Nuclear dynamics and thermodynamics with INDRA and FAZIA

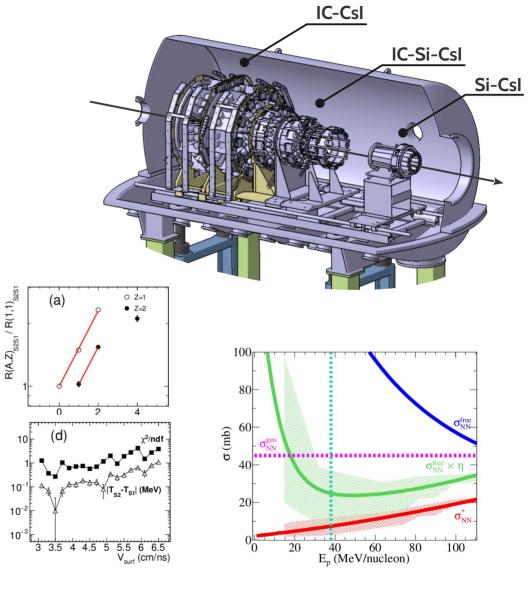
Diego Gruyer, LPC Caen, France (for the INDRA and FAZIA Collaborations)

→ INDRA and FAZIA collaborations
 → EoS physics with INDRA-FAZIA
 → Short term plans @ GANIL
 → Possible implications @ FRIB

INDRA collaboration

Phase transition studies in hot nuclei using HIC at intermediate energies (E ~ 10-100 MeV/nuc.).

INDRA detector


 4π charged particle multidetector optimized for detecting ~50 particles. 17 rings with 12 to 24 telescopes : IC-Si-CsI (<45°), IC-CsI (>45°). Covers 90% of solid angle (336 modules). Full charge identification, masses resolved up to Z~5.

Scientific highlights

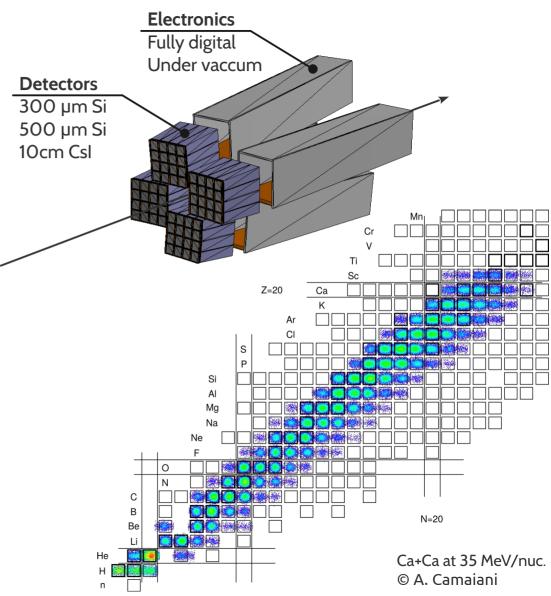
Experimental campaigns at GANIL (1993) and GSI (1998). Signals of phase transition, reaction mechanism, isoscaling [1], stopping and σ_{NN} [2]...

 \rightarrow Complete renewal of the electronics in 2020.

[1] Rebillard-Soulié, accepted in JoPG (2023) [2] Henry, PRC **101** (2020) 064622

FAZIA collaboration

European initiative to build a charged particle multidetector with isotopic resolution (Z and A) : optimization detectors and digital electronics. → Korean colleagues joined the collaboration in 2018


FAZIA detector

Blocks of 4x4 Si-Si-CsI telescopes with modular geometry. Identification with Δ E-E and PSA : full charge identification, masses resolved up to Z~25.

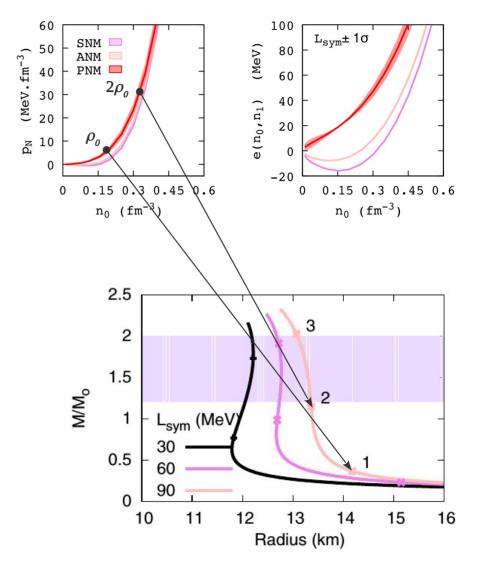
Scientific highlights

Campaign at LNS Catania (2015-2018) with 4 to 7 blocks: isospin diffusion and drift [1], first imbalance ratio with FAZIA [2], cluster production and decay [3], QP break-up channel [4].

