Bridging experimental and observational realms in gravitational-wave searches

Francesco Di Renzo - IP2I, Lyon <u>f.di-renzo@ip2i.in2p3.fr</u>

Outlook of the presentation GW sources Catalogs and discovery papers PHYSICAL REVIEW I.ETTERS GW detectors **Event validation** Multimessenger searches 100 IO 0.49 0.5 0.45 0.46 0.47 0.48 0.51 0.52 0.53 Time [seconds] from 2017-08-14 10:30:43 UTC (1186741861.0) GW transient searches Next gen and Al and Data Template Make Triggers (with False Alarm Rates, Signal to Noise Ratio) Matching R&D Science Whitening **Identified Signals** (2)) Francesco Di Renzo – Subatech 2023

Prelude: compact binary observations by LIGO and Virgo

Masses in the stellar graveyard

Credit: <u>Visualization: LIGO-Virgo-KAGRA / Aaron Geller / Northwestern</u>

Interferometric Gravitational-Wave Detectors

- The Advanced detectors LIGO, Virgo and KAGRA
- Basics of interferometric GW detectors
- Noise sources vs. sensitivity

The global network of gravitational-wave detectors

The LVK in numbers

LIGO Scientific Collaboration

- Founded in 1997 127 institutions
- 1600 individuals 19 countries

Virgo Collaboration

- Founded in 1994 140 institutions
- 800 individuals 16 countries

KAGRA Collaboration

- Founded in 2010 110 institutions
- 400 individuals 15 countries

Interferometric gravitational-wave detectors (I)

• Effect of a GW signal on the detector arms:

$\delta L_{GW} \approx h L$

with *h* the GW strain amplitude and *L* the size of the detector.

Image credit: <u>Michael Gerhardt</u>

Interferometric gravitational-wave detectors (I)

• Effect of a GW signal on the detector arms:

$\delta L_{GW} \approx h L$

with *h* the **GW strain amplitude** and *L* the size of the detector.

• The power at the detector antisymmetric port is:

 $P_A \propto \frac{L}{\lambda} P_i h$

with λ the laser wavelength (e.g. 1 μ m) and P_i the input power.

- We can characterize the detector sensitivity by mans of its strain Amplitude Spectral Density $(S_h^{1/2})$: $S_A^{1/2} \propto \frac{L}{\lambda} P_i S_h^{1/2}$.
- A "shot-noise limited" $(S_N^{1/2} = \sqrt{2\hbar\omega P_A})$ interferometric detector: $S_h^{1/2} \gtrsim \sqrt{\frac{\hbar c^2}{\omega}} \frac{1}{L\sqrt{P_i}}$

where ω is the laser angular frequency.

• The RHS gives the shot-noise limited **detector sensitivity**.

Interferometric gravitational-wave detectors (II)

- Fabry-Perot arm cavities: increase the effective arm length by a factor $2\mathcal{F}/\pi$, with \mathcal{F} the arm cavity *finesse* (~450)
- Power recycling: increase the circulating power by a factor G_{pr} (~35)
- Signal recycling cavity: move up the *cavity pole* ($f_p = c/4\mathcal{F}L$), increasing the detector bandwidth (Resonant signal extraction, RSE)

$$S_{SN}(f) = \frac{1}{(4\mathcal{F}L)^2} \frac{\hbar c^2}{\omega} \frac{1}{P_i G_{pr}} \frac{1}{g(f)}$$

with $g(f) = [1 + (f/f_p)^2]^{-1}$ the F-P arm cavity frequency response.

Radiation pressure noise

- Photons carry a momentum: $p = E/c = \hbar \omega/c$
- A laser beam exerts a force on a mirror: $F_{RP} = P/c$
- This force fluctuates as the power $(S_P^{1/2} = \sqrt{2\hbar\omega P})$
- Displacement ASD:

Francesco Di Renzo – Subatech 2023

$$S_{RPN}^{1/2}(f) = \frac{\sqrt{\hbar\omega P/2}}{mc \,\pi^2 f^2}$$

with m the mirror mass (42 kg)

- GW detection as a quantum measurement problem
- Quantum Backaction on kg-scale Mirrors: <u>Phys. Rev. Lett. 125 131101</u>, <u>Nature 583, 43–47 (2020)</u>

Sum of shot noise and radiation pressure for a simple Michelson interferometer

Image credit: Gabriele Vajente

Quantum-noise limited GW detector

$$S_{QN}(f) = S_{SN}(f) + S_{RPN}(f) = \frac{1}{(4\mathcal{F}L)^2} \frac{\hbar c^2}{\omega} \frac{1}{P_i G_{pr}} \frac{1}{g(f)} + \left(\frac{4\mathcal{F}}{M\pi^2}\right)^2 \frac{2\hbar\omega}{f^4} \cdot P_i G_{pr} \cdot g(f)$$

While the shot-noise limited sensitivity improves with P, the radiation-pressure limited sensitivity gets worse with P.

