
OS IMPACT ON PERFORMANCE

OPENING THE ROOF

LAPP - Annecy
Sébastien Valat - INRIA

Gray Scott Reloaded – Summer School - 11 july 2024

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  PAGE 1



Plan

I. Introduction

II. Analysis of OS paging policy

III. NUMA allocator for HPC applications

IV. Page zeroing in Linux first touch handler

V. Conclusion

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 2 / 43



ADVERTISING

|  PAGE 3

Gray Scott Reloaded | Sébastien Valat | 11 july 2024



Understanding the memory management

From the transistor to the application

What every programmer should know about memory (Urlich Drepper)

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

|  PAGE 4

SCAN ME

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
Gray Scott Reloaded | Sébastien Valat | 11 july 2024

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf


A look for HPC / supercomputers

My PhD. work

Contribution à l'amélioration des méthodes d'optimisation de la gestion de la mémoire dans le cadre du Calcul Haute 

Performance

|  PAGE 5

SCAN ME
https://hal.science/tel-01253537

Gray Scott Reloaded | Sébastien Valat | 11 july 2024

https://hal.archives-ouvertes.fr/tel-01253537
https://hal.archives-ouvertes.fr/tel-01253537
https://hal.science/tel-01253537


OPERATING SYSTEM (OS) 

BETWEEN APPLICATIONS AND HARDWARE

Gray Scott Reloaded | Sébastien Valat | 11 july 2024

6



The keywords of the last two weeks

7Gray Scott Reloaded | Sébastien Valat | 11 july 2024

Loops, loops, loops
GPU

Buffer

SYCL

Vectorization

SSE / AVX

Prefetcher

CPU

Cores

NUMA

Registres

wrap



Hardware and software stack

To obtain performance

We need to optimize the interaction between all components

The synthetic view up to now :

|  PAGE 8Gray Scott Reloaded | Sébastien Valat | 11 july 2024

Hardware

Application

https://press.ariane.group/le-nouveau-lanceur-europeen-ariane-6-a-pris-son-envol/?lang=fra

https://press.ariane.group/le-nouveau-lanceur-europeen-ariane-6-a-pris-son-envol/?lang=fra


Hardware and software stack

Non optimal hardware usage leads to slow down,

We didn’t be in direct contact to the hardware.

Bad usage of OS too.

|  PAGE 9Gray Scott Reloaded | Sébastien Valat | 11 july 2024

Hardware

Application

Hardware

OS (kernel)

System libraries

Frameworks

Application



INTRODUCTION

I. Introduction
II. Analysis of OS paging policy
III. NUMA allocator for HPC applications
IV. Page zeroing in Linux first touch handler
V. Conclusion

Gray Scott Reloaded | Sébastien Valat | 11 july 2024

|  PAGE 10



Context : HPC

Memory becomes a critical resource

Growing impact on performance

Data movements : speed gap CPU / RAM, memory wall.

Management : now have to handle close to TB of memory

Decreasing memory per core

|  Slide 11 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024

http://www.cea.fr/multimedia/Pages/galeries/defense/Tera-100.aspx



LES CACHES

|  Slide 12 / 46

Gray Scott Reloaded | Sébastien Valat | 11 july 2024



Damn slow memory

A story of caches and hierarchy

|  Slide 13 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024

CPU

L3

L2

L1 

data

L1 

instr

Traitements

L2

L1 

data

L1 

instr

Traitements

24 MB 1 MB 32 KB

https://similarpng.com/cartoon-funny-turtle-isolated-on-transparent-background-png/#getdownload

https://similarpng.com/cartoon-funny-turtle-isolated-on-transparent-background-png/#getdownload


Architecture

Computer science : operations & data

Multiple memory levels

Hierarchical caches

Pre-fetcher

Processor : 8 cores

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 14 / 43



Cache lines

Data are fetced by : cache lines

Typically : 8 bytes (CPU)

Common mistake : AOS (Array Of Structure)

Better to use SOA (Structure of Array)

|  Slide 15 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024

1 byte

Mémoire

addr % 8 == 0

L2

L1

Smaller unit of transfert



Array of Struct in memory

|  Slide 16 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024

# AOS (Array of Struct)
struct Cell
{
 float u;
 float v;
};
Cell mesh[HEIGHT][WIDTH];

u v u v u v u v u v u v u v u v u v u v

u v u v u v u v u v u v u v u v Cache

# Loop using one of the members
# pragma omp parallel for
for ( size_t y = 0 ; y < HEIGHT ; y++)
 for ( size_t x = 0 ; x < WIDTH ; x++)
  mesh[y][x].u += 5.0;

