From Feebly Interacting Particles to flavour transfer models

Luc Darmé IP2I – CNRS 04/05/2023

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101028626

Horizontal flavour gauge groups

- The SM has a large global $U(3)^5$ symmetry group
 - \rightarrow broken by the Yukawa interactions

 $\mathcal{L}_Y = -Y_{ij}^d \,\overline{Q_{Li}^I} \,\phi \, d_{Rj}^I - Y_{ij}^u \,\overline{Q_{Li}^I} \,\epsilon \,\phi^* u_{Rj}^I + \text{h.c.},$

- What if a subset of this group is actually gauged ?
 - →U(1) case: Frogatt-Nielsen constructions, $L_{\mu} - L_{\tau}$, flavons, etc...
 - → The non-abelian case has been sparsely studied.
 - →In any case the new gauge coupling is a free parameter

 $SO(10) \rightarrow$ no reason to believe they should be of the same interaction strength as the EW or strong interactions

SU(2) flavour gauge groups

• Starting point: add a new SU(2) gauge group in the SM, acting on flavour space

 \rightarrow The « charged» SM fermion can be either part of a doublets or a triplet

 \rightarrow Only the mixed $SU(2)_f^2 \times U(1)_Y$ anomaly is non-zero

 $\mathcal{A} = ([C(Q_i) - C(L_i)] - [2C(u_{R,i}) - C(d_{R,i}) - C(e_{Ri})])$

In absence of new low-energy fermions, there is a finite (and quite small) number of possible combination ! LH, RH ; L, B ; and M1, M2

Gauge boson masses are free parameters!

 \rightarrow Even with a large VEV, small gauge couplings imply light new states

$$M_{V_1}^2 = M_{V_2}^2 = M_{V_3}^2 = \frac{g_f}{2} \sum_i v_\phi^2$$

- For instance: (LH) scenario
 - → Reduce the number of fundamental fermions
 - \rightarrow Couples both to leptons and quarks

Flavour transfer - 1

• The key point: new flavour gauge boson do not « break » flavour, they only transfer it from one fermionic sector to another

For instance, the «W-like» flavour bosons carry a « flavour-charge »

$$L \supset \widetilde{W}^{\nu}_{+} \ (\overline{\mu} \ \gamma_{\nu} e + \overline{s} \gamma_{\nu} d) \\ + \widetilde{W}^{\nu}_{-} \ (\overline{e} \ \gamma_{\rho} \ \mu \ + \overline{d} \ \gamma_{\nu} \ s)$$

Grant an extremely strong protection against "pure" four-fermions FV processes \rightarrow Particularly for $M_{V_1} = M_{V_2} = M_{V_3}$ $\mathcal{L}_{eff} \supset -\sum_{a,f,f'} \frac{g_f^2}{2S_{ijkl}M_V^2} \left(2\delta^{il}\delta^{jk} - \delta^{ij}\delta^{kl} \right) \left(\overline{F}_i \gamma^{\mu} F_j \right) \left(\overline{F}'_k \gamma_{\mu} F'_l \right) ,$ Symmetry factor Flavour transfer !

Flavour transfer - 2

• The presence of $SU(2)_f$ implies that the fermion mass matrices have a structure

For instance, in the case of down-type quarks

- We can parametrise SU(2) breaking by small spurions → corresponds to angles in the quarks/lepton rotations matrices
- But even in absence of spurions, flavour-transfer processes will play an important role by generating many exotic flavourful processes.

$$\begin{array}{ll} K \to \pi e \mu \,, & K \to \pi \nu \nu \\ B \to K e \mu & \tau \to \mu K \\ B \to \pi e \mu \end{array}$$

Etc ... this depends on which generation is included in the SU(2)f doublet, and which type of fermions participate in the interaction

LHC limits and flavour: LH - $(12)_{\ell}(12)_Q$

- Use the (LH) scenario
 - →Assume that 1st and 2d generations of lefthanded fermions are part of a flavour doublets
 - → Production at LHC is huge

• The strongest model-independent flavour limit comes from $K \rightarrow \pi \ \bar{\nu}_e \nu_\mu$

 V_p

LHC limits and flavour: LH - $(13)_{\ell}(12)_Q$

- Corresponds to a « muon as a third generation lepton » scenario.
- Now the strongest limits arise from hadronic τ decays
- LHC constraints are also weakened

Conclusion

- FIPs have an extremely rich phenomenology in link with flavour and have been long used to fit various "precision anomalies"
 →In a sense, flavour physics lives naturally at the scale of these NP particles
- Non-abelian flavour gauge symmetries naturally lead to GeV to TeV new vectors for small couplings
- Flavour transfer paradigm leads to very specific (and not often experimentally considered) signatures
 → SuperIso implementation under way
- LHC has an important role to play for new vectors below the TeV

Backup

SuperIso implementation

- @Nazila: added the mesons oscillations observables
- Added several leptonic observables

 \rightarrow Not always generic at this stage, more work needed to have fully generic routines.

• Scan created via BSMArt (work in progress)

 \rightarrow Interface with SuperIso done by requiring a χ^2 output + launching minimisation

A great many observables to include ...