[1] Piantelli, PRC 101 (2020) 034613, 103 (2021) 014603
[2] Camaiani, PRC 102 (2020) 044607, 103 (2021) 014605
[3] Frosin, PRC 107 (2023) 044614
[4] Piantelli, PRC 107 (2023) 044607

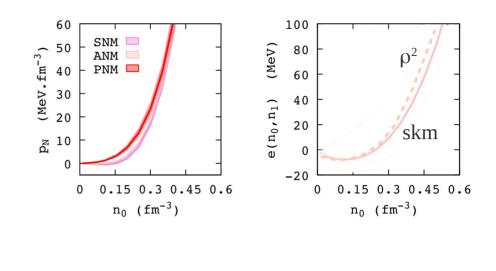
The nuclear equation of state Fundamental properties of nuclear matter. Macroscopic counterpart of nuclear interaction.

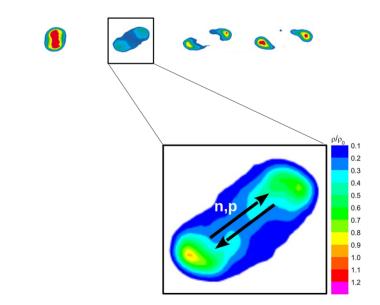
 $P(\rho,T) \leftrightarrow e(\rho_n,\rho_p,T)$


Implication in astrophysics

Mandatory ingredient to compute neutron star mass-radius : solve the relativistic hydrostatic equation (TOV) starting from the core density down to the surface of the star.

 \rightarrow Very sensitive to the equation of state !

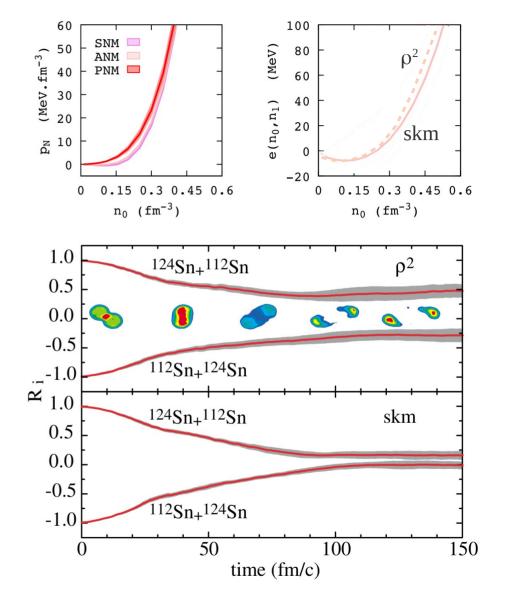

Observational constraints Any valid equation of state should be able to produce a neutron star as heavy as the heaviest observed one. Precise measurement of both mass and radius would drastically constrain the EoS !


[1] Margueron, PRC 97 (2018) 025805, 97 (2018) 025806

Heavy ion collisions During peripheral collisions, projectile and target interact and exchange some nucleons.

[1] Margueron PRC **97** (2018) 025805 [2] Tsang PRL **92** (2004) 062701

Heavy ion collisions During peripheral collisions, projectile and target interact and exchange some nucleons.


