
Darkpack: a modular software to compute BSM squared
amplitudes for particle physics and relic density calculations

Marco Palmiotto

Université Claude Bernard Lyon 1, France
Institut de Physique des 2 infinis

04/05/2023

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 1 / 10

Motivations

Extension of the features of the software SuperIso Relic

It is a software that tests the parameter space of some BSM models, providing
observables related to flavour and dark matter detection and density
The first goal is improving the relic density calculation:

SuperIso Relic
providing the total density of the BSM
particles, in freeze-out scenarios
only MSSM and NMSSM

Darkpack
following the evolution of the density of
particles different from the LSP in the
MSSM for freeze-out scenarios
allowing models with multiple stable
DM particles
allowing freeze-in scenarios
allowing user-defined models from the
Lagrangian

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 2 / 10

Motivations

Extension of the features of the software SuperIso Relic
It is a software that tests the parameter space of some BSM models, providing
observables related to flavour and dark matter detection and density

The first goal is improving the relic density calculation:

SuperIso Relic
providing the total density of the BSM
particles, in freeze-out scenarios
only MSSM and NMSSM

Darkpack
following the evolution of the density of
particles different from the LSP in the
MSSM for freeze-out scenarios
allowing models with multiple stable
DM particles
allowing freeze-in scenarios
allowing user-defined models from the
Lagrangian

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 2 / 10

Motivations

Extension of the features of the software SuperIso Relic
It is a software that tests the parameter space of some BSM models, providing
observables related to flavour and dark matter detection and density
The first goal is improving the relic density calculation:

SuperIso Relic
providing the total density of the BSM
particles, in freeze-out scenarios
only MSSM and NMSSM

Darkpack
following the evolution of the density of
particles different from the LSP in the
MSSM for freeze-out scenarios
allowing models with multiple stable
DM particles
allowing freeze-in scenarios
allowing user-defined models from the
Lagrangian

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 2 / 10

Motivations

Extension of the features of the software SuperIso Relic
It is a software that tests the parameter space of some BSM models, providing
observables related to flavour and dark matter detection and density
The first goal is improving the relic density calculation:

SuperIso Relic
providing the total density of the BSM
particles, in freeze-out scenarios
only MSSM and NMSSM

Darkpack
following the evolution of the density of
particles different from the LSP in the
MSSM for freeze-out scenarios
allowing models with multiple stable
DM particles
allowing freeze-in scenarios
allowing user-defined models from the
Lagrangian

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 2 / 10

Motivations

Extension of the features of the software SuperIso Relic
It is a software that tests the parameter space of some BSM models, providing
observables related to flavour and dark matter detection and density
The first goal is improving the relic density calculation:

SuperIso Relic
providing the total density of the BSM
particles, in freeze-out scenarios
only MSSM and NMSSM

Darkpack
following the evolution of the density of
particles different from the LSP in the
MSSM for freeze-out scenarios
allowing models with multiple stable
DM particles
allowing freeze-in scenarios
allowing user-defined models from the
Lagrangian

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 2 / 10

Our improvements

Making easy the passage

Lagrangian→ numerical library

Wrapping the numerical library in an interactive structure
→ this will make also the library easier to link with other software

numerical library→ Relic density, DM observables, other software

Our goal is taking care of
Minimising the passages the user has to do from writing the Lagrangian to getting an
easy to use numerical library
Providing an interactive structure to the numerical library that helps the linking with
other software
Minimising the passages from the generated libary to the ready to use linking with
external tools

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 3 / 10

Our improvements

Making easy the passage

Lagrangian→ numerical library

Wrapping the numerical library in an interactive structure

→ this will make also the library easier to link with other software

numerical library→ Relic density, DM observables, other software

Our goal is taking care of
Minimising the passages the user has to do from writing the Lagrangian to getting an
easy to use numerical library
Providing an interactive structure to the numerical library that helps the linking with
other software
Minimising the passages from the generated libary to the ready to use linking with
external tools

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 3 / 10

Our improvements

Making easy the passage

Lagrangian→ numerical library

Wrapping the numerical library in an interactive structure
→ this will make also the library easier to link with other software

numerical library→ Relic density, DM observables, other software

Our goal is taking care of
Minimising the passages the user has to do from writing the Lagrangian to getting an
easy to use numerical library
Providing an interactive structure to the numerical library that helps the linking with
other software
Minimising the passages from the generated libary to the ready to use linking with
external tools

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 3 / 10

Our improvements

Making easy the passage

Lagrangian→ numerical library

Wrapping the numerical library in an interactive structure
→ this will make also the library easier to link with other software

numerical library→ Relic density, DM observables, other software

Our goal is taking care of
Minimising the passages the user has to do from writing the Lagrangian to getting an
easy to use numerical library

Providing an interactive structure to the numerical library that helps the linking with
other software
Minimising the passages from the generated libary to the ready to use linking with
external tools

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 3 / 10

Our improvements

Making easy the passage

Lagrangian→ numerical library

Wrapping the numerical library in an interactive structure
→ this will make also the library easier to link with other software

numerical library→ Relic density, DM observables, other software

Our goal is taking care of
Minimising the passages the user has to do from writing the Lagrangian to getting an
easy to use numerical library
Providing an interactive structure to the numerical library that helps the linking with
other software

Minimising the passages from the generated libary to the ready to use linking with
external tools

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 3 / 10

Our improvements

Making easy the passage

Lagrangian→ numerical library

Wrapping the numerical library in an interactive structure
→ this will make also the library easier to link with other software

numerical library→ Relic density, DM observables, other software

Our goal is taking care of
Minimising the passages the user has to do from writing the Lagrangian to getting an
easy to use numerical library
Providing an interactive structure to the numerical library that helps the linking with
other software
Minimising the passages from the generated libary to the ready to use linking with
external tools
Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 3 / 10

Creation of the model file

A MARTY model file has the following structure
The model-independent headers: i.e. all the necessary libraries to be included,
both from the C++ standard ones, the MARTY ones and the custom functions we
provide
The model-dependent headers: where you can define custom types and macros,
according to your needs
The definition of the model: it can be done in the previous part (as e.g. if you want to
do it via inheritance from some model already in the library) or at the beginning of the
main
The coherent (re)definition of particles’ names and their masses
The calculation of some particle-related quantities (including widths)
The definition of the process list
The call of computeAndAddToLib function
The writing of the library on disk
Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 4 / 10

Library preparation

You need to write your own programs, but you may want to define some custom functions
first, as for instance to handle the input.
For how to fo that you can look at the files in auxiliary_library/mssm2to2 or
auxiliary_library/scalar2to2

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 5 / 10

Example: giving the inputs

Let us show how to read input from a SLHA file:

struct Param_t input;
int err;
ReadLHA(input, "example.lha", &err);
if(err != 0) return err;
input.Print();

Note that
you can give the inputs setting by hand the elements of the Param_t variable
For a custom model, you need to adjust the read function

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 6 / 10

Example: definition of a process

Let us show how to define N1,N1 → Z ,Z :

vector<Insertion>v={corr::N_1, corr::N_1, corr::Z, corr::Z};
Process2to2 proc(v);
if(!proc.checkExistance()){
cerr « "Warning! The process " «
proc.getName() « " is not present in the library!\n";
return 1;

}
string proc_name = proc.getName();
cout « "We created the process " « proc_name « endl;

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 7 / 10

Example: some calculations - 1

Let us show how to compute quantities:

double sqrts = 3000.;
double ctheta = 0.5;
double degrees_of_freedom = proc.getDof();
double squared_amplitude = proc.getSumSquaredAmpl(input, sqrts, ctheta);
double diff_xsec = proc.getDiffCrossSection(input, sqrts, ctheta);
double total_xsec = proc.getTotalCrossSection(input, sqrts);

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 8 / 10

Example: some calculations - 2

〈σv〉 ∝

∫
Weff(

√
s)f (s) ds

g(s)

Let us show how to compute the g2
LSPWeff and its contributions:

AvgSvCalculator allprocsptr(input);
double T = input.getLightestBSMmass()/20.;
double dweff = allprocsptr.getdWeff_dcos(sqrts, ctheta);
double weff = allprocsptr.getWeff(sqrts);
double avgsv = allprocsptr.getAverageSigmav(T);

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 9 / 10

Example: some output

Let us show a part of the output of example_1_single_process.cpp:
We created the process N_1 N_1 -> Z Z and we calculated
- Symmetry factor = 8.00000e+00
- Sum|M|^2 (sqrts = 3.00000e+03, ctheta = 5.00000e-01)

= 2.09380e-03
- contribution to g^2 dWeff/dcos(theta) (sqrts = 3.00000e+03,

ctheta = 5.00000e-01) = 5.22483e-04
- dsigma/dcos(theta) (sqrts = 3.00000e+03,

ctheta = 5.00000e-01) = 1.13540e-04 pbarn
- sigma_tot (sqrts = 3.00000e+03) = 3.56877e-04 pbarn

Marco Palmiotto (IP2I, UCBL) Darkpack 04/05/2023 10 / 10

