Numerical validation using stochastic arithmetic

Fabienne Jézéquel

LIP6

http://www.lip6.fr/Fabienne.Jezequel /AFAE.html

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 1/99

http://www.lip6.fr/Fabienne.Jezequel/AFAE.html

Overview

@ Floating-point arithmetic: the IEEE 754 standard

@ The CESTAC method and the stochastic arithmetic
@ The CADNA software

@ Contributions of CADNA in numerical methods

@ Precision autotuning

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 2/99

Representation of real numbers

In a floating-point arithmetic using the radix b,
X =¢eMbE

is represented by:
@ its sign &, encoded on one digit (0 if X is positive, 1 if X is negative),
@ its exponent E, a k digit integer,
@ its mantissa M, encoded on p digits.

M= Zf;& aib’anda;je€{0,...b-1}.

Floating-point numbers are usually normalized:
ap # 0, M € [1, b) and zero has a special representation.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 3/99

The IEEE 754 - 2008 standard

Formats using the radix 2:
@ binary16 (half precision)
@ binary32 (single precision)
@ binary64 (double precision)
@ binary128 (quadruple precision)
@ binary256 (octuple precision)

Formats using the radix 10 (emulate decimal rounding exactly):
@ decimal32 (storage on 32 bits)
@ decimal64 (storage on 64 bits)
@ decimal128 (storage on 128 bits)

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 4/99

Single / double precision

IEEE 754 single precision:

1 2. 9 10 .. 32
’S‘E+27—1‘a1 323‘

= range: 10*38 accuracy: u=22*~610"8

IEEE 754 double precision:

1 2. 12 13 ... 64
’S‘E+210—1‘a1 352‘

= range: 10308 accuracy: u=2"%~1107"%

Remark: a; = 1 (hidden bit)

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 5/99

Half precision

@ binary16 (fp16):
e 11 bits for the mantissa, 5 for the exponent

= range: 10*5, accuracy: u=2""~510"*
@ used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU, ARM NEON, Fujitsu
AB4FX ARM
@ bfloat16:

o 8 bits for the mantissa, also 8 for the exponent
= range: 10*%, accuracy: u=2"%~4107°

e used by Google TPU, NVIDIA GPUs, ARM, Intel.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 6/99

Rounding mode

IF: set of real numbers which can be coded exactly on a computer (set of
floating point numbers)

Every real number x ¢ F is approximated by a number X € F.
Let Xmin (resp. Xmax) be the smallest (resp. the greatest) floating point number:
VX € | Xonins Xmax[» 3{X7, X T} € F?

such that
X" <x< X" and]x-,x+[mF: 0

The rounding mode is the algorithm that, according to x, gives X~ or X™.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 7/99

The 4 rounding modes of the IEEE 754 standard

Rounding to zero: x is represented by the floating point number the nearest to
X between x and 0.

Rounding to nearest: x is represented by the floating point number the
nearest to x.

Rounding to +oo: x is represented by X™.

Rounding to —o: x is represented by X~.

The rounding operation is performed after each assignment and after every
elementary arithmetic operation.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 8/99

A significant example - |

03%x2 + 21%x +3675 = 0

@ Rounding to nearest
=-3.81470E-06
There are two conjugate complex roots.
z1 = -.3500000E+01 +i * 0.9765625E-03
z2 = -.3500000E+01 +i * -.9765625E-03

@ Rounding to zero
d=0.
The discriminant is null.
The double real root is -.3500000E+01

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 9/99

A significant example - Il

03%x2 + 21%x +3675 = 0

@ Rounding to +
d = 3.81470E-06
There are two different real roots.
x1 =-.3500977E+01
x2 = -.3499024E+01

@ Rounding to —«
d=0.
The discriminant is null.
The double real root is -.3500000E+01

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 10/99

Inconsistency of the floating point arithmetic

On a computer, arithmetic operators are only approximations.
@ commutativity: XoY=YoX
@ no associativity: (XoY)oZ # Xo(Yo2)
@ no distributivity: X®@ (Y& Z) # (Xe Y)e (X ® 2)

On a computer, order relationships are used as in mathematics

— it leads to a global inconsistent behaviour.
Let x, y be exact results and X, Y the associated floating-point numbers:

X=Y #x=y and x=y % X=Y.
XY s xzy and x>y % X=Y.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 11/99

Round-off error model

r € R: exact result of n elementary arithmetic operations.
On a computer, one obtains R € IF which is affected by round-off errors.