Isospin equilibration

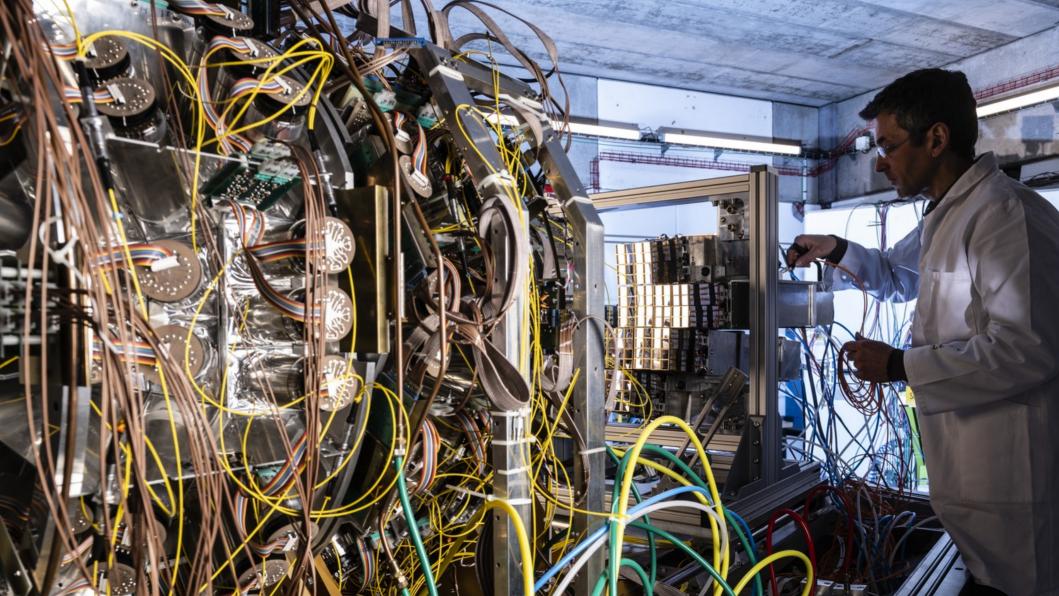
Projectile and target with different neutron to proton ratio equilibrate their N/Z over time. Two different interactions, leading to different equations of state, produce different equilibration path.

Experimental constraints Any experimental measurement of the isospin equilibration rate would constrain the EoS !

→ Mesure the quasi-projectile charge and mass
 → Characterize the collision geometry (b)

[1] Margueron PRC **97** (2018) 025805 [2] Tsang PRL **92** (2004) 062701

INDRA-FAZIA @ GANIL


Replace the rings 1-5 of INDRA with 12 FAZIA blocks in wall configuration ($1.5^{\circ} - 13^{\circ}$).

→ Isotopic identifiation of forward emitted fragments → Event topology thanks to 80 % angular coverage

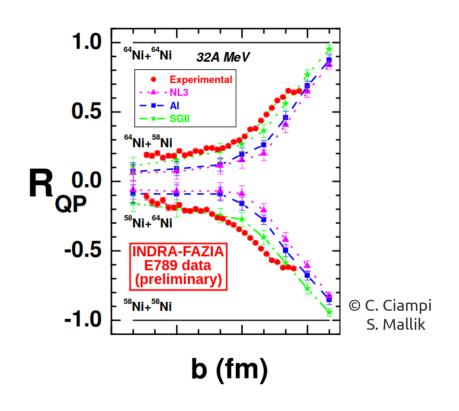
Experiments

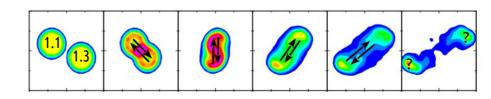
- → Isospin transport and EoS (2019)
- \rightarrow Vaporisation and clusters in medium (2022)
- \rightarrow Size asymmetry and isospin transport (2025)
- \rightarrow Measurement of the ¹²C Hoyle state radius (2025)

E789 experiment @ GANIL

Ni +Ni collisions with various combinations of stable Ni isotopes (⁵⁸Ni and ⁶⁴Ni) at 32 and 52 MeV/nuc [1]. → N/Z equilibration ratio versus impact parameter[2]

Constraints on EoS


Comparison of equilibration ratio versus impact parameters with transport model calculations using various EoS (BUU).

