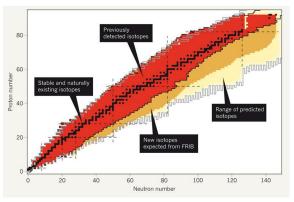
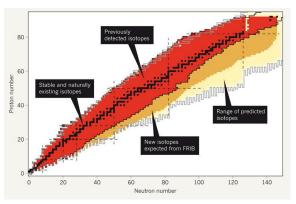

Selected recent developments in reaction theory

Chloë Hebborn

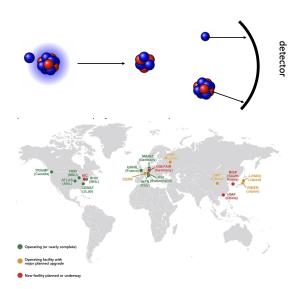

December, 12 2023

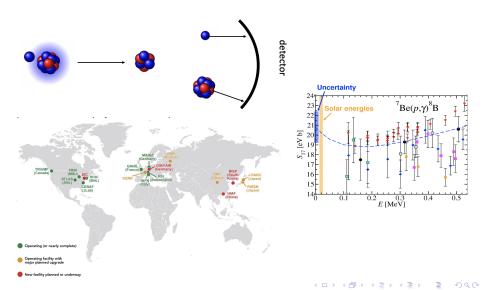
Chloë Hebborn IRL Kickoff 2023 December, 12 2023 1/21

Exciting time to be a nuclear physicist!

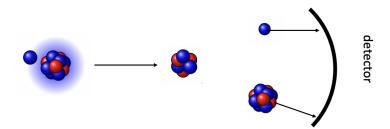

Exciting time to be a nuclear physicist!

nuclear structure nuclear astrophysics fundamental symmetries benefits of nuclear science to the nation and humankind


Exciting time to be a nuclear physicist!



nuclear structure nuclear astrophysics fundamental symmetries benefits of nuclear science to the nation and humankind


Accurate predictions are needed to support the analysis of experiments and for reactions not accessible experimentally

Accurate predictions are needed to support the analysis of experiments and for reactions not accessible experimentally

Three main challenges in any models

To make accurate predictions:

- 1) Choose dofs & use an accurate model
- 2) Interactions grounded in the underlying theory
- 3) Have an estimate of model & input uncertainties

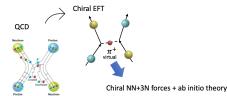
Ideally, we want to describe all reactions from nucleon's degrees of freedom, with interactions derived from QCD

1) No core shell model with continuum (cf Dean's talk for NLEFT)

[Phys. Scr. **91**, 053002 (2016)]

$$\Psi = \sum_{\lambda} c_{\lambda} | \text{Discrete structure information input} \rangle + \sum_{\nu} \int dr u_{\nu}(r) | \text{Continuous dynamical input (clustering/reactions)}$$

Chloë Hebborn IRL Kickoff 2023 December, 12 2023


Ideally, we want to describe all reactions from nucleon's degrees of freedom, with interactions derived from QCD

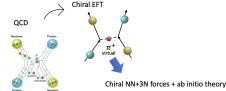
1) No core shell model with continuum (cf Dean's talk for NLEFT)

[Phys. Scr. 91, 053002 (2016)]

$$\Psi = \sum_{\lambda} c_{\lambda} | \bigvee_{ ext{Discrete structure information input}}
angle + \sum_{
u} \int dr u_{
u}(r) | \bigotimes_{ ext{Continuous dynamical input (clustering/reactions)}}
angle$$

2) Use of chiral-EFT interactions

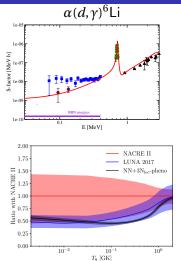
Chloë Hebborn IRL Kickoff 2023 December, 12 2023 5 / 21


Ideally, we want to describe all reactions from nucleon's degrees of freedom, with interactions derived from QCD

1) No core shell model with continuum (cf Dean's talk for NLEFT)

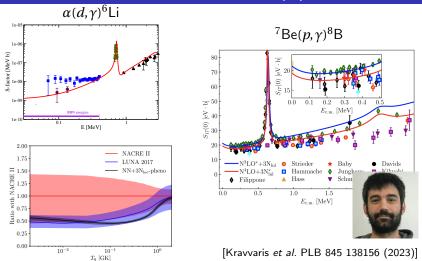
[Phys. Scr. **91**, 053002 (2016)]

$$\Psi = \sum_{\lambda} c_{\lambda} | \bigvee_{ ext{Discrete structure information input}}
angle + \sum_{
u} \int dr u_{
u}(r) | \bigotimes_{ ext{Continuous dynamical input (clustering/reactions)}}
angle$$