R can be modeled, at the first order with respect to 27, by
n
R~r+ Zg,(d) 27P
i=1

@ pis the number of bits including the hidden bit
@ gi(d) are coefficients depending on data and on the algorithm
@ «; are the round-off errors.

Remarks:

@ the number ot terms may be > n (ex: for n =1, we have 3 terms if data are
not exactly encoded)

@ we have assumed that exponents and signs of intermediate results do not
depend on «;.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 12/99

A theorem on numerical accuracy

The number of significant bits in common between R and r is

n @i
;gi(d)-T

The last part corresponds to the accuracy lost in the computation of R, we can
note that it is independent of p.

R-r
r

Cp = —logy ‘zp—logz

The loss of accuracy during a numerical computation is independent of the
precision used for the floating point representation.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 13/99

Round-off error analysis

Several approaches

@ Inverse analysis
based on the “ Wilkinson principle”: the computed solution is assumed to
be the exact solution of a nearby problem
e provides error bounds for the computed results

@ Interval arithmetic
The result of an operation between two intervals contains all values
obtained by performing this operation on elements from each interval.
@ guaranteed bounds for each computed result
e the error may be overestimated
e specific algorithms

@ Static analysis
@ no execution, rigorous analysis, all possible input values taken into account
@ not suited to large programs

@ Probabilistic approach

@ uses a random rounding mode
e estimates the number of correct digits of any computed result

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 14/99

The CESTAC method

The CESTAC method (Contréle et Estimation Stochastique des Arrondis de
Calculs) was proposed by M. La Porte and J. Vignes in 1974.

It consists in performing the same computation several times with different
round-off error propagations. Then, different results are obtained.

Briefly, the part that is common to the different results is assumed to be correct
and the part that is different is affected by round-off errors.

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

The random rounding mode

Let r be the exact result of an arithmetic operation: R~ < r < R™.

The random rounding mode consists in rounding r to —co or 4-co with the
probability 0.5.

If round-off errors affect a result, one obtains for N different runs, N different
results on which a statistical test may be applied.

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

16/99

By running N times a code with the random arithmetic, one obtains an
N-sample of the random variable modeled by

R~r+ Zgi(d) 2P q;

where the «;’s are modeled by independent identically distributed random
variables. The common distribution of the «; is uniform on [-1, +1].

= the mathematical expectation of R is the mathematical result r,

= the distribution of R is a quasi-Gaussian distribution.

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

We use the classical Student’s test which provides a confidence interval of the
expectation of a Gaussian distribution from a sample.

VB € [0, 1], 313 € R such that
— TﬁO’— TﬁO’ — TﬁO’
P -—,R+ — Pll[R-r<—|=
(re[VN WD (' 1 w) g
1 N —\2
N1 2 (A=A

i=1

with
_ 1Y
_) 2 _
R_N,-; R and o¢° =

B =95%

gt

VN

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

The relative error on R is |¥ =10

With a probability 3, the number of exact significant digits of R

VN[A

g1

> logyg

R
Cg =~ logyg =

With a probability 3, the number of exact significant digits of R Cg =~ logqg ‘ﬁi
is undervalued by

VN[

Cs = lo
R g10 ot

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

Implementation of the CESTAC method

The implementation of the CESTAC method in a code providing a result R
consists in:

@ performing N times this code with the random rounding mode to obtain N
samples R; of R,

@ choosing as the computed result the mean value Rof R;, i =1, ..., N,
@ estimating the number of correct decimal digits of R with

VN[A

O'T/;

Cg =~ logig

where
7_N,E1 i and o =N_1 1121(i) .