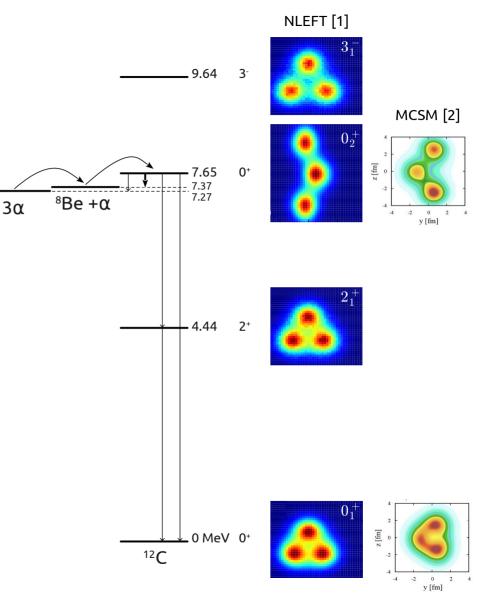

Future prospects

New experiment at GANIL in 2025 to understand the effect of size asymmetry on isospin transport. \rightarrow Higher the N/Z difference, higher the sensitivity \rightarrow Need to find other mechanism at FRIB energies

 \rightarrow Synergy with FRIB on transport models

[1] Ciampi, PRC **106** (2022) 024603, PRC **108** (2023) 054611 [2] Frankland, PRC **104** (2021) 034609

¹²C Hoyle state


Second 0⁺ state, above ⁸Be + α and 3α thresholds. Still a challenge for nuclear theory : strong difference in Hoyle state radius predictions. \rightarrow NLEFT : obtuse 3α triangle (r = **3.45 fm**) \rightarrow MCSM : compact 3α triangle (r = **2.81 fm**)

Experimental probe

¹²C + ¹²C inelastic scattering at 105 MeV. Measure the angular distributions for all combinations of projectile-like and target-like excitation. Radius by comparing single and double Hoyle excitation.

→ Experiment using FAZIA at GANIL in 2025
 → Synergy with structure and reaction theorists ?

[1] S. Shen et al., Nature Com. 14 (2023) 2777[2] T. Otsuka et al., Nature Com. 13 (2022) 2234

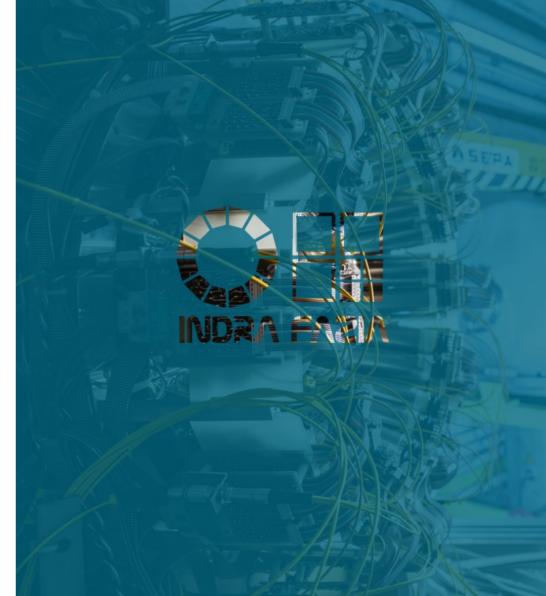
Discussions with FRIB

- → K. Brown and Z. Chajecki proposed us to participate in the 23058 experiment at FRIB
- \rightarrow Z. Chajecki gave a seminar on EoS physics at FRIB
- \rightarrow FAZIA collaboration started a working group on FRIB
- \rightarrow Visit of FAZIA physicists to discuss technical feasability
- → Sub-groups on different physics topics (EoS, transport, correlations, direct reactions...)
- → Internal restitution meeting in spring 2024 to build a LoI and/or experiment proposals

Synergies

Evident synergies on comparison with transport models Collaboration about detectors in discussion Theory on structure and direct reactions for ¹²C ?

Abdou Chbihi, Caterina Ciampi, **John Frankland**, Rémi Bougault, Dominique Durand, Diego Gruyer, **Nicolas Le Neindre**, Olivier Lopez, Alex Rebillard-Soulié, Antonin Valente, Emmanuel Vient, Bernard Borderie, Emmanuelle Galichet, Quentin Fable, Eric Bonnet


Sandro Barlini, Lucia Baldesi, Alberto Camaiani, **Giovanni Casini**, Gabriele Pasquali, Silvia Piantelli, Giacomo Poggi, Andrea Stefanini, Simone Valdré, Daniele Dell'Aquilla, Antonio Ordine, Mariano Vigilante, Ivano Lombardo, Maria-Grazia Pellegriti, Giuseppe Verde, Magda Cicerchia, Fabiana Gramegna, Tommaso Marchi

Tomasz Kosik, Katarzyna Mazurek, Andrzej Kordyasz

José Dueñas