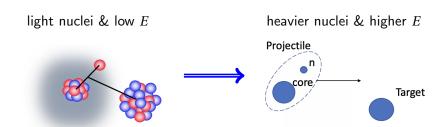

2) Use of chiral-EFT interactions

3) Vary the interactions and truncation of model spaces

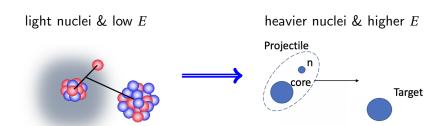
Chloë Hebborn IRL Kickoff 2023 December, 12 2023 5/21


Recent predictions constrain astrophysical reactions relevant for the BBN & the p-p chain

[Hebborn et al. PRL 129 042503 (2022)]

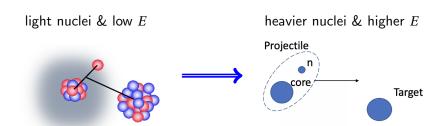

Chloë Hebborn IRL Kickoff 2023 December, 12 2023 6 / 21

Recent predictions constrain astrophysical reactions relevant for the BBN & the p-p chain



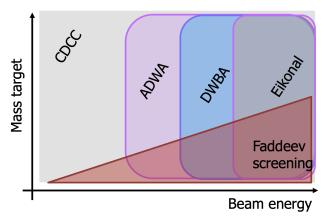
[Hebborn et al. PRL 129 042503 (2022)]

Chloë Hebborn IRL Kickoff 2023 December, 12 2023 6 / 21


Chloë Hebborn IRL Kickoff 2023 December, 12 2023 7 / 21

To make accurate reaction predictions:

- 1) Choose dofs & use an accurate model
- 2) Interactions grounded in the underlying theory
- 3) Have an estimate of model & input uncertainties

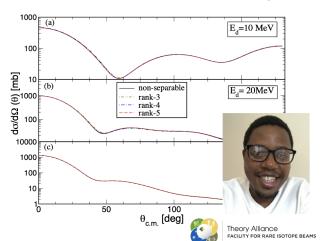


To make accurate reaction predictions:

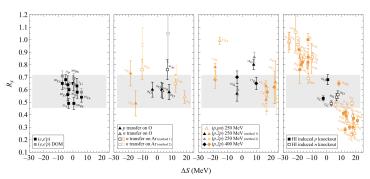
- 1) Choose dofs & use an accurate model
- 2) Interactions grounded in the underlying theory
- 3) Have an estimate of model & input uncertainties

Chloë Hebborn IRL Kickoff 2023 December, 12 2023 7/2

Finding the exact solution to the few-body reaction dynamics is challenging

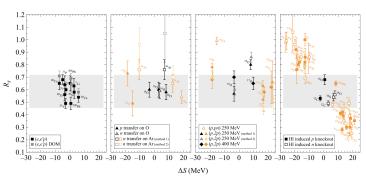


Faddeev : need for screening of the Coulomb interaction limits $A\ \&\ E$


[Figure courtesy of F. Nunes]

Finding the exact solution to the few-body reaction dynamics is challenging

Recent effort by Linda Hlophe at LANL : Faddeev without screening [PRC 100, 034609 (2019)]


There have also been recent efforts to improve the eikonal treatment of breakup reactions

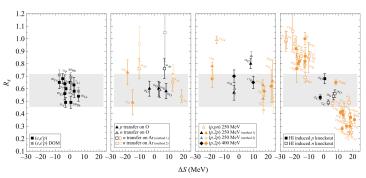
[Aumann et al. PPNP 118 103847 (2021)]

Chloë Hebborn IRL Kickoff 2023 December, 12 2023 9 / 21

There have also been recent efforts to improve the eikonal treatment of breakup reactions

[Aumann et al. PPNP 118 103847 (2021)]

Improvement to the reaction dynamics, sensitivity analysis & non-locality


 $[\mathsf{CH},\,\mathsf{Capel}\,\,\mathsf{PRC}\,\,96\,\,054607(2017)\,;\,\,\mathsf{PRC}\,\,98\,\,04461\,\,(2018)\,;\,\,\mathsf{PRC}\,\,100\,\,054607\,\,(2019)\,;\,\,\mathsf{PRC}\,\,103,\,\,064614\,\,(2021)\,;\,\,(2019)\,;\,(2019)\,;\,(2019)\,;\,(2019)\,;\,(2019)\,;\,(2019)\,;\,(2019)\,;\,(2019)\,;\,(2019)\,;\,(2019)\,;\,(2019)\,;\,(2019)\,;\,(2019)\,;$

arXiv :2311.10830; CH, Baye, PRC 101, 054609 (2020); CH, Nunes, PRC 104, 034624 (2021)]