Francesco Di Renzo – Subatech 2023

Beating the Standard Quantum Limit: Frequency-dependent Quantum Squeezing

$$S_{SQZ}(f) = S_{QN}(f) \left[e^{-2r} \cos^2(\phi - \theta(f)) + e^{2r} \sin^2(\phi - \theta(f)) \right]$$

with r the squeeze factor and

$$\theta(f) = \tan^{-1} \left[\frac{4\mathcal{F}}{M\pi^2} \frac{\hbar\omega}{f^2} \cdot P_i \, G_{pr} \cdot g(f) \right]$$

For frequency-independent squeezing (for $\phi = 0$):

$$S_{SQZ}(f) = S_{SN}(f) e^{-2r} + S_{RPN}(f) e^{2r}$$

equivalent of increasing the power by a factor e^{2r} .

Francesco Di Renzo – Subatech 2023

Phys. Rev. X 13, 041021

Real gravitational wave detectors

Many non-astrophysical sources can produce an effect similar to a strain at the detector output: noise

- Fundamental noise: intrinsic in the detection principle and its practical implementation
- Technical noise: from components and controls that are not optimal
- Environmental noise: from the detector physical environment

• Strain sensitivity shape determines the detector range, namely how far a specific kind of source can be detected. E.g. BNS range

Many non-astrophysical sources can produce an effect similar to a strain at the detector output: noise

- Fundamental noise: intrinsic in the detection principle and its practical implementation
- Technical noise: from components and controls that are not optimal
- Environmental noise: from the detector physical environment

- Strain sensitivity shape determines the detector range, namely how far a specific kind of source can be detected. E.g. BNS range
- Spectral lines reduce the sensitivity, in particular for narrow-band signals, e.g. continuous waves

Many non-astrophysical sources can produce an effect similar to a strain at the detector output: noise

- Fundamental noise: intrinsic in the detection principle and its practical implementation
- Technical noise: from components and controls that are not optimal
- Environmental noise: from the detector physical environment

- Strain sensitivity shape determines the detector range, namely how far a specific kind of source can be detected. E.g. BNS range
- Spectral lines reduce the sensitivity, in particular for narrow-band signals, e.g. continuous waves
- Transient noise, colloquially called "glitches," can mimic transient GW signal or hinder their presence

Francesco Di Renzo – Subatech 2023

#60547

- Strain sensitivity shape determines the detector range, namely how far a specific kind of source can be detected. E.g. BNS range
- Spectral lines reduce the sensitivity, in particular for narrow-band signals, e.g. continuous waves
- Transient noise, colloquially called "glitches," can mimic transient GW signal or hinder their presence

Gravitational-wave sources and searches

- Astrophysical sources of transient GW signals
- Search pipelines by the LVK collaboration
- Public alerts and multimessenger astrophysics

GW transient sources

Compact Binary Coalescences

- Binary star systems made of black holes (BHs) and neutron stars (NSs): BBH, NSBH, BNS. <u>GWTC-3</u>
- Sub-Solar Mass (SSM) objects, MNRAS 524, 5984 (2023)

Unmodeled or poorly modeled burst signals

- Core-collapse supernovae (CCSNe)
- Magnetar bursts
- Signals associated with fast radio bursts or gamma-ray bursts
- Cosmic strings cusps and kinks

• ...

The low-latency pipeline

Online GW transient search pipelines

Search type	Pipeline	Description
Modeled	gstlal	Matched-filter pipeline that evaluates the ratio of the likelihood of a given signal SNR and noise residual over the same quantity for noise only data
	MBTA	Uses the matched filter technique, but splits it in two frequency bands to reduce the computational cost.
	© PyCBC	Matched reweighted by imposing the consistency of the signal over various frequency bands. Time-slides method for the background estimate
	SPIIR	Applies GPU empowered summed parallel infinite impulse response (IIR) filters to approximate matched-filtering results
Unmodeled	WB	Searches for coincidences in multiple detectors on the time-frequency data obtained with a wavelet transform
	oLIB	Time-frequency domain search over planes of constant ${\it Q}$ factor
Coincident	RAVEN	Coincidences between GW events and GRBs and galactic SN alerts
searches	🦙 LLAMA	Combines GW triggers with High Energy Neutrino (HEN) triggers from IceCube

SNR for matched-filter based searches

= n(t) + s(t), and a signal model $s(t) \approx \varrho h(t)$ Given a signal plus noise model, x(t)detector data noise signa

with $\boldsymbol{\varrho}$ the amplitude and $h(t) = h(t; \boldsymbol{\theta})$ the waveform model (($\boldsymbol{h}|\boldsymbol{h}) = 1$).