…

Half of the cache lost



Struct of Array in memory

|  Slide 17 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024

# SOA (Struct of Array)
struct Mesh
{
 float u[HEIGHT][WIDTH];
 float v[HEIGHT][WIDTH];
};
Mesh mesh;

u u u u u u u u u u u v v v v v v v v v v v…

Struct of Array

u u u u u u u u u u u Cache

# Loop using one of the members
# pragma omp parallel for
for ( size_t y = 0 ; y < HEIGHT ; y++)
 for ( size_t x = 0 ; x < WIDTH ; x++)
  mesh[y][x].u += 5.0;



5,6

3,7

0 1 2 3 4 5 6

Array of Struct

Struct of Array

Cycles / cell / thread

SOA vs. SAO

|  Slide 18 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024

OMP_PROC_BIND=spread OMP_NUM_THREADS=6 ./soa



Cache blocking

The classic mistake :

Walk over data (time 1)

Walk again over data (time 2)

…

Processor : 8 cores

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 19 / 43

Cache

20 MB

Step 1

Step 2



Question of binding

|  Slide 20 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024

OMP_PROC_BIND=close OMP_NUM_THREADS=6 hwloc-bin core:0-5 ./soa

Fast cores Energy efficient cores



Question of binding

|  Slide 21 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024

OMP_PROC_BIND=spread OMP_NUM_THREADS=6 hwloc-bin core:0-5 ./soa

Fast cores Energy efficient cores



LE NUMA

|  Slide 22 / 46

Gray Scott Reloaded | Sébastien Valat | 11 july 2024



Architecture

Hierarchical memory

Remote / local memories (NUMA : Non Uniform Memory Access)

Thin nodes :

32 cores
Large nodes : 128 cores (BCS)

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 23 / 43



Now also inside the CPU – Intel KNL

Intel KNL (64 cores) can be configured in 2 or 4 NUMA domains

Also add MCDRAM (similar idea than GPU GDDR5) viewed as a NUMA node

Or on AMD CPUs

|  Slide 24 / 43Gray Scott Reloaded | Sébastien Valat | 11 july 2024

MCDRAM

DDR4

DDR4

DDR4

DDR4

MCDRAM

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

MCDRAM MCDRAM



PAGINATION

|  Slide 25 / 46

Gray Scott Reloaded | Sébastien Valat | 11 july 2024



Software memory management layer

Impact of memory management mechanisms ?

Involving two components :

User space memory allocator (malloc)

Operating System (OS)

Focus on :

Impact on allocation time

Impact on access efficiency (placement)

Malloc C or C++ interface :

14 JUILLET 2024

Hardware

OS

mmap munmap mremap

(g)libc

malloc free …

Application

float * ptr = malloc(SIZE);
…
ptr = realloc(ptr,NEW_SIZE);
…
free(ptr);

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 26 / 43

float * ptr = new float[SIZE];
…
…
…
delete [] ptr;



OS virtual / physical address spaces

Two address spaces : physical + virtual

Description of the memory mapping in blocks of 4 KB (pages)

Paging was first used in 1962 on the ATLAS computer

Area creation with syscalls : mmap / munmap / mremap

Malloc has the responsibility to hide the pages to developers

MMU / OS

Physical memory (RAM)

Virtual memory

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 27 / 43

http://www.computerhistory.org/collections/catalog/102698470

32 bits = 4 GB

48 bits = 256 TB

57 bits = 128 PB

64 bits = 16 EB



Origin of the concept

May 1956 - Fritz Rudolf Güntsch’s

Logical Design of a Digital Computer with Multiple Asynchronous Rotating Drums and Automatic High Speed 

Memory Operation

Origin of the virtual memory concept

IEEE Annals of the History of Computing – Anecdotes

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1369143

|  Slide 28 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024

SCAN ME

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1369143


Page table and TLB

We don’t want to walk over the page table for every access

CPU has a cache (TLB : Translation Lookaside Buffer)  

|  Slide 29 / 43Gray Scott Reloaded | Sébastien Valat | 11 july 2024

* From : Linux Kernel Driver

12 bits9 bits 9 bits9 bits9 bits

4 KB

If we would had a flat page table ?

• 64 GB / 4 KB = 16 M pages

• Page table : 16 B per page

• Per process : 16 B * 16 M = 256 MB !



Huge pages

With 4K pages, intel CPU TLB has 1024 entries => address 4 MB

x86_64 processors also support 2 MB or 1 GB pages (Huge pages)

With 2M pages, TLB address 2 GB

First real support : FreeBSD (superpages, 2002) [1]

Support Linux  : old HugeTLBfs then now Transparent Huge Pages (THP), 2011

MMU / TLB / OS

Virtual memory

Physical memory
Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 30 / 43

[1] Practical, transparent operating system support for superpages, 2002



Play with memory mapping

Virtual memory isolate each process

We can do shared memory, mapping the same memory twice

Most OS also use a trick by mapping the OS memory in each process

At the end of the address space

Protected

Issue with Spectre attack a few years ago !

|  Slide 31 / 43Gray Scott Reloaded | Sébastien Valat | 11 july 2024

MMU / OS

Physical memory (RAM)

OS memory mapping 

(protected)



Lazy page allocation

mmap creates pure virtual area

First touch creates a page fault for each virtual page

OS provides physical pages on first touch

First touch implicitly determines NUMA placement of the page

ptr = mmap(…,SIZE,…);

#pragma omp parallel for

for (i = 0 ; i < SIZE ; i++)

ptr[i] = 0;

T1

TLB / MMU / OS

RAM NUMA 1 RAM NUMA 2

T2

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 32 / 43



Cache associativity

Data can only be placed in one of the 

N lines associated to the address

Can create conflicts depending on the OS

Linux “randomly” chooses the pages

Physical memory

MMU / OS

Virtual memory

Cache

?

Gray Scott Reloaded | Sébastien Valat | 11 july 2024
Way 1 Way 2

|  Slide 33 / 43

Huge pages



Same equation than electron in boltzman statistic !

|  Slide 34 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024



Existing solutions

Huge pages

Larger than cache ways

Native support on FreeBSD

Extended support on Linux / OpenSolaris

Page coloring

4K pages by taking care of associativity

Available on OpenSolaris

Color based on virtual address (modulo)

Regular coloring : coloration with repeated patterns

MMU / OS

MMU / OS

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 35 / 43



ANALYSIS OF OS PAGING POLICY

I. Introduction
II. Analysis of OS pagin policy
III. NUMA allocator performances for HPC applications
IV. Page zeroing in Linux first touch handler
V. Conclusion

Gray Scott Reloaded | Sébastien Valat | 11 july 2024

|  PAGE 36



OS strategies comparison

Each system has its default paging strategy:

Is Linux slower due to random paging ?

Tested architecture : Intel Nehalem bi-socket

Use a fixed compile chain : GCC/Binutils/MPI/BLAS

Focus a pathological case

OS Strategy

Linux 4K random

OpenSolaris Page coloring

FreeBSD Huge pages

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 37 / 43



EulerMHD issue

EulerMHD (CEA) :

C++ /MPI

Magnéto-hydrodynamic stencil code

FreeBSD : slowdown of 1.5x, up to 3x in parallel

Impacted function only do compute.

Function with 9 arrays pre-allocated at init. :

Change between OS’s : 

User space memory allocator (malloc).

OS paging policy

(Scheduler)

Effect can be controlled by changing the allocator.

for (i = 0 ; i < SIZE ; i++)

x1[i] = x2[i] + x3[i] … + x9[i]

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 38 / 43



Alignment effect on regular coloring

Each malloc (OS) produces different alignments

FreeBSD align large segments on 2 MB

It interferes with regular patterns generated by : 

OpenSolaris coloration method (modulo)

Huge pages

Physical memory

MMU / OS

Virtual memory

Cache

?

a = X * 2MB b = Y * 2MB c = Z * 2MB

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 39 / 43

for (i = 0 ; i < SIZE ; i++)

a[i] = b[i] + c[i];



Typical sizes now

|  Slide 40 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024

CPU

L3

L2

L1 

data
Traitements

L2

L1 

data
Traitements

24 MB / 12 1 MB / 10 48 KB / 12



Solution

Avoid segment alignments on cache way size (mmap / malloc).

The Linux random approach prevents pathological cases

Do not use regular patterns for page coloring (eg. single modulo)

Huge pages are regular by hardware definition

Physical memory

MMU / OS

Virtual memory

Cache

a = X * 2MB b = Y * 2MB c = Z * 2MB + 8 KB

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 41 / 43



Impact on threads

Larger effects on shared caches with threads/processes (Nehalem)

EulerMHD : Slowdown up to 3x on FreeBSD

16 ways L3 cache implies a maximum of 4 aligned arrays per core 

No limit on concurrent arrays for unaligned allocations

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 42 / 43



New intel L3 cache slices

Since Sandy Bridge

L3 splits in slices

Slice is selected by hashing the address

Each slice has associativity with 16 ways

This fix the coloring/alignment issue

|  Slide 43 / 43Gray Scott Reloaded | Sébastien Valat | 11 july 2024

https://software.intel.com/en-us/articles/intel-xeon-processor-e5-26004600-product-family-technical-overview



On today CPUs

Not anymore an issue for Intel L3 caches

Change of topology

AMD Zen (Ryzen)

Now also use slices

Should solve the issue

Still an issue on IBM power 8

L3 cache has 8 ways for 8 MB

Issue present

Power 9 ? Also “regions” in LLC ?

For ARM (v7/v8) ? 

L2 shared associative cache

Issue should be present

But I never tested

Issue for L2 of all processors !

Think hyperthreading with 8 ways !

|  Slide 44 / 43Gray Scott Reloaded | Sébastien Valat | 11 july 2024



4K aliasing (old issue but fun !)

Consider the simple loop :

If addresses verify :

Processor thinks (fast check with 12 lower bits) addresses are equals (alias)

Processor do not execute them in parallel (out of order)

In malloc, direct call to mmap generate 4K alignment by default !

Mainly fixed since sandy bridge

a % 4Ko = b % 4Ko

for (i = 1 ; i < SIZE ; i++)

a[i] = b[i-1]

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 45 / 43

16,8

8,5

4K aligned Unaligned

Cycles / loop on 
Nehalem

Load b[0] Load b[1]

Store a[1]

Time

Load b[2]

Store a[2]



NUMA ALLOCATOR FOR HPC APPLICATIONS

I. Introduction
II. Analysis of OS paging poliocy
III. NUMA allocator for HPC applications
IV. Page zeroing in Linux first touch handler
V. Conclusion

Gray Scott Reloaded | Sébastien Valat | 11 july 2024

|  PAGE 46



Allocator performance on HPC applications

Main interest : malloc time cost

Test case : Hera (CEA)

Adaptive Mesh Refinement (AMR)

Massive C++/MPI code (~1 million lines).

Large number of memory allocations

(~75 millions / 5 minutes on 12 cores)

Large number of alloc/realloc around ~20 MB

Available allocators :

Doug Lea / PTMalloc : libc Linux

Jemalloc : FreeBSD / Firefox / Facebook

TCMalloc : Google

Hoard

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 47 / 43



Hera preliminary results

0

20

40

60

80

100

120

140

160

Execution time(s)

User System Idle

0

1

2

3

4

5

6

7

8

glibc jemalloc tcmalloc

Physical mem.(Go)

12 cores

0

50

100

150

200

250

300

350

400

450

500

Execution time(s)

User System Idle

0

2

4

6

8

10

12

14

16

glibc jemalloctcmalloc

Physical mem.(Go)

128 cores

Gray Scott Reloaded | Sébastien Valat | 11 july 2024

+54%

+30%

|  Slide 48 / 43



How to measure malloc time

Measurement method :

Ok for small blocks, but not for large one :

Lazy page allocation.

Page faults on first access.

T0 = clock_start();
ptr = malloc(SIZE);
T1 = clock_end();

T0 = clock_start();
ptr = malloc(SIZE);
for ( i = 0 ; i < SIZE ; i += PAGE_SIZE)

ptr[i] = 0;
T1 = clock_end();

For 4GB Malloc First access

Time (M cycles) 0,008 1 217

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 49 / 43



Large allocations

Small allocation well handled by most allocators, best is jemalloc / tcmalloc.

Cost for large allocation : page faults.