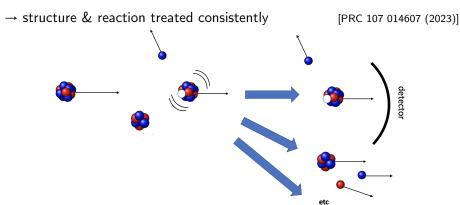
◆ロト ◆昼 ト ◆ 夏 ト ◆夏 ト ・夏 ・ からぐ

Chloë Hebborn IRL Kickoff 2023 December, 12 2023 9 / 21

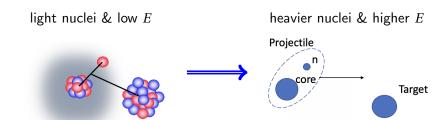
There have also been recent efforts to improve the eikonal treatment of breakup reactions

[Aumann et al. PPNP 118 103847 (2021)]

Improvement to the reaction dynamics, sensitivity analysis & non-locality


[CH, Capel PRC 96 054607(2017); PRC 98 04461 (2018); PRC 100 054607 (2019); PRC 103, 064614 (2021); arXiv:2311.10830; CH, Baye, PRC 101, 054609 (2020); CH, Nunes, PRC 104, 034624 (2021)]

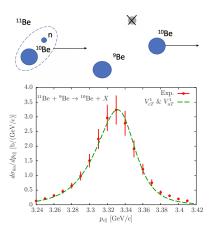
→ Going in the right direction, but not satisfactory... so what's next?


Chloë Hebborn IRL Kickoff 2023 December, 12 2023 9 / 21

Going beyond the core-spectator approximation with the Green's function knockout formalism

Goal : include dissipative processes due to the hole propagation in the many-body systems with dispersive potentials

ongoing... with Potel, Pruitt & Escher at LLNL

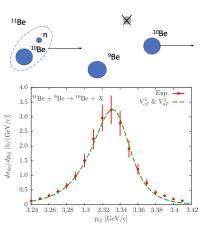


To make accurate reaction predictions :

- 1) Choose dofs & use an accurate model
- 2) Interactions grounded in the underlying theory
- 3) Have an estimate of model & input uncertainties

Combining EFTs, ab initio predictions and few-body models lead to accurate knockout cross sections

Halo-EFT of ¹¹Be using NCSMC prediction for ANC [PRL 117, 242501 (2017)]

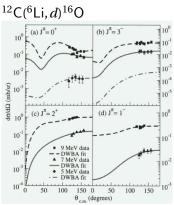


[Exp.: Aumann et al. PRL 84, 35 (2000)] [Th.: Hebborn and Capel, PRC 104, 024616 (2021); PRC 100, 054607 (2019)]

Chloë Hebborn IRL Kickoff 2023 December, 12 2023 12 / 21

Combining EFTs, *ab initio* predictions and few-body models lead to accurate knockout cross sections

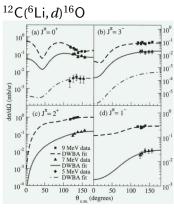
Halo-EFT of ¹¹Be using NCSMC prediction for ANC [PRL 117, 242501 (2017)]



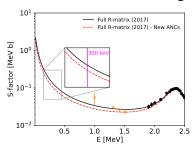
Similar plan for Coulomb breakup of ³⁷Mg (PAC2)

see Aldric's talk

[Exp. : Aumann et al. PRL 84, 35 (2000)] [Th. : Hebborn and Capel, PRC 104, 024616 (2021); PRC 100, 054607 (2019)]


Similar idea can be used to interpret reactions (${}^{6}Li, d$) data extracting ANCs used to constrain astrophysical rates

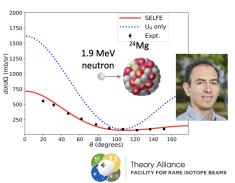
[Avila et al. PRL 114, 071101 (2015)]


 Chloë Hebborn
 IRL Kickoff 2023
 December, 12 2023
 13 / 21

Similar idea can be used to interpret reactions (6 Li, d) data extracting ANCs used to constrain astrophysical rates

[Avila et al. PRL 114, 071101 (2015)]

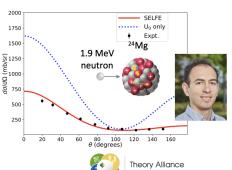
Ab initio $(C_{\alpha-d})^2 \rightarrow 21\%$ reduction of the S-factor at stellar energies!

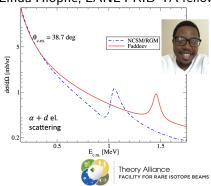


[Hebborn, Avila, Kravvaris, Potel & Quaglioni arXiv :2307.05636]

 Chloë Hebborn
 IRL Kickoff 2023
 December, 12 2023
 13 / 21

To reach a more unified treatment of structure & reactions, recent efforts to derive microscopic optical potentials

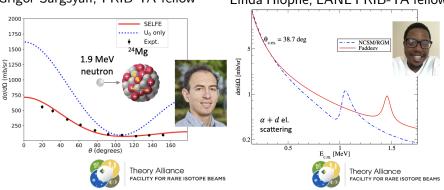

Shell model optical potentials Grigor Sargsyan, FRIB-TA fellow


Chloë Hebborn IRL Kickoff 2023 December, 12 2023 14/21

To reach a more unified treatment of structure & reactions, recent efforts to derive microscopic optical potentials

Shell model optical potentials Grigor Sargsyan, FRIB-TA fellow

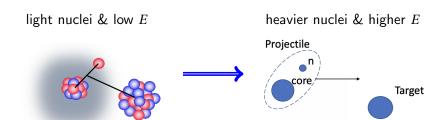
Importance of 3b force Linda Hlophe, LANL FRIB-TA fellow



Chloë Hebborn IRL Kickoff 2023 December, 12 2023 14 / 21

To reach a more unified treatment of structure & reactions, recent efforts to derive microscopic optical potentials

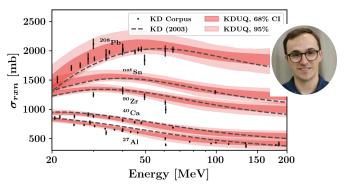
Shell model optical potentials Grigor Sargsyan, FRIB-TA fellow


Importance of 3b force Linda Hlophe, LANL FRIB-TA fellow

+ ongoing efforts to derive optical potentials from the NCSMC...

FRIB-TA program → whitepaper on optical potentials + website
[Hebborn et al., JPG 50 060501 (2023)]

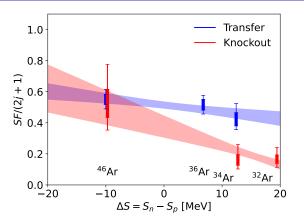
Chloë Hebborn IRL Kickoff 2023 December, 12 2023 14 / 21


To make accurate reaction predictions:

- 1) Choose dofs & use an accurate model
- 2) Interactions grounded in the underlying theory
- 3) Have an estimate of model & input uncertainties

15/21

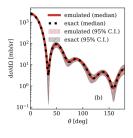
Impressive recent effort to quantify uncertainties for global parametrization of optical potential at LLNL

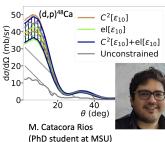

Global fit using Bayesian statistics by Cole Pruitt

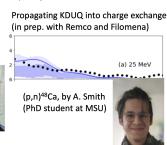
[Pruitt et al. PRC 107, 014602 (2023) including python scripts!]

Chloë Hebborn IRL Kickoff 2023 December, 12 2023 16 / 21

Using consistent s-p description, we quantify the uncertainties due to optical potentials in knockout & (p,d) reactions


No discrepancy for $\Delta S \ll 0$ and likely model deficiencies for $\Delta S \gg 0$! [C. Hebborn, F. Nunes, A. E. Lovell, PRL 131, 212503 (2023)] possible follow up with O. Sorlin *et al.*

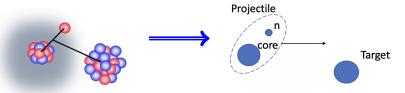

Chloë Hebborn IRL Kickoff 2023 December, 12 2023 17 / 21


At MSU, large effort pushing for a systematic quantification of uncertainties

Emulator for reaction study [Drischler *et al.* PLB, 13677 (2021)] https://github.com/bandframework/rose/]

Complete quantification of uncertainties & exploring exp. conditions to reduce them [PRC 108 024601 (2023); PRC 100 064615 (2019]

Pablo & Filomena


+ many other efforts not listed

Bayesian Analysis of Nuclear Dynamics

There are still challenges to improve our description of reactions

light nuclei & low E

To make accurate reaction predictions:

- 1) Choose dofs & use an accurate model Interest in improving eikonal description & moving to 4-body reactions
- Interactions grounded in the underlying theory Halo-EFT & microscopic optical potentials
- 3) Have an estimate of model & input uncertainties

 Bayesian analysis of reactions

Chloë Hebborn IRL Kickoff 2023 December, 12 2023 19 / 21

Thanks to my collaborators...

Kostas Kravvaris

Cole Pruitt

Melina Avila

Guillaume Hupin

the few-body reaction group at MSU

Filomena Nunes

Chloë Hebborn

Pablo Giuliani

Grigor Sargsyan

Cate Beckman

Manuel Catacora Rios

Andy Smith

Daniel Shiu

& you for your attention!