 Once spurions are introduced, basically every possible FV observables may contribute

• We

		$SU(2)_f$ flavour orientation		
Constraints	Used Refs.	$(12)_Q(12)_L$	$(12)_Q(\tilde{12})_L$	$(12)_Q(13)_L$
$B \rightarrow Kee (C_9)$		$-\theta_{Q13}$	$+\theta_{Q13}$	$\theta_Q \theta_L^2$
$B \rightarrow K \mu \mu \ (C_9)$		$+\theta_{Q13}$	$-\theta_{Q13}$	$+\theta_{Q13}$
R_K, R_K^\star		$+\theta_{Q13}$	$- heta_{Q13}$	$+\theta_{Q13}$
$K \to \pi ee \ (C_9)$		$-\theta_{\ell 12}$	$+\theta_{\ell 12}$	$\theta_{\ell 2 3} \theta_{\ell 1 3}$
$K \to \pi \mu \mu \ (C_9)$		$+\theta_{Q13}$	$- heta_{Q13}$	$\theta_{\ell 12}$
$\mathrm{BR}^{(\mathrm{E865})}_{K^+\to\pi^+\mu^+e^-} < 1.3\times10^{-11}$	[17, 40, 42]	1	$\theta^4_{\ell 12}$	0
$\mathrm{BR}^{(\mathrm{E865})}_{K^+\to\pi^+\mu^-e^+} < 6.6\times 10^{-11}$	[17, 40, 42]	$\theta^4_{\ell 12}$	1	$\theta^2_{\ell 2 3}$
$\mathrm{Br}_{K^+\to\pi^+\nu\bar{\nu}}^{(\mathrm{NA62})} = 1.06^{+0.41}_{-0.35} \times 10^{-10}$	[43-47]	1	1	1
${\rm BR}_{K_L\to\mu^+e^-}^{\rm (BNL)} < 4.7\times 10^{-12}$	[48?]	1	$\theta^4_{\ell 12}$	$\theta^2_{\ell 23}$
$BR_{K_L \rightarrow \mu\mu}^{(l)} <$	[82]			
$BR_{K_S \to \mu\mu}^{(l)} <$	[82]			
K oscillations				
D oscillations	[83-85]	θ_{Q23}^2	77	77
B_d oscillations		θ_{Q13}^{2}	55	22
B_s oscillations		θ_{Q23}^2	**	77
$\mathrm{BR}_{\mu \to e \bar{e} e}^{\mathrm{(SINDRUM)}} < 1.0 \cdot 10^{-12}$	[57]	$\theta_{\ell 13}^2 \theta_{\ell 23}^2$	77	0
$BR_{\tau \rightarrow 3\mu}^{(BELLE)} < 2.1 \cdot 10^{-8}$	[58]	$\theta^2_{\ell 13}$	39	$ heta_{\ell_{13}}^2 heta_{\ell_{23}}^2$
$\mathrm{BR}^{\mathrm{(BELLE)}}_{ au ightarrow 3e} < 3.3 \cdot 10^{-8}$	[58]	$\theta^2_{\ell 23}$	77	0
$BR_{\tau^- \to \mu^- e^+ e^-}^{(BELLE)} < 1.8 \cdot 10^{-8}$	[58]	$\theta^2_{\ell 13}$	39	$ heta_{\ell_{13}}^2 heta_{\ell_{23}}^2$
${ m BR}^{({ m BELLE})}_{ au ightarrow e^- \mu^+ \mu^-} < 2.7 \cdot 10^{-8}$	[58]	$\theta^2_{\ell 23}$	77	77
$\mathrm{BR}^{\mathrm{(MEG)}}_{\mu ightarrow e \gamma} < 4.2 \cdot 10^{-13}$	[53, 54]	$\theta^2_{\ell 13} \theta^2_{\ell 23}$	**	$\theta^2_{\ell 13}$
$ ext{BR}_{ au ightarrow e\gamma}^{ ext{(BaBar)}} < 3.3 \cdot 10^{-8}$	[55]	$\theta^2_{\ell 23}$	77	77
$ ext{BR}_{ au ightarrow \mu\gamma}^{ ext{(BaBar)}} < 3.3 \cdot 10^{-8}$	[55]	$\theta_{\ell 13}^2$	77	$ heta_{\ell 13}^2 heta_{\ell 23}^2$
$\operatorname{CR}_{Au,\mu \to e}^{(\operatorname{SINDRUM-II})} < 7 \cdot 10^{-13}$	[56, 78, 79]	$1-20 heta_{\ell 12}$	39	$\theta_{\ell 2 3}^2 - 20 \theta_{\ell 1 3} \theta_{\ell 2 3} + 46 \theta_{\ell 1 3}^2$
$\mu \bar{e} \rightarrow e \bar{\mu}$ oscillations				
$rac{\sigma_{ m trid.}^{ m CCFR}}{\sigma_{ m trid.}^{ m SM}}=0.82\pm0.28$	[74–77]			

Putting everything together

On LHC constraints

• LHC « perfect » NP candidate can be produced from quark (or gluon) fusion, but decay leptonically to ensure detection.

$$pp \to V + X, V \to \ell \ell$$

• Standard searches : di-leptons and di-jets

• More exotic searches: flavour violation to kill the QED background