Commonly neglected, literature mainly discuss small allocations

Direct call to mmap/munmap

HPC applications (expected to) use large arrays

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 50 / 43



Large allocations

My goals :

Recycle large arrays

Avoid fragmentation on large segments

Take care of NUMA

Limit locks

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 51 / 43



Allocator Profiles

Test allocator with multiple profiles

Lowmem profile

Return memory to the OS as soon as possible

UMA Profile

Recycle large segments

Disable NUMA

Use only one common memory source

NUMA profile :

Recycle large segments

Enable NUMA structures

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 52 / 43



Hera on Nehalem-EP (128 : 4*4*8 cores)

0

100

200

300

400

500

600

700

800

Execution time (s)

User System Idle

0

2

4

6

8

10

12

14

16

18

Physical memory (GB)

-20%

-58%

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 53 / 43



Mysql results

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 54 / 43



PAGE ZEROING IN LINUX FIRST TOUCH HANDLER

I. Introduction
II. Analysis of OS paging policy
III. Allocator for HPC applications
IV. Page zeroing in Linux first touch handler
V. Conclusion and future work

Gray Scott Reloaded | Sébastien Valat | 11 july 2024

|  PAGE 55



Benchmarking page faults

Page faults are an issue for allocation performance

We previously limit them with large segment recycling

Can we improve fault performance?

Micro-benchmark :

ptr = mmap(SIZE);
#pragma omp parallel for
for ( i = 0 ; i < SIZE ; i += PAGE_SIZE)
{

TIME_DISTRIBUTION(ptr[i] = 0);
}

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 56 / 43



On my adctual latop – page fault costs (4K pages)

|  Slide 57 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024



Using also the energy efficient cores

|  Slide 58 / 46Gray Scott Reloaded | Sébastien Valat | 11 july 2024

Is average + standard deviation a right observable ?

Is median + 10% quartiles better



Page fault scalability

Are page faults scalable ? Over threads or processes.

Mesurement on 4*4 Nehalem-EP (128 cores) and on Xeon Phi (60 cores) 

Get scalability issue !

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 59 / 43



Can huge pages solve this issue ?

Standard pages: 4K

Huge pages (x86_64): 2M

Divide number of faults by 512

Impact on performance ?

Sequential : only 40%

Parallel : No

Why ?

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 60 / 43



What happens on first touch page fault ?

Hardware generates an interruption to the OS

Take locks on page table

Check reason of the fault

Is first touch from lazy allocation

Request a free page to NUMA free lists

Clear the page content 

Map the page, update the page table

Release locks

Possible issue on Xeon Phi

~1400/3400 cycles 40%

99% for THP !

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 61 / 43

Locks, but hard to fix
(some work from

A.T. Clement ASPLOS12)



How to avoid page zeroing cost ?

Microsoft approach :

Windows uses a system thread to clear the memory

So its done out of critical path

But zeroing:

Implies useless work

Consumes CPU cycles so energy

Consumes memory bandwidth

Allocation pattern follow:

Why not avoid them ?

double * ptr = malloc(SIZE * sizeof(double));
for ( i = 0 ; i < SIZE ; i++)

ptr[i] = default_value(i);

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 62 / 43



Reusing local pages to avoid zeroing

Page zeroing is required for security reason

It prevents information leaks from another processes or from the kernel.

But we can reuse pages locally !

Need to extend the mmap semantic :

Usable by malloc / realloc.

User-space

Kernel-space
Global free listKernel Code

Process 0 Process 1 Process 2

Local pool

Process 3

Local pool

mmap(…MAP_ANON…) mmap(…MAP_ANON|MAP_PAGE_REUSE…)

Pass.
Pass.

Security 

Hole

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 63 / 43



Performance impact

Get the expected improvement on 4K pages (40% for sequential).

Also improve scalability on 1 socket

On NUMA locking effets become dominant for scalability

Get the constant improvement related to page zeroing.

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 64 / 43



Performance impact on huge pages

Huge pages (2 MB) faults become 47 times faster, 60 in parallel.

New interest for huge pages.

Gray Scott Reloaded | Sébastien Valat | 11 july 2024 |  Slide 65 / 43



A SHORT PROBLEM WITH NUMA

|  Slide 66 / 46

Gray Scott Reloaded | Sébastien Valat | 11 july 2024



Malloc NUMA issue

Exchanges between NUMA nodes :

Most current allocators are affected by this issue

Malloc has no information about the use of allocated segments

C++ tend to have more allocs, so more exposed on NUMA

T1

Allocator

On NUMA 1

T2On NUMA 2

1K, NUMA 1 free()

Malloc()

|  PAGE 67 / 43Gray Scott Reloaded | Sébastien Valat | 11 july 2024



CONCLUSION

I. Introduction
II. Analysis of OS / allocator / caches interactions
III. Allocator for HPC applications
IV. Optimization of Linux page fault handler
V. Conclusion and future work

Gray Scott Reloaded | Sébastien Valat | 11 july 2024

|  PAGE 68



Conclusion

Consider the genius of peoples who invented the pagination !

Event after 60 years of memory management we can still do a lot !

Current operating systems still have to digest side effects of multi-core and NUMA

Impact can be huge !

Hope you know better what is behind malloc now !

|  PAGE 69Gray Scott Reloaded | Sébastien Valat | 11 july 2024



QUESTIONS ?

Gray Scott Reloaded | Sébastien Valat | 11 july 2024

|  PAGE 70


	Section par défaut
	Diapositive 1 OS impact on performance  Opening the roof
	Diapositive 2 Plan

	Section sans titre
	Diapositive 3 Advertising
	Diapositive 4 Understanding the memory management
	Diapositive 5 A look for HPC / supercomputers
	Diapositive 6 Operating System (OS)  between applications and hardware 
	Diapositive 7 The keywords of the last two weeks
	Diapositive 8 Hardware and software stack
	Diapositive 9 Hardware and software stack
	Diapositive 10 Introduction
	Diapositive 11 Context : HPC
	Diapositive 12 Les caches
	Diapositive 13 Damn slow memory
	Diapositive 14 Architecture
	Diapositive 15 Cache lines
	Diapositive 16 Array of Struct in memory
	Diapositive 17 Struct of Array in memory
	Diapositive 18
	Diapositive 19 Cache blocking
	Diapositive 20 Question of binding
	Diapositive 21 Question of binding
	Diapositive 22 LE NUMA
	Diapositive 23 Architecture
	Diapositive 24 Now also inside the CPU – Intel KNL
	Diapositive 25 PAgination
	Diapositive 26 Software memory management layer
	Diapositive 27 OS virtual / physical address spaces
	Diapositive 28 Origin of the concept
	Diapositive 29 Page table and TLB
	Diapositive 30 Huge pages
	Diapositive 31 Play with memory mapping
	Diapositive 32 Lazy page allocation
	Diapositive 33 Cache associativity
	Diapositive 34 Same equation than electron in boltzman statistic !
	Diapositive 35 Existing solutions

	Section sans titre
	Diapositive 36 Analysis of OS paging policy
	Diapositive 37 OS strategies comparison
	Diapositive 38 EulerMHD issue
	Diapositive 39 Alignment effect on regular coloring
	Diapositive 40 Typical sizes now
	Diapositive 41 Solution
	Diapositive 42 Impact on threads
	Diapositive 43 New intel L3 cache slices
	Diapositive 44 On today CPUs
	Diapositive 45 4K aliasing (old issue but fun !)

	Section sans titre
	Diapositive 46 NUMA Allocator for HPC applications
	Diapositive 47 Allocator performance on HPC applications
	Diapositive 48 Hera preliminary results
	Diapositive 49 How to measure malloc time
	Diapositive 50 Large allocations
	Diapositive 51 Large allocations
	Diapositive 52 Allocator Profiles
	Diapositive 53 Hera on Nehalem-EP (128 : 4*4*8 cores)
	Diapositive 54 Mysql results

	Section sans titre
	Diapositive 55 Page zeroinG in Linux first touch handler
	Diapositive 56 Benchmarking page faults
	Diapositive 57 On my adctual latop – page fault costs (4K pages)
	Diapositive 58 Using also the energy efficient cores
	Diapositive 59 Page fault scalability
	Diapositive 60 Can huge pages solve this issue ?
	Diapositive 61 What happens on first touch page fault ?
	Diapositive 62 How to avoid page zeroing cost ?
	Diapositive 63 Reusing local pages to avoid zeroing
	Diapositive 64 Performance impact
	Diapositive 65 Performance impact on huge pages
	Diapositive 66 A short problem with NUMA
	Diapositive 67 Malloc NUMA issue

	Section sans titre
	Diapositive 68 Conclusion
	Diapositive 69 Conclusion
	Diapositive 70 Questions ?


