collective observables such as magnetic mo-
ments or electric quadrupole and octupole transitions were substantially smaller than experimental
data.

The possible explanation for this discrepancy is that either the truncation of Equation 77 to
two-body operators is insuf!cient to capture this type of collectivity or the input chiral interactions
are de!cient in some way. Most likely, both are in effect to some degree. The interaction used
in Reference 123 is known to underpredict charge radii in these same nuclei (240). Given that
the electric quadrupole operator is proportional to r2, where r is the point proton radius, and
that the transition strengths B(E2) go as r4, one would naturally expect some underestimation
of the quadrupole strength. However, as demonstrated in Figure 13, this cannot be the whole
story.

The point proton radius squared (R2
pp in Figure 13) is underpredicted at approximately the

same level in 14C and 32S. In contrast, while the E2 strength for 14C is reasonably reproduced, in
32S it is underpredicted by∼25–50%, and the strength in 22O is underpredicted by∼65%.Clearly,
the underprediction of E2 strength in 32S cannot be explained solely by the radius de!ciencies.

Supporting this interpretation, unpublished calculations in a small space where exact diago-
nalizations are possible show unambiguously that the IMSRG(2) truncation misses a signi!cant
fraction of the E2 strength, and that capturing the full strength requires inclusion of correlated
many-particle many-hole excitations. In addition, symmetry-adapted NCSM calculations of sd
shell nuclei yielded signi!cantly greater E2 strength using the same starting interaction (231).

It is interesting to compare the IMSRG results with the above-mentioned approach of Siegel
& Zamick (251). They considered three levels of approximation for the E2 operator, !rst-order
core polarization, TDA, and RPA. Figure 14 presents typical diagrams contributing to these ap-
proximations.The effective operator generated by the VS-IMSRG via Equation 77 contains TDA
and RPA graphs to all orders. The VS-IMSRG also sums higher-order diagrams such as that in
Figure 14d, but because of the truncation to two-body operators, certain types of diagrams are
undercounted or missing altogether (see References 145, 174, and 175 for more details).
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Capturing Collective Correlations: 

In-Medium Generator Coordinate 
Method

J. M. Yao, A. Belley, R. Wirth, T. Miyagi, C. G. Payne, S. R. Stroberg, HH, J. D. Holt, 
PRC 103, 014315 (2021)

J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodriguez, HH, PRL 124, 232501 (2020)

J. M. Yao, J. Engel, L. J. Wang, C. F. Jiao, HH, PRC 98, 054311 (2018)
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Perturbative Enhancement of IM-GCM
M. Frosini et al., EPJA  58, 64 (2022)

• s-dependence is a built-in diagnostic tool for IM-GCM (not 
available in phenomenological GCM)

• if operator and wave function offer sufficient degrees of freedom, 

evolution of observables is unitary 

• need richer references and/or IMSRG(3) for certain observables



EM1.8/2.0, emax = 8, E3,max = 16, ℏω = 12 MeV
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(also cf. Ayangeaaka et al., PRC 107, 044314)

A. Belley et al., arXiv:2308.15643 (v2)
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76Ge

comprehensive  
state of the art study: 


IM-GCM & VS-IMSRG, explores 
interactions, truncations, 


contact term, …

A. Belley et al., arXiv:2308.15643 (v2)



H. Hergert - FRIB IRL-NPA Kickoff Meeting, East Lansing, Dec 12, 2023

76Ge / 76Se Structure

EM1.8/2.0 NN+3N interaction, ℏω = 12 MeV, emax = 10

A. Belley et al., arXiv:2308.15643 (v2)
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76Ge / 76Se Structure

EM1.8/2.0 NN+3N interaction, ℏω = 12 MeV, emax = 10

A. Belley et al., arXiv:2308.15643 (v2)
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Cluster Structures: 8Be
Application to deformed nuclei: 8Be

Chiral Interaction: SRG softened NN from Entem & Machleidt with 3NF from chiral EFT.
K. Hebeler et al PRC (2011)

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 9 / 44

J. M. Yao, R. Wirth, HH, in progress

HFB potential energy surface
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Application to deformed nuclei: 8Be

Starting from the spherical
reference state and the
energy-minimum deformed
state, the IMSRG(2) is
converged to different
solutions.

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 10 / 44

Application to deformed nuclei: 8Be

E2 transition in GCM/IMSRG/6/2 calculation (ref.: �2 = 0.8)

B(E2 : 2+
1 ! 0+

1 ) = 5.77e2fm4, Rm = 2.27 fm (bare operator)

B(E2 : 2+
1 ! 0+

1 ) = 8.76e2fm4 , Rm = 2.54 fm (evolved operator)

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 11 / 44
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Cluster Structures: 8Be
J. M. Yao, R. Wirth, HH, in progress

• Prolate and spherical references flow towards  and  states              
[cf. Sargsyan et al., PRL128, 202503; Caurier et al., PRC64, 051301(R)]


• seems consistent with IM-NCSM
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Looking Ahead 



H. Hergert - FRIB IRL-NPA Kickoff Meeting, East Lansing, Dec 12, 2023

What Is Next?

• nuclear structure (and reaction) studies with multiple 
complementary methods: IM-GCM, VS-IMSRG, Coupled 
Cluster, (symmetry-adapted) NCSM(C)…


• improved truncations: IMSRG(3) and tailored operator 
bases 

• accelerate IMSRG & IM-GCM (GPUs, factorization, 
Machine Learning, …)                                                           
[A. M. Romero et al., PRC 104, 054317; X. Zhang et al., PRC 107, 024304] 

• Uncertainty Quantification / Sensitivity Analysis 

• need cheap surrogate models (emulators)
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Emulation for Operators (IMSRG)

• non-invasive 
“physics-driven” 
emulator


• NNLOsat, NN+3N


• , 




• 1-10M samples 


• 5+ order of 
magnitude 
reduction in 
computational 
effort

emax = 12
E3max = 14

J. Davison, J. Crawford, S. Bogner, HH, in preparation

Pre
lim
ina
ry

optimal experimental design: 
Identify nuclei and observables from which we 


can learn most about physical phenomena, 

interactions / EFTs, …
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Preview: Finite-Temperature IMSRG

• formalism and 
benchmark paper out 
soon


• implementation for 
realistic nuclei and 
chiral interactions 
complete, under 
validation


• expect first 
applications to 
structure, beta 
decays within next 
1-2 years

The In-Medium Similarity Renormalization Group at Finite Temperature

Isaac G. Smith, Heiko Hergert, Scott K. Bogner
Facility for Rare Isotope Beams, Department of Physics and Astronomy,

Michigan State University, East Lansing, MI 48824

The study of nuclei at finite-temperature is of immense interest in nuclear astrophysics. Many ab
initio methods for determining properties of nuclei at zero-temperature have been developed over
the past few decades. We exapand one such method, the In-Medium Similarity Renormalization
Group (IMSRG), to finite temperature. The implementation of the finite-temperature IMSRG (FT-
IMSRG), including the implementation of finite-temperature Hartree-Fock, is detailed. Using an
exactly-solvable toy model, we show that the FT-IMSRG can accurately determine the energetics
of nuclei at finite temperature. The e↵ect of model parameters on the FT-IMSRG’s accuracy is
discussed. We also demonstrate the di↵erence between the FT-IMSRG results when treating nuclei
in the canonical ensemble and the grand canonical ensemble. In future work, we will apply the
FT-IMSRG to realistic models of nuclei to study nuclear properties finite-temperature, which will
help paint a picture of the nuclear reactions occurring in stellar cores.

I. INTRODUCTION

There has recently been a large e↵ort to study the
properties of nuclei starting from a fundamental descrip-
tion of the nuclear force. The so-called ab initio nuclear
many-body theory has seen immense progress over the
last decade, and has been used to study hundreds of nu-
clei up to isotopes of calcium and beyond[1]. The main
di�culty of many-body theory is the sheer size of the
problem. For a relatively simple model of oxygen-16,
the exact solution to the many-body problem would in-
volve diagonalizing a 2 ⇥ 1017 by 2 ⇥ 1017 Hamiltonian
matrix[2]. This is because for a system with A identi-
cal nucleons which can be in N di↵erent single-particle
states, we have a many-body basis of dimension

�N
A

�
by

the Pauli exclusion principle.

In order to e�ciently study heavier nuclei from first
principles, it is necessary to develop methods to approx-
imate the solution to the many-body problem in poly-
nomial time. Recently, several such methods have been
developed, which can extract properties of specific energy
eigenstates, most frequently the ground state.

The first line of attack is known as Hartree-Fock (HF)
theory[3]. It is a variational method to approximate the
ground state of a many-body Hamiltonian as a single
Slater determinant by constructing an e↵ective single-
particle basis. This serves as the basis for so-called post-
HF methods, which take in a HF ground state and further
improve the approximation of the ground state. Post-HF
methods, such as perturbation theory and coupled cluster
theory, have been successful in approximating solutions
to the nuclear many-body problem[3].

A post-HF method of particular interest is the In-
Medium Similarity Renormalization Group (IMSRG)[4].
The IMSRG applies a continuous unitary transforma-
tion to the Hamiltonian, with the goal of extracting the
ground state energy, or the energy of a selected excited
state. It has shown great success in the prediction of
ground state and excited state properties in medium-
mass nuclei[5].

The previously mentioned methods function primar-
ily at zero temperature. This means that they extract
information primarily about the ground state and low-
lying excited states. At finite temperature, nuclei can no
longer be described as being in a single quantum state,
but as being in a thermal ensemble of states. New quan-
tities, such as free energy and entropy, become relevant.
The significance of nuclear many-body theory at finite
temperature has been the subject of recent studies, see
for example [6]. Both HF[7] and coupled cluster theory[8]
have already been extended into the finite-temperature
domain, though as of yet no post-HF methods have been
applied to non-schematic models of nuclei at finite tem-
perature.

Solving the nuclear many-body problem at finite
temperature will allow for the calculation of nuclear
reaction and decay rates in stellar cores via meth-
ods like the finite-temperature quasiparticle random
phase approximation[9]. Understanding these reaction
rates is important for studying the origin of the el-
ements and other pressing questions within nuclear
astrophysics[10][11].

In this paper, we present finite-temperature exten-
sion of the IMSRG: the finite-temperature IMSRG (FT-
IMSRG). In Section II, we present a summary of the IM-
SRG at zero temperature. In Section IIIA we describe
our implementation of FT-HF, followed by a description
of the FT-IMSRG flow equations in Section III B. In Sec-
tion IV, our results are presented. We first explain the
toy model used in Section IVA, then present results for
a four nucleon system with eight single-particle states in
Section IVB, leading into a discussion of larger systems
in Section IVC. In Section IVD, we compare our results
for working in the canonical and grand canonical ensem-
bles. In Section IVE, we demonstrate the computation
of free energy from the FT-IMSRG results. Finally, we
conclude in Section V.
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Transforming the Hamiltonian

• reference state: single Slater 
determinant

�
�
⇤⇤�

⇤⇤�
⇥

excitations relative 

to reference state:

normal-ordering

|Ǫ� |Ǫa
i � |Ǫab

ij � |Ǫabc
ijk �

|Ǫ
ab

c
ijk

�
|Ǫ

ab ij
�

|Ǫ
a i�

|Ǫ
�

0p0h 1p1h 2p2h

εk

εF

�

�F

a,b, . . . : � > �F

i, j, . . . : � � �F

p,q, . . . : full basis
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Decoupling

off-diagonal couplings    
are rapidly driven to zero
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non-perturbative    
resummation of MBPT series      

(correlations)
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• absorb correlations into RG-improved Hamiltonian


• reference state is ansatz for transformed, less correlated 
eigenstate:
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Decoupling
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Magnesium Isotopes

• much improved B(E2) values compared to standard GCM or VS-
IMSRG calculations: IM-GCM captures dynamical and static 
correlations!

Application to deformed nuclei: AMg

The B(E2 : 0+
1 ! 2+

1 ) are nicely reproduced, even though the radii are
systematically underestimated by 6% as expected from the interaction.
The excitation energies of 2+

1 states are systematically overestimated, while the
evolution trend is reproduced excellently.

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 14 / 44

J. M. Yao, HH, in preparation

EM1.8/2.0
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Magnesium Isotopes

• induced 2B quadrupole operator is small (~5%), contrary to typical 
VS-IMSRG (~50%): GCM reference equips operator basis with better 
capability to capture collectivity

Application to deformed nuclei: AMg

The B(E2 : 0+
1 ! 2+

1 ) are nicely reproduced, even though the radii are
systematically underestimated by 6% as expected from the interaction.
The excitation energies of 2+

1 states are systematically overestimated, while the
evolution trend is reproduced excellently.

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 14 / 44

J. M. Yao, HH, in preparation

O = O(1) →
s→∞

O(s) = O(1)(s) + O(2)(s) + …
induced contributions

EM1.8/2.0