74 is the value of Student’s distribution for N — 1 degrees of freedom and a
probability level 5.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 20/99

The CESTAC method [vignes & ar74], [Chesneaux & arss]

CESTAC method

Random
rounding

Classic arithmetic Are By v — Ry
AaB— R

AoB v — R

R =3.14237654356891 =
A3 (] B3 Ve — R3

Ry =3.141354786390989
R> =3.143689456834534
R; =3.142579087356598

@ each operation executed N = 3 times with a random rounding mode

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

21/99

The CESTAC method [vignes & ar74], [Chesneaux & arss]

CESTAC method

Random
rounding

Classic arithmetic Are By v — Ry
AaB— R

AoB v — R

R =3.14237654 1 —
3.1423765435689 As® By 55— Ry

R; =3.141354786390989
R, =3.143689456834534
R; =3.142579087356598
@ each operation executed N = 3 times with a random rounding mode

@ number of correct digits in the result estimated using Student’s test with
the confidence level 95%

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 21/99

On the number of runs

2 or 3 runs are enough. To increase the number of runs is not necessary.

From the model, to increase by 1 the number of correct digits given by Cx, we
need to multiply the sample size by 100.

Such an increase of N will only point out the limit of the model and its error
without really improving the quality of the estimation.

It has been shown that N = 3 is the optimal value.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 22/99

On the probability of the confidence interval

Probability of overestimating the number of correct digits of at least 1:

{ VW[A .
P|log1o > logqg 5, +1
_ o[VA | 105

0T R-r
(R PR
R—r 1007
—P('_Ff—r'z 1?;/%7)

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 23/99

With 8 = 0.95 and N = 3, the probability of overestimating the number of
correct digits of at least 1 is 0.054%

0.054%

0 100775
VN

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

Probability of underestimating the number of correct digits of at least 1:

\/N_Ff| I
P|logo < logyo 7, -1

_ \W|ﬁ| I

oTp 10(R-r)

B 10VN|R

_p[| B |, VWA
R-r o1
— g1

=P|IR-r| <
(| 10«/N)

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

With 8 = 0.95 and N = 3, the probability of underestimating the number of
correct digits of at least 1 is 29% .

29%

By choosing a confidence interval at 95%, we prefer to guarantee a minimal
number of correct digits with a high probability (0.99946), even if we are often
pessimistic by 1 digit.

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

Self-validation of the CESTAC method

The CESTAC method is based on a 1st order model.

@ A multiplication of two insignificant results
@ or a division by an insignificant result
may invalidate the 1st order approximation.

Therefore the CESTAC method requires a dynamical control of multiplications
and divisions, during the execution of the code.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 27/99

The problem of stopping criteria

Let us consider a general iterative algorithm: U1 = F(U,).

while (fabs (X-Y) > EPSILON) {
X =Y;
Y = F(X);

& too low = risk of infinite loop
& too high = too early termination.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 28/99

The problem of stopping criteria

Let us consider a general iterative algorithm: U1 = F(U,).

while (fabs (X-Y) > EPSILON) {
X =Y;
Y = F(X);

& too low = risk of infinite loop
& too high = too early termination.

It would be optimal to stop when X — Y is an insignificant value.

Such a stopping criterion
@ would enable one to develop new numerical algorithms
@ is possible thanks to the concept of computational zero.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 28/99

The concept of computational zero

J. Vignes, 1986

Definition

A result R obtained using the CESTAC method is a computational zero,
denoted by @.0, if
Vi,Ri=0 or C5<0.

This means that 0 belongs to the confidence interval.

It means that R is a computed result which, because of round-off errors, cannot
be distinguished from 0.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 29/99

The stochastic definitions

Definition
Let X and Y be two results computed using the CESTAC method (N-samples).
@ X is stochastically equal to Y, noted X s= Y, iff

X-Y=00.
@ X is stochastically strictly greater than Y, noted X s> Y, iff
X>Y and Xs+ Y
@ X is stochastically greater than or equal to Y, noted X s> Y, iff

X>Y or Xs= Y

Ex: if X — Y is numerical noise, X s> Y is false, but X s> Y is true.

Discrete Stochastic Arithmetic (DSA) is the joint use of the CESTAC method,
the computed zero and the stochastic relations.

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

A few properties

ex=0 > X=00.
@ Xs#+Y = x+y.
e Xs>Y = x>y.
oxz2y = Xsx>Y.
@ The relation s> is transitive: Xs> Y and Ys> Z = Xs> Z.

@ The relation s= is reflexive: Xs= X

symmetric: Xs=Y = Ys=X

but not transitive: Xs= Y and Ys=Z = Xs=Z (ex: X=2.1,Y=2., Z=2.4)
@ The relation s> is reflexive: Xs> X

antisymmetric: Xs> Y and Ys> X = Xs=Y

but not transitive: Xs> Y and Ys> Z = Xs> Z (ex: X=2.1, Y=@.0, Z=2.2)

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 31/99

The CADNA library - |

Cadna

The CADNA library allows one to estimate round-off error propagation in any
scientific program.
CADNA enables one to:

@ estimate the numerical quality of any result

@ control branching statements

@ perform a dynamic numerical debugging

@ take into account uncertainty on data.

CADNA is a library which can be used with Fortran, C, or C++ programs and
also with parallel programs (using MPI, OpenMP, CUDA).

CADNA can be downloaded from http://cadna.lip6.fr

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 32/99

http://cadna.lip6.fr

The CADNA library - Il

CADNA implements Discrete Stochastic Arithmetic
CADNA provides new numerical types, the stochastic types (3 floating point
variables x, y, z and an integer variable accurracy):

@ half_st in half precision

@ float_st in single precision

@ double_st in double precision

All operators and mathematical functions are redefined for these types.

The cost of CADNA is about:
@ 4 for memory
@ 10 for run time.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 33/99

Numerical debugging

The following instabilities can be detected:

unstable division: the divisor is insignificant

unstable power function: one operand of the pow function is insignificant
unstable multiplication: both operands are insignificant

unstable branching: the difference between the two operands is
insignificant. The chosen branching statement is associated with the
equality.

unstable mathematical function: in the log, sqgrt or exp function, the
argument is insignificant.

unstable intrinsic function:

e inherited from Fortran

@ in the floor or ceil function: the floor (or ceil) function returns different values
for each component.

@ in the abs function: different components have different signs.

unstable cancellation: for addition (and subtraction)

min(accuracy(a), accuracy (b)) — accuracy(a+ b) > CANCEL_LEVEL

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 34/99

How to implement CADNA

The use of the CADNA library involves at most 6 steps:

inclusion of the CADNA header for the compiler,
initialization of the CADNA library,

substitution of the classic floating-point types by stochastic types in
variable declarations,

possible changes in the input data if perturbation is desired, to take into
account uncertainty in initial values,

change of output statements to print stochastic results with their accuracy,
termination of the CADNA library.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 35/99

Declaration of the CADNA library

The #include <cadna.h> preprocessor directive must take place before
any declaration of stochastic variables, for stochastic types and overloaded or
new functions to be found by the compiler.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 36/99

Initialization of the CADNA library (1)

The call to the cadna_init function must be added just after the main
function declaration statements to initialize the library.

cadna_init (numb_instability, cadna_instability,
cancel_level, init_random)

@ numb_instability =-1: all the instabilities will be detected
@ numb_instability = 0: no instability will be detected

@ numb_instability = M (strictly positive M): the first M instabilities will
be detected.

The other arguments are optional.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 37/99

Initialization of the CADNA library (2)

cadna_instability: describes which instabilities are disabled
@ CADNA_DIV, CADNA_MUL, CADNA_POWER

@ CADNA_BRANCHING

@ CADNA_CANCEL

@ CADNA_MATH, CADNA_INTRINSIC

@ CADNA_ALL

cancel_level: a cancellation is detected if the accuracy difference between
the two operands and the result is > cancel_level.
Default: 4.

init_random: seed of the random generator used by CADNA.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 38/99

Termination

The call to the cadna_end function should be the last statement.

The cadna_end function writes on the standard output a numerical stability
report.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 39/99

Changes in the type of variables

To control the numerical quality of a variable, just replace its standard type by
the associated stochastic type.

half = half_st
float = float_st
double = double_st

Example:
float_st a,b,c;

double_st e, f,g;
float_st d[6];

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

Changes in printing statements

Before printing each stochastic variable, it must be transformed into a string by
the strp function. This function returns a char =, therefore formats in print
functions should be modified.

Initial C/C++ Modified statements
code for CADNA
#include <cadna.h>
float x; float_st x;

cadna_init (-1);

printf ("$£8.3\n", x); | printf ("%$s\n", strp(x));

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 41/99

Changes in printing statements(2)

With the st rp function, only the exact significant digits are printed.
If a result has no exact significant digit, @ . 0 is printed.

Example:

.55901639344262E+001
.5633431085044E+001
.56746486205E+001
.5713329052E+001
.574912092E+001
.57818109E+001
.581131E+001
.58376E+001
.5861E+001
.588E+001

.5E+001

.0

ccccaogaocaocaocaocaaaa

PrerP oo daogs w

B W N R O— — — — — — —
Il

o0 oo o oo

Il
® O O O O

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

42/99

Changes in reading statements

The reading functions are adapted to classic floating-point variables, which
must be transformed into stochastic variables.

Example:
Initial C/C++ Modified statements
code for CADNA
#include <cadna.h>
float x; float_st x;

float xaux;
cadna_init (-1);

scanf ("%f", &x) ; scanf ("$f", &xaux) ;

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 43/99

An example proposed by S. Rump

Computation of (10864, 18817) and f(3, 5) with f(x,y) = 9x* — y* + 2)2
#include <stdio.h>

double rump(double x, double y) {
double a, b, c;

a = 9.0«X*X*X*X;
b = yxy~ysy;
c = 2.0xy»y;
return a-b+c;
}
int main(int argc, char =~argv) ({
double x, y;
x = 10864.0;
y = 18817.0;
printf("%f\n", rump(x, y));
x = 1.0/3.0;
y = 2.0/3.0;
printf("%f\n", rump(x, y));
return O;
}

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 44/99

An example proposed by S. Rump (2)

Results without CADNA:

P(10864,18817) = 2.00000000000000
P(1/3,2/3) = 0.802469135802469E+00

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 45/99

#include <stdio.h>

double
double a, b, c;
a = 9.0*X*X*X*X;

}

b = yxy*xy*y;
c = 2.0%xyx*y;
return a-b+c;

int main(int argc,

double X, Vi
x = 10864.0;
y = 18817.0;
printf ("$f\n",
X 1.0/3.0;
y = 2.0/3.0;
printf ("$f\n",

return 0;

F. Jézéquel (LIP6)

rump (double x, double v) |

char *xargv) {

Numerical validation using stochastic arith.

46/99

#include <stdio.h>
#include <cadna.h>

double
double a, b, c;
a = 9.0*X*X*X*X;

}

b = yxy*xy*y;
c = 2.0%xyx*y;
return a-b+c;

int main(int argc,

double X, Vi
x = 10864.0;
y = 18817.0;
printf ("$f\n",
X 1.0/3.0;
y = 2.0/3.0;
printf ("$f\n",

return 0;

F. Jézéquel (LIP6)

rump (double x, double v) |

char *xargv) {

Numerical validation using stochastic arith.

46/99

#include <stdio.h>
#include <cadna.h>

double
double a, b, c;
a = 9.0*X*X*X*X;

}

b = yxy*xy*y;
c = 2.0%xyx*y;
return a-b+c;

int main(int argc,

cadna_init (-1);
double X, Vi
x = 10864.0;
y = 18817.0;
printf ("$f\n",
X 1.0/3.0;
y = 2.0/3.0;
printf ("$f\n",

return 0;

F. Jézéquel (LIP6)

rump (double x, double v) |

char *xargv) {

Numerical validation using stochastic arith.

46/99

#include <stdio.h>
#include <cadna.h>

double
double a, b, c;
a = 9.0*X*X*X*X;

}

b = yxy*xy*y;
c = 2.0%xyx*y;
return a-b+c;

int main(int argc,

cadna_init (-1);
double X, Vi
x = 10864.0;

y = 18817.0;
printf ("$f\n",
X 1.0/3.0;

y = 2.0/3.0;
printf ("$f\n",
cadna_end () ;
return 0;

F. Jézéquel (LIP6)

rump (double x, double v) |

char *xargv) {

Numerical validation using stochastic arith.

46/99

#include <stdio.h>
#include <cadna.h>

double
double a, b, c;
a = 9.0*X*X*X*X;

}

b = yxy*xy*y;
c = 2.0%xyx*y;
return a-b+c;

int main(int argc,

cadna_init (-1);
double X, Vi
x = 10864.0;

y = 18817.0;
printf ("$f\n",
X 1.0/3.0;

y = 2.0/3.0;
printf ("$f\n",
cadna_end() ;
return 0;

F. Jézéquel (LIP6)

rump (double x, double v) |

char *xargv) {

Numerical validation using stochastic arith.

46/99

#include <stdio.h>
#include <cadna.h>
double_st rump (double_st x, double_st y) {
double_st a, b, c;
a = 9.0*X*X*X*X;
b = y*xyry*y;
c = 2.0%xyx*y;
return a-b+c;

}
int main(int argc, char xxargv) {
cadna_init (-1);
double_st x, vy;
x = 10864.0;
y = 18817.0;

printf ("$f\n", rump (x, y));"
x =1.0/3.0;

y = 2.0/3.0;

printf ("$f\n", rump (x, y));"
cadna_end() ;

return 0;

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 46/99

#include <stdio.h>
#include <cadna.h>
double_st rump (double_st x, double_st y) {
double_st a, b, c;
a = 9.0*X*X*X*X;
b = y*xyry*y;
c = 2.0%xyx*y;
return a-b+c;

}
int main(int argc, char xxargv) {
cadna_init (-1);
double_st x, vy;
x = 10864.0;
y = 18817.0;

printf ("$f\n", rump (x, y));"
x =1.0/3.0;

y = 2.0/3.0;

printf ("$f\n", rump (x, y));"
cadna_end() ;

return 0;

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 46/99

#include <stdio.h>
#include <cadna.h>
double_st rump (double_st x, double_st y) {
double_st a, b, c;
a = 9.0*X*X*X*X;
b = y*xyry*y;
c = 2.0%xyx*y;
return a-b+c;

}

int main(int argc, char xxargv) {
cadna_init (-1);
double_st x, vy;
x = 10864.0;
y = 18817.0;
printf ("$s\n", strp(rump(x, v)));
X 1.0/3.0;
y = 2.0/3.0;
printf ("$s\n", strp(rump(x, v)));
cadna_end() ;

return 0;

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 46/99

The run with CADNA

CADNA software

Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON

P(10864,18817) = @.0
P(1/3,2/3) = 0.802469135802469E+000

There are 2 numerical instabilities
2 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 47/99

Explanation

The run without CADNA:

9*X*X*X*X — 1.25372283822342144E+017

YYYY — 1.25372284530501120E+017

9* XX XX - YYY*y — -708158976.00000000

2y — 708158978.00000000

9" X*X*X*X - Y*Y*YTY +2y*y — 2.0000000000000000

The run with CADNA:

I*X*X*XX — 0.125372283822342E+018
yYy'y — 0.125372284530501E+018
9*X*X*X*X - YY*Y*y — -0.7081589E+009
2'y*y - 0.708158977999999E +009

O* X*X*X*X - Y'Y Y'Y +2y*y — @.0

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 48/99

the data_ st function

takes into account errors on data by perturbing the samples of a stochastic
variable.

@ data_st (X): perturbation of the last bit of the mantissa.
@ data_st (X, ERX, 0): relative error

Xi = X; = (1 + ERX « ALEA)
@ data_st (X, ERX, 1) : absolute error

X; = X + (ERX « ALEA)

Example :

float_st b;
b=-2.1;
data_st (b,0.1,0);

The 3 samples become:

-2.309487 -1.980967 -2.100000

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 49/99

Contributions of CADNA

@ In direct methods:

e estimate the numerical quality of the results
@ control branching statements

@ In iterative methods:

@ optimize the number of iterations
@ check if the computed solution is satisfactory

@ In approximation methods:
e optimize the integration step

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

In direct methods - Example

0.3x°-21x+3675=0

Without CADNA, in single precision with rounding to the nearest:
d =-3.8146972E-06

Two complex roots

z1 = 0.3499999E+01 + i * 0.9765625E-03

z2 = 0.3499999E+01 + i * -.9765625E-03

With CADNA:

d=@.0

The discriminant is null

The double real root is 0.3500000E+01

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 51/99

Contribution of CADNA in iterative methods

while (fabs (X-Y) > EPSILON)

© optimal stopping criterion

52/99

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

lterative methods: example

1

noi

X
Sn(X) = W
i=1

Stopping criterion

@ IEEE: |S, - S,_1] < 10755,

@ CADNA: S, == S,_1

IEEE CADNA
X iter Sn(x) iter Sn(x)

-5. 37 | 6.737946999084039E-003 38 | 0.673794699909E-002
-10. || 57 | 4.539992962303130E-005 58 0.45399929E-004
-15. || 76 | 3.059094197302006E-007 77 0.306E-006
-20. || 94 | 5.621884472130416E-009 95 @.0
-25. || 105 | -7.129780403672074E-007 || 106 @.0

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 53/99

Approximation methods

Approximation of a limit L = Lin?) L(h)

Two kind of errors:
@ ep(h): truncation error (mathematical error)
@ e.(h): rounding error (computation error)

If h decreases, e, (h) decreases, but e;(h) increases.

em(h) —
If h decreases, L(h): | s [exponent | mantissa \
— es(h)

How to estimate the optimal step?

If ec(h) < em(h), decreasing h brings reliable information.

Computation should stop when e;(h) ~ en(h)

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 54/99

Dynamical control of approximation methods

Let us consider a numerical method which provides an approximation L(h) of
order p to an exact value L:

L(h) - L= KM +0(h%) with1 <p<gq, K €R.

If L, is the approximation computed with the step ? then

2P — 1

2P
CanLn+1 = CL,,,L A |0g10 (—) + O(zn(p_Q)) .

log1o (%) < logyg (%) = logyo(2) ~ 0.3

If the convergence zone is reached, the digits common to two successive
iterates are also common to the exact result, up to one.

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

Approximation methods with the CADNA library

The technique of “step halving” is applied and iterations are stopped when
Ln - Ln_1 = @.0

You are sure that the result L, is optimal.

Furthermore its significant digits which are not affected by round-off errors are
in common with the exact result L, up to one.

| Ln—1

| bn

| L | round-off errors

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 56/99

Approximation methods with the CADNA library

Approximations are computed using Simpson’s method.

o]
Il
0 J oUW N

n= 9
n=10
n=11
n=12
n=13
n=14
n=15
n=16

The exact solution is:

In= 0.
In=-0.
In=-0.
In=
In=
In=
In=
In=

—
o]
I

el elNeNeNeoNeoNoNeoNeNeNe NeNel

In=

F. Jézéquel (LIP6)

532202672142964E+002
233434428466744E+002
235451792663099E+002

.106117380632568E+002
.742028156692706E+001
.732233719854278E+001
.731702967403266E+001
.731670894914430E+001
.731668906978969E+001
.731668782990089E+001
.731668775244794E+001
.73166877476078E+001
.73166877473053E+001
.73166877472864E+001
.73166877472852E+001
.73166877472851E+001

err=
err=
err=
err=
err=

err=
err=
err=
err=
err=

0.
0.
0.
err= 0.
err=@Q.0

0
0
0
0
0
err= 0.
0
0
0
0
0

.459035794670113E+002
.306601305939595E+002
.308618670135950E+002
.329505031597175E+001
.1035938196419E+000
564945125770E-002
.34192674758E-003
.2120185922E-004
.13225046E-005
.8261581E-007
.516286E-008
3227E-009

202E-010

1E-011

1E-012

7.316687747285081429939.

Numerical validation using stochastic arith.

57/99

Dynamical control of approximation methods

Theorem also valid for the trapezoidal method, Gauss-Legendre method.,...
Similar theoretical result for Romberg’s method

= same strategy: in the result obtained, the digits which are not affected by
round-off errors are those of the exact result, up to one.

Also theoretical results for combined sequences
= dynamical control of infinite integrals, multidimensional integrals

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

58/99

Tools related to CADNA

available on cadna.1lip6.fr

@ CADNAIZER
e automatically transforms C codes to be used with CADNA

e CADTRACE
e identifies the instructions responsible for numerical instabilities

Example:
There are 12 numerical instabilities.
10 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S).

5in <ex> file "ex.f90" line 58
5in <ex> file "ex.f90" line 59

1 INSTABILITY IN ABS FUNCTION.
1 in <ex> file "ex.f90" line 37

1 UNSTABLE BRANCHING.
1 in <ex> file "ex.f90" line 37

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 59/99

cadna.lip6.fr

The SAM library

www-pequan.lip6.fr/~Jjezequel/SAM

SAM (Stochastic Arithmetic in Multiprecision) [Graillat & al.’11]

@ implements stochastic arithmetic in arbitrary precision (based on MPFR')
mp_st stochastic type

@ operator overloading = few modifications in user C/C++ programs

1www.mpfr.org

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

www-pequan.lip6.fr/~jezequel/SAM
www.mpfr.org

The SAM library

www-pequan.lip6.fr/~Jjezequel/SAM

SAM (Stochastic Arithmetic in Multiprecision) [Graillat & al.’11]

@ implements stochastic arithmetic in arbitrary precision (based on MPFR')
mp_st stochastic type

@ operator overloading = few modifications in user C/C++ programs

Recent improvement: control of operations mixing different precisions

Ex: mp_st<23> A; mp_st<47>B; mp_st<35> C;
C=Aeo8B

T

35 bits 23 bits 47 bits

= accuracy estimation on FPGA

1www.mpfr.org

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

www-pequan.lip6.fr/~jezequel/SAM
www.mpfr.org

Related works

Other numerical validation tools based on result perturbation
@ MCAIlib [Frechling et al., 2015]

@ VerifiCarlo [Denis et al., 2016]
based on LLVM

@ Verrou [Févotte et al., 2017]
based on Valgrind, no source code modification ©®

@ asynchronous approach: 1 complete run — 1 result, no accuracy analysis
during the run

@ if branches in the user code:
several executions — possibly several branches
(require more samples than CADNA)

@ no support for GPU codes.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 61/99

Numerical applications

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 62/99

Example: Mandelbrot set computed on GPU

@ We map a 2D image on a part of the complex plane
@ for each pixel we iterate at most N times:
Zni1 = 22 + ¢, with zy = 0 and ¢ e C the pixel center coordinates.

e If Ans.t. |z, > 2, the sequence will diverge and ¢ is not in the set.
e Otherwise, cis in the set.

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

Mandelbrot set computed on GPU with CADNA

Pixels with unstable tests:

unstable test |z,| > 2 = complete loss of accuracy in z,

Should these points be in the set ?

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 64/99

Reproducibility failures in a wave propagation code

For oil exploration, the 3D acoustic wave equation

1 d%u Vg
—— - —u=0
c2 ot? b ob?

Xy, 2

where u is the acoustic pressure, ¢ is the wave velocity and ¢ is the time

is solved using a finite difference scheme
@ time: order 2
@ space: order p (in our case p = 8).

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 65/99

2 implementations of the finite difference scheme

+1 __ 1 CzAtz pr2 2.n
n n—
Ui = 2u’lk Up + A2 a/(ik + ulj+/k + qu+/) + AL ,]k
I=-p/2
1 o ar| S Rz p2 ,
n+1 __ n— n
Uiie 2u,]k U + ——5 N Z a/u,+,jk+ Z a/u,j+,k+ Z a/u,jk+, + At fik
I=-p/2 I=—p/2
i th

where u,;’k (resp. f7) is the wave (resp. source) field in (i,], k) coordinates and n' time

step and aj_p,2,2 are the finite difference coefficients

@ nearest neighbours first
© dimension 1, 2 then 3

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 66/99

Reproducibility problems

Results depend on :
@ the implementation of the finite difference scheme

@ the compiler / architecture (various CPUs and GPUs used)

In binary32, for 64 x 64 x 64 space steps and 1000 time iterations:
@ any two results at the same space coordinates have 0 to 7 common digits

@ the average number of common digits is about 4.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 67/99

Results computed at 3 different points

scheme point in the space domain
pi = (0,19,62) | p, =(50,12,2) | ps = (20,1,46)
AMD Opteron CPU with gcc
1 -1.110479E+0 5.454238E+1 6.141038E+2
2 -1.110426E+0 5.454199E+1 6.141035E+2
NVIDIