Nuclear Astrophysics at FRIB

Hendrik Schatz Department of Physics and Astronomy Facility for Rare Isotope Beams Center for Nuclear Astrophysics Across Messengers (CeNAM) Michigan State University

JINA and CeNAM

Center for Nuclear Astrophysics across Messengers

- Succeeds JINA as a center for nuclear astrophysics
- Fosters interdisciplinary connections in the multi-messenger era of nuclear astrophysics
 - Currently support for synergistic activities, data effort (with MSU support; postdoc?)

Fall 2023: Workshop "Nuclear astrophysics in the era of gravitational wave astronomy at CSU Fullerton (Lead: J. Read)

Fall 2023: Workshop "Grand Challenges in Nucleosynthesis" at INT (Lead: C. Fryer)

FRIB Offers Broad Opportunities for Nuclear Astrophysics Measurements

and the VIN-ROUGE collaboration

Much of r-Process Nuclear Physics Within Reach at FRIB

(α,n) Reactions for Supernova Weak r-process

Neutron Detector (Long Counter) 🖊

MUSIC Active Target Detector

SECAR Program (see Montes)

Accreting Neutron Stars

→ A more gentle probe compared neutron star mergers
 → 100s in the Galaxy and extremely bright and easy to observe

FRIB

Quasi Persistent Transients Probe Neutron Star Physics

FRIB

...)

(α, p) Reaction Rate Measurements with JENSA and ORRUBA Using Low Energy Reaccelerated Radioactive Beams at NSCL

³⁴Ar(α,p) 10¹ **JENSA Gas Jet Target** Normalized to NON-SMOKER^{WEB} (Chipps, Greife, ...) Theory **Clustering enhancement** Estimate from ⁴⁰Ca(p,t) levels (b) 10-3 ^{0.5} Temperature (GK) 2.0 0.2 04 TALYS $(\alpha, 1p)$ total ^{(a}Browne et al. 2023 TALYS (a,p0) 100 $^{34}Ar + ^{34}Cl(\alpha, p)$ This work $(\alpha, 1p)$ This work $(\alpha, p0)$ Surrounded with Cross section (mb) 10 **ORRUBA** Ŧ Si detector 100 array (ORNL, (b) TALYS $(\alpha, 2p)$ This work $(\alpha, 2p)$ Rutgers, 10 Pain, \rightarrow Current theory surprisingly good Ciezewski, \rightarrow Issues compensated with cluster effects? 4.5 5 5.5 ³⁴Ar(c \rightarrow Need to push to lower energies Long et al. @ indirect ⁴⁰Ca(p,t)

Open questions concerning these types of rates (Long et al. 2017)

FRIB Opportunity:

D, gas

AT-TPC

d,²He charge exchange on key unstable nuclei to probe electron capture rates (also for supernova neutrino signals) – Giraud et al. 2013

Urca Cooling from A=61 Nuclei Weaker than Expected

Opportunities for Studying the Isovector Response of Nuclei With Charge-Exchange Reactions – contact: Remco Zegers

Experiments are focused on:

- Reaction rates in astrophysical phenomena mediated by the weak nuclear force (electron-captures, neutrino-induced reactions, and β-decay)
- The evolution of nuclear structure in nuclei with asymmetric proton-to-neutron ratios through studies of Gamow-Teller strengths
- Novel probes for isolating the isovector response (e.g. giant resonances) in nuclei equation of state of nuclei and nuclear matter
 (AT-TPC)
- Isovector response of unstable nuclei in the β⁻ (p,n) and β⁺ (n,p) direction by performing (p,n) and (d,²He) experiments in inverse kinematics.
 - (p,n) experiments in inverse kinematics at ~100 MeV/u performed with the S800 spectrometer and the Low-Energy Neutron Detector Array (LENDA)
 - (d,²He) experiments in inverse kinematics at ~100 MeV/u performed with the S800 spectrometer and the Active-Target Time Projection Chamber (AT-TPC)

- Novel unstable reaction probes for isolating isovector responses in stable nuclei:
 - E.g., (¹⁰Be,¹⁰B[0⁺]) and (¹⁰C,¹⁰B[0⁺]) probes for isolating spin-non-transfer and spin-transfer isovector excitations (GRETINA+S800)
 - $(t,^{3}He)$, $(t,^{3}He+n/\gamma)$ probes for high-resolution transitions in the β^{+} direction (S800+LENDA, GRETINA, SuN)
- Development of astrophysical weak-reaction rate library

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Summary and Outlook

- Extraordinary opportunity for nuclear astrophysics with start of FRIB coinciding with major advances in multi-messenger astronomy and 3D computational modeling
- Very broad experimental capabilities and associated nuclear astrophysics research programs at FRIB, many opportunities to collaborate
- Some possible areas of interest from my perspective:
 - SECAR designed for direct measurements but other opportunities (Fernando's Talk)
 - Updated reaction rate data (within CeNAM/IReNA)
 - Beam stopping and extraction
 - all activities are open
- Opportunities from connections with astronomy, astrophysics, gravitational wave physics, cosmo-chemistry,
 - MSU Theorists: Nuclear theory group, astronomy group, ...
 - CeNAM, IReNA welcome to join and become active