Optimal detection statistic: likelihood ratio, in stationary and Gaussian noise equivalent to:

$$(\boldsymbol{x}|\boldsymbol{h}) = 4 \,\Re \int_0^\infty \frac{\tilde{x}(f)\tilde{h}^*(f)}{S(f)} df$$

Francesco Di Renzo – Subatech 2023

Overview of public alerts so far O4: 74 (85 Total - 11 Retracted), ER15: 2 (4 Total)

- Gravitational-Wave Candidate Event Database (GraceDB): <u>https://gracedb.ligo.org/</u>
- Gravitational Wave Open Science Center (GWOSC): <u>https://gwosc.org/eventapi/html/allevents/</u>

04				20040		1.05		1211	12.00		1000		6761	120101-00					12011/00	1253A8 - 2443AV	1995	10-10-				0000		-
Event D Possible Source (Probability) S231213ap BBH (-9940)	UTC Dec. 13, 2023 11:14:17 UTC	Location	FAR 1 per 50.02 years	Event D	Posable Source (Pobobilis) BBH (549%)	UTC Nex 8, 2023 12:51:42 UTC		F4R 1 per 100.04 years	Greet D S230927be	Pasable Source (Pashability) BEH (>994)	UTTE Sept. 27, 2023 15:38:32 UTC	Lection June	FAR 1 per 10104 years	Biert D	Possibile Source: Probability) BEH (38%, Terrestrial (2%)	Aug. 22, 2023 23:09:37 UTC		FAG 1 per 1.2262 years	Event D	Facable Source (Foliobility) EBH (87%), Terrestrial (13%)	UTC July 23, 2023 10:1834 UTC		1.6821 per year	Sent D SIDNEZ/c	Analis Sector (Halability)	Jane 27, 2023 01:53:37 URC		143 1 per 100.04 years
5231206ec BBH (-0940)	Dec. 6, 2023 2339-01 UTC		1 per 1.5402e+27 years	5231104ex	EEH (-594)	Nex. 4, 2023 1334-18 UTC	100	1 per 100.04 years	52309271	BEH (SBH), Terrestrial (24)	Sept. 27, 2023 0437/29 UTC		1 per 2.9477 years	5230820Eq	BBH (96%, Tomestrial (2%)	Aug. 20, 2023 21:25:15 UTC		1.3351. per year	\$230715bw	NSEH (30%), EEH (5%)	july 15, 2023 1949537 UTC	0	1 per 40401 years	5230824av	604 (1996), Terrestrial (596)	jane 24, 2023 11:31:03 URC		1 per 2.4372 years
5231206ca BBH (-89%)	Dec. 6, 2023 2331:34 UTC		1 per 100.04 years	5731102w	BBH (-59%)	Nex 7, 2023 07:17:36 UTC	5	1 per 5.4281e+14 years	5230924en	86H (J.99N)	Sept. 24, 2023 1244/53 UTC		1 per 101.04 years	5230819ex	683H (23H)	Aug. 19, 2023 17:19:10 UTC	\bigcirc	1 per 1.5837 years	5230712a	68H (- 994)	july 12, 2023 00.53.57 UTC		1 per 9.69330=+06 years	5230622m	SEH (674), Sevennal (174)	Bane 22, 2023 143536URC		1645 pr year
5231129ac BBH (5998), Terrestrial (1%)	Nov. 29, 2023 08:17:45 UTC		1 per 1.7956 years	\$231090ev	ENS (934), NSBH (24), Terrestrial (14)	Oct. 30, 2023 1251-11 UTC		1.3301 per year	5230922q	BEH (-99%)	Sept. 22, 2023 04:06:58 UTC	U	1 per 87.833 years	5230814eh	BBH (>394)	Aug. 14, 2023 23:09:01 UTC	9	1 per 1.7159e+13 years	52307096	EBH (> 994)	July 9, 2023 12-27-27 UTC	5	1 per 10.353 years	5230034	629 (1990), Terrestrial (290)	June 9, 2023 06:49:58 UTC		1 per 1.1567 years
5231127cg BBH (-9940)	Nev. 27, 2023 1653:00 UTC		1 per 5.4496 years	5231029y	EEH (-394)	0et. 29, 2023 11:15:08 UTC	0	1 per 146.45 years	5230622g	86H (+994)	Sept. 22, 2023 02:05:44 UTC		1 per 1.6432e+16 years	5230814r	BEH (33H), Terrestrial (7H)	Aug. 14, 2023 06:19:20 UTC	C	1518 per year	52307086	EEH (99%), Terrestrial (1%)	July 8, 2023 23:09:05 UTC	G	1 per 2.0439 years	523060844	684 (-996)	June 8, 2023 2050 47 UTC	0	1 per 201.40 years
5231123eg BBH (+0990)	Nov. 23, 2023 13:54:30 UTC		1 per 103.04 years	5231028bg	EEH (>89%)	Oct. 28, 2023 15:30:06 UTC	<u></u>	1 per 4.1513e-22 years	5230920al	BEH (-39%)	Sept. 20, 2023 07:11:24 UTC	<u>(</u>	1 per 101.04 years	5230811#	86H (>39H)	Aug. 11, 2023 03:21:16 UTC		1 per 100.04 years	52307086	EEH (-994)	July 8, 2023 17:17:37 UTC		1 per 28.482 years	52306064	BH (-399)	June 5, 2023 June 5, 2023		1 per 2.7780 years
5231119u EBH (69%), Terrestrial (5%)	Nov. 19, 2023 07:52:48 UTC	\bigcirc	2.345 per year	5231020bw	EEH (>59%)	0ct. 20, 2023 18:05:09 UTC		1 per 91.785 years	52309196j	BEH (-9946)	Sept. 19, 2023 21:57:12 UTC	, 1	1 per 101.04 years	5230810ef	BNS (59%)	Aug. 10, 2023 10:01:07 UTC	Ś	1 per 1.091 years	5230708z	EBH (95%), Terrestrial (5%)	July 8, 2023 07:58:59 UTC	V	2.2173 per year	52308214	EBH (J.1996)	065340UIC June 1, 2023 7241-34107		1 per 1.8450e-67 years
523111Ban BBH (74%), Terrestrial (24%), NSBH (1%)	Nov. 18, 2023 09:06:02 UTC		2.3693 per year	5231020bo	eeh (stw), nseh (sw)	0+t 20, 2023 14:28:47 UTC		1 per 25.01 years	5230918eq	BNS (79%), Terrested (21%)	Sept. 18, 2023 11:19:41.UTC	Ø	1.7099 per year	5230808		Aug. 8, 2023 04:03:46 UTC	V	1 per 4625 years	5230708t	EBH (97%), Terrestrial (3%)	July 8, 2023 05:37:05 UTC	·	1.3667 per year	5231529ay	NSBH (62N), BNS (53N), Terrestrial (7N)	May 29, 2023 18:15:00 UTC		1 per 160.44 years
5231118eb EBH (59%), Terrestrial (1%)	Nov. 18, 2023 07:14:02 UTC		1 per 1.672 years	5231014	EEH (59%)	0et. 14, 2023 040532 UTC	0	1 per 3.0666 years	5230914ek	BEH (994)	Sept. 14, 2023 11:1401.UTC		1 per 35.198 years	52308071	BBH (95N), Terrestrial (5N)	Аид. 7, 2023 2050:45 UTC	0	2.2538 per year	5230/07ai	EEH (998), Terestrial (5%)	July 7, 2023 12:40:47 UTC	5	1 per 2.3021 years	\$2395244	SINS (75%); Terrestrad (25%)	May 24, 2023 20:22:41 UTC	Ø	12799 per year
5231118d BBH (+3990)	Nev. 18, 2023 00:56:26 UTC		1 per 100.04 years	5231008ep	EEH (- 89%)	0et. 8, 2023 142521 UTC	i N	1 per 20.718 years	\$210911ce	BEH (-3946)	Sept. 11, 2023 19:53:24 UTC	۲	1 per 16769 years	5230806ek	BEH (> 99%)	Aug. 6, 2023 20:40:41.UTC	C.	1 per 10.711 years	5230706ah	EEH (97%), Terrestrial (9%)	July 6, 2023 30:43:33 UTC		1.3448 per year					
5231114n BBH (-0990)	Nov. 14, 2023 04:32:11 UTC		1 per 100.04 years	5231005eh	EEH (- 59%)	Oct. 5, 2023 09:15:49 UTC		1 per 15.493 years	5230904r	BEH (93%), Terrestrial (9%)	Sept. 4, 2023 05:10:13 UTC		1 per 14.088 years	5230805x	BBH (>89%)	Aug. 5, 2023 03:42:49 UTC		1 per 1.4497 years	5230704	EEH (- 394)	July 4, 2023 02:12:11 UTC		1 per 11.255 years	E	R15			
5231113ber EBH (96%), Terrestrial (4%)	Nov. 13, 2023 20:04:17 UTC		1 per 2.3265 years	5231005j	BEH (SBN), Terestrial (2N)	0et. 5, 2023 02:10:30 UTC	V	10148 per year	5230831e	BEH (SBH), Terestrial (2H)	Aug. 31, 2023 01:54:14 UTC	\mathcal{D}^{*}	1 per 1.6009 years	5230802mg	BBH (9046, NSEH (046, Terrestrial (246)	Aug. 1, 2023 11:33:59 UTC	ø	1 per 1.4226 years	5230/02an	EEH (>994)	July 2, 2023 18:54:53 UTC	0	1 per 20668 years	Ever: 0 52305224	Pasaible Source (Protochility) ESEH (1994)	UTC May 22, 2023 15:30:33 UTC	Lazien -	42R Ω Scan Ω HL 1 per 4.8008 years Ω LL
523111366 EBH (99%), Terrestrial (4%)	Nov. 13, 2023 12:26:23 UTC	\bigcirc	1.7663 per year	5231001aq	66H (>-99H)	0et 1, 2023 1402-20 UTC	C	1 per 6.3814 years	\$210830b	NSEH (80%), 68H (20%)	Aug. 30, 2023 04:21:58 UTC		1 per 27538 years	5230731en	EEH (81%, NSEH (18%)	My 31, 2023 21:53:07 UTC		1 per 100.04 years	5230630aq	6894 (97%), Terrestrial (3%)	June 30, 2023 23-45:32 UTC	\sim	1 per 4.0981 years	5230522e	65H (-09N)	May 22, 2023 09:38:05 UTC	0	0VI 0HI 1pt 20614 years 0L1 0VI
5231112ng BBH (-0940)	Nov. 12, 2023 11:02:03 UTC		1 per 2.9871e+06 years	5230930al	66H (55%)	Sept. 30, 2023 11:07:30 UTC	\mathcal{D}	1 per 4.2935 years	\$230825k	BEH (-39%)	Aug. 25, 2023 64:13:34 UTC	\bigcup	1 per 13.272 years	5230729 2	884 (+399)	July 29, 2023 08:23:17 UTC	(J	1 per 9.3389 years	5230690am	EEH (98%), Terrestrial (2%)	June 30, 2023 12-58-06 UTC	5	1.per 1.3133 years	5230520 or	68H (-99N)	May 20, 2023 22.48.42 UTC		aHI Iper 10.354 years aLI aVI
5231110g EBH (67%), Terrestrial (6%)	Nex: 10, 2023 04:03:20 UTC		1 per 1.6429 years	5230928db	EEH (>55%)	Sept. 28, 2023 21:58:27 UTC	\mathbf{v}	1 per 33.347 years	5230824r	85H (+894)	Aug. 24, 2023 03:30:47 UTC	U	1 per 1932.8 years	5230726a	EEH (>994)	July 26, 2023 0029:40 UTC	۲	1 per 8.2602e=45 years	5230628ax	EEH (+0944)	June 28, 2023 23:12:00 UTC		1.per 100.04 years	52305384	NSBH (86%), Terrestrid (10%), BBH (4%)	May 18, 2023 12:59:08 UTC		0H1 1per 98.463 years 0L1 0V1

^

Be prepared for the next GW170817-like event!

The Low-Latency workflow, in brief:

Astrophys.J.Lett. 848 (2017) 2, L12

Francesco Di Renzo – Subatech 2023

Event triggers, Superevents and alerts

- Search pipelines produce Events, with associated **SNR** and false alarm rate (**FAR**), which are uploaded to GraceDB
- **GWCelery** clusters events, possibly from different pipelines, on the basis of coalescence time for modeled searches, and trigger time for unmodeled searches, to Superevents
- The **preferred event** is identified on the base of FAR, SNR and search kind.

Alerts:

- Low-significance: preferred event FAR is < 2 per day; a "preliminary alert" is sent out but no human vetting
- Significant event: FAR < 1 per month* for modeled CBC candidates and < 1 per year* for unmodeled burst candidates.

Alert timeline

LVK Public Alerts Open Guide

* Alert threshold after trials factor: to account for the trials factor from the different searches with statistically independent FARs, the event thresholds are corrected to 1 per 6 months and 1 per 4 years for CBC and bursts respectively.

The rapid response team and human vetting timeline

Rapid Response Team (RRT)

A joint LVK effort to provide human vetting to event alerts:

- Foster multimessenger searches
- Vet candidates with evidence of noise artefacts

Three tier system

- Level-0 shifters, online 24/7 over three shifts per day (almost 300 participants total)
- Level-1 experts of data quality and all the parts of the lowlatency pipeline
- Level-2: all the above, called for vetting **high profile events**. Francesco Di Renzo – Subatech 2023

Notices and circulars, content of a GCN alert

TITLE: GCN/LVC NOTICE • Trigger time NOTICE DATE: Thu 18 May 23 13:38:21 UT NOTICE TYPE: LVC Preliminary TRIGGER NUM: S230518h TRIGGER DATE: 20082 TJD; 138 DOY; 2023/05/18 (yyyy/mm/dd) TRIGGER TIME: 46748.000000 SOD {12:59:08.000000} UT SEQUENCE NUM: 1 • Search type GROUP TYPE: 1 = CBC SEARCH TYPE: 1 = AllSkvPIPELINE TYPE: 15 = pycbc 3.219e-10 [Hz] (one per 35957.2 days) (one per 98.51 years) • Source FAR: 1.00 [range is 0.0-1.0] PROB NS: classification PROB REMNANT: 0.00 [range is 0.0-1.0] 0.00 [range is 0.0-1.0] PROB BNS: • FM-bright PROB NSBH: 0.86 [range is 0.0-1.0] properties 0.03 [range is 0.0-1.0] PROB BBH: More details in the PROB MassGap: -1 [range is 0.0-1.0] VALUE NOT ASSIGNED! PROB TERRES: 0.09 [range is 0.0-1.0] EM-follow guide TRIGGER ID: 0x10 MISC: 0x189A003 Sky localization SKYMAP FITS URL: https://gracedb.ligo.org/api/superevents/S230518h/files/bayestar.multiorder.fits EVENTPAGE URL: https://gracedb.ligo.org/superevents/S230518h/view/ COMMENTS: LVC Preliminary Trigger Alert. COMMENTS: This event is an OpenAlert. LIGO-Hanford Observatory contributed to this candidate event. COMMENTS: COMMENTS: LIGO-Livingston Observatory contributed to this candidate event

GCN Circular 33813

 Subject
 LIGO/Virgo/KAGRA S230518h: Identification of a GW compact binary merger candidate

 Date
 2023-05-18T14:06:25Z (5 months ago)

 From
 f.di-renzo@ip2i.in2p3.fr

The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration report:

We identified the compact binary merger candidate S230518h during real-time processing of data from LIGO Hanford Observatory (H1) and LIGO Livingston Observatory (L1) at 2023-05-18 12:59:08.167 UTC (GPS time: 1368449966.167). The candidate was found by the PyCBC Live [1], GstLAL [2], and MBTAOnline [5] analysis pipelines.

The LIGO detectors are currently operating in an "engineering run" mode prior to the start of the O4 observing run. The data being collected at the time of this candidate is believed to be of good quality based on preliminary checks, but requires further investigation. A decision was made to alert the community promptly, with this caveat, due to the potential significance of this candidate.

S230518h is an event of interest because its false alarm rate, as estimated by the online analysis, is 3.2e-10 Hz, or about one in 98 years. The event's properties can be found at this URL: https://gracedb.ligo.org/superevents/S230518h_[7]

The classification of the GW signal, in order of descending probability, is NSBH (86%), Terrestrial (10%), BBH (4%), or BNS (<1%).

Assuming the candidate is astrophysical in origin, the probability that the lighter compact object is consistent with a neutron star mass (HasNS) is >99%. [3] Using the masses and spins inferred from the signal, the probability of matter outside the final compact object (HasRemnant) is < 1%. Both HasNS and HasRemnant consider the support of several neutron star equations of state. The probability that any one of the binary components lie between 3 to 5 solar mass (HasNassgap) is < 1%.

One sky map is available at this time and can be retrieved from the GraceDB event page:

* bayestar.multiorder.fits, an initial localization generated by BAYESTAR [4], distributed via GCN Notice about 39 minutes after the candidate event time.

For the bayestar.multiorder.fits sky map, the 90% credible region is 1002 deg2. Marginalized over the whole sky, the a posteriori luminosity distance estimate is 276 +/- 79 Mpc (a posteriori mean +/- standard deviation).

GCN Circular 33813

O4 alert latency and event distribution

Image credit: Roberto De Pietri

- Preliminary notices
- Initial notice (38')
- Retraction notice (38')
- ♦ Update notices

Event validation and Data Quality

• Event validation

- The Data Quality Report framework
- Noise artifact mitigation

Data processing overview: from detectors to publications

The validation of gravitational-wave events

- Event validation consists of a set of procedures to verify if data quality (DQ) issues, such as instrumental artifacts, environmental disturbances, or anomalies in the search pipelines, can impact the analysis results and decrease the confidence of a detection;
- It is applied to all gravitational-wave transient candidate events found by both online and offline search pipelines;
- Typically, candidate events undergo two stages of validation:
 - Prompt validation (RRT, online triggers only):

Accompanies every public alerts and is typically completed within $\mathcal{O}(10 \text{ min})$ from the data acquisition. It has the role to **vet** an event trigger if there is evidence of terrestrial origin or other severe DQ issues;

• Offline validation (all):

Completed as a final check before publication for all events found by online and/or offline pipelines. The typical timescale is days or even months after the time of the event.

The Data Quality Report framework

Schematics of the Virgo O3 DQR architecture, from CQG 40, 185006 (2023)

Snapshot from the "LIGO DQR" (credit Areeda, Davis)

H1 result: Pass Observing				
Task	IFO	Status	P-value	Result
glitchaverage	H1	Done	0.14768264	Pass
stationarity	H1	Done	0.375	Pass
pemcheck	H1	Done	0.51362564	Pass
rayleigh	H1	Done	0.609375	Pass
omega_overlap	H1	Done	0.6546039	Pass
glitchfind	H1	Done	0.91762616	Pass
gspynettree	H1	Done	0.9683	Pass

- A Data Quality Report (DQR) is a <u>framework developed by</u> <u>LIGO and Virgo</u> consisting in a set of DQ checks;
- Two parallel implementations: "Virgo DQR" and "LIGO DQR"
- It is automatically prompted after each gravitational-wave candidate trigger with false alarm rate (FAR) of 1/day is being generated on <u>GraceDB</u>;
- The results are uploaded back to <u>GraceDB</u> and used by the Rapid Response Team to validate or vet the associated event, and afterwards for the final event validation.

Table: Performance of Virgo DQR during O3b, from CQG 40, 185006 (2023)

Operation		Time ta	iken [s]
Operation	Median	Mean	95 th percentile
Data acquired \rightarrow Candidate on GraceDB	52	166	331
Candidate on GraceDB \rightarrow LVAlert trigger	4	4	11
$\texttt{LVAlert} \ trigger \rightarrow Virgo \ \texttt{DQR} \ configured$	331	3 39	383
Virgo DQR configured \rightarrow Virgo DQR started	8	10	21
Operation	Ti	ime fron	n start [s]
Operation	Ti Median	ime fron Mean	$\frac{\text{n start [s]}}{95^{th} \text{ percentile}}$
Operation Quick key checks	Ti Median 374	ime fron Mean 383	$\frac{1 \text{ start [s]}}{95^{th} \text{ percentile}}}{619}$
Operation Quick key checks Adding Omicron trigger distributions	Ti Median 374 868	ime fron Mean 383 816	$\frac{1}{95^{th}} \frac{\text{[s]}}{\text{percentile}}$ $\frac{619}{935}$
Operation Quick key checks Adding Omicron trigger distributions Adding full Omicron scans	Ti Median 374 868 1740	ime fron Mean 383 816 2159	$ \frac{1}{95^{th}} \frac{\text{secentile}}{1} $ $ \frac{619}{935} $ $ 4690 $

31

Prompt event validation of low-latency alerts

Example of Virgo DMS. From <u>Virgo logbook entry #56363</u> (NOT a candidate event) <u>VIR-0191A-12</u>

- This stage has the role to vet those event triggers with severe noise contamination, for which an astrophysical origin should be excluded;
- Otherwise, it serves to enforce the confidence in the event type and **sky-localization** to support **multimessenger follow-up**.
- The main DQ checks based on the DQR are:
 - Operational **status of the detector** and its subsystems at the time of the trigger and around it;
 - Scan of the main DQ flags: $h_{\rm rec}$ correctly computed, detector observational intent and working condition, injections of spurious signals, etc.
 - Noise characterization: stationarity and Gaussianity, including the presence of glitches and their distribution; correlation with auxiliary channels; status of the environment, etc.

Final validation before publications

- Every LVK publications (catalogs and exceptional events) undergo a final, comprehensive validation procedure before data analysis reruns;
- This includes all the events found online and pre-validated and those found by offline pipelines;
- An event validation team is in charge of this procedure. Each event requires $\mathcal{O}(1 \text{ hour})$ per person involved if no DQ issue is found;
- The goal is to assess whether the parameter estimation of the astrophysical source can be affected by noise artifacts; <u>CQG 35 (2018) 15, 155017</u>
- If no DQ issue is found, the candidate event is considered validated;
- For those events where noise artifacts are found in the vicinity of the putative GW signal, or even overlapping with it, a procedure of **noise mitigation** is implemented. This requires additional time and person power.

Effect on sky-localization of a blip glitch 30 ms after a GW150914-like event. <u>PRD 105 (2022) 103021</u>

Noise artifacts mitigation of gravitational-wave detector data

- Applied to those events flagged to have DQ issues: transient noise, namely glitches, superimposing the putative astrophysical signal (orange curve);
- Metric based on the **PSD variation** to assess the extent of each non-stationary region identified [CQG 37 (2020) 21];
- Deglitched frames mostly produced with BayesWave pipeline [CQG 32 (2015) 13];
- Assessment of subtraction by means of the previous stationarity metric. Parameter Estimation comparison tests to check for bias and systematics;
- **16 events** (≈20%) required glitch subtraction during O3. This process involves lots of human input and slows down downstream analyses.

Summary of the O4 run so far

Triple interferometer [0.0%]
Double interferometer [46.3%]
Single interferometer [22.3%]
No interferometer [10.2%]

Francesco Di Renzo – Subatech 2023

Conclusions

- Advanced GW detectors have improved their performance, beating the standard quantum noise limitations, and they are approaching their design sensitivity;
- O4 is off of a good start:
 - Same number of detections achieved in only 6 months and with 2 detectors as in the 11 months of O3, with three detectors, online+offline!
 - Improved rapid response infrastructure and DQ checks to deliver timely and trustworthy alerts
 - Virgo has prolonged the commissioning of the new optical configuration.
 It is expected to join O4 in March 2024. This will lead to an increased rate of events
- Event validation is an integrating part of GW data analysis with the role of enforcing the confidence in the astrophysical origin of a transient signal detected by search pipelines, and the reliability of the source parameter estimation results;
- Cooperation inside LVK is paramount to maintaining the rapid response infrastructure: 300
 participants allover the globe, directly involved in GW transient searches.

Thanks for the attention!

The Einstein Equation

or "spacetime tells matter how to move, matter tells spacetime how to curve"." John A. Wheeler.

In general relativity gravity is described by the curvature of spacetime :

Linearized theory: $g_{\mu\nu} \approx \eta_{\mu\nu} + h_{\mu\nu}$. General relativity admits propagating, wave-like solutions. In the *Lorentz gauge*:

D'Alambertian
(wave operator)
$$\frown Dh_{\mu\nu} = -\frac{16\pi G}{c^4}T_{\mu\nu} + \mathcal{O}(h^2)$$

Gravitational Waves (GW): *ripples* in spacetime, produced by accelerating masses, which propagates in spacetime at speed *c*.

Production and free propagation of GWs

Production: accelerating mass densities:

$$h_{\mu\nu} \approx \frac{2}{r} \frac{G}{c^4} \ddot{I}_{\mu\nu}$$
 Second derivative of quadrupole moment

E.g.: for an orbiting binary system $I \approx MR^2$, $\ddot{I} \approx 4MR^2\omega_{\rm orb.}^2$

$$h \approx \frac{8G}{c^4} \frac{M}{r} R^2 \omega_{\text{orb.}}^2 \approx \frac{8G}{c^2} \frac{M}{r} \left(\frac{v}{c}\right)^2 \sim \mathbf{10^{-21}}$$

Free propagation along "*z*-axis" in vacuum ($T_{\mu\nu} = 0$):

$$\Box h_{\mu\nu} = 0 \implies h_{\mu\nu}(t,z) = h_{\mu\nu}e^{i(kz-\omega t)} \quad \text{with} \quad \omega/c = k$$

GW interaction in the TT frame

or how to exploit gauge freedom in our favor.

Transverse Traceless gauge, convenient to represent GW propagating degrees of freedom:

$$h_{ij}^{\rm TT}(t,z) = \begin{pmatrix} h_+ & h_\times & 0\\ h_\times & -h_+ & 0\\ 0 & 0 & 0 \end{pmatrix} \cos[\omega(t-z/c)]$$

- In this gauge, GWs are transverse and traceless (TT): h_+ and $h_ imes$ d.o.f.
- Objects initially at rest **remain at rest**, even after the arrival of the wave. That is, they are "free falling":

Geodesic
$$\longrightarrow \left. \frac{d^2 x^i}{d\tau^2} \right|_{\tau=0} = -\left[\Gamma^i_{\nu\rho}(x) \frac{dx^{\nu}}{d\tau} \frac{dx^{\rho}}{d\tau} \right]_{\tau=0} = \left[\Gamma^i_{00} \left(\frac{dx^0}{d\tau} \right)^2 \right]_{\tau=0} = 0$$

Because, in this gauge, the Christoffel symbol $\Gamma_{00}^i = \frac{1}{2}(2\partial_0 h_{0i} - \partial_i h_{00}) = 0$. Only a non-gravitational force can cause a mass to change its coordinates.

Light travel time through the detector (TT gauge)

Suspended (test) masses can be considered free in the horizontal plane (z = 0).

We study in the TT gauge the propagation of light between them. Along one arm, the effect of a + wave:

Pendulum

Suspension

Test Masses

Difference between x and y round-trip times:

 $\Delta \tau = \Delta t_x - \Delta t_y \approx 2h_+L/c$ $(\Delta \phi \approx 2h_+L 2\pi/\lambda)$

Workflow investigation of a "transient signal"

Francesco Di Renzo – Subatech 2023

Sensitivity improvements and event rate vs time

A sensitivity range improvement of $50 \div 200\%$ implies an increase in observed volume of $2 \div 4$ times, and an equal increase in detected events.

LVK observing run plans

The rate density of compact binary coalescences

Compact binary star systems can emit detectable Gravitational Waves (GW) in the last stages of their inspiral motion.

- BNS: two Neutron Stars (NSs) system, e.g. GW170817;
- NSBH: binary formed by one Neutron Star and one Black Hole (BH), *e.g.* GW200105 and GW200115;
- **BBH**: two Black Holes (BHs) system, *e.g.* GW150914.

The effective BNS Volume-Time

Euclidean sensitive volume of the second-most sensitive detector in the network at a given time, multiplied by the **live time** of that network configuration.

The network Euclidean sensitive volume is the volume of a sphere with a radius given by the BNS inspiral range.

⇒ Multiplying the BNS Volume-Time by the CBC density rate we get an estimate of the expected number of detections. (ignoring cosmological corrections)

LIGO-Virgo Network duty cycle during O3

Image Credit: Virgo Collab.

Known compact object masses vs. estimated distance

Francesco Di Renzo – Subatech 2023

Using Deep Learning to distinguish signal and noise

Multilabel classifier to label excess energy in the spectrogram images and distinguish noise artefacts from GW transients.

 Refer also to <u>Gravity Spy</u> and <u>GWitchHunters</u> projects on Zooniverse

https://arxiv.org/abs/2304.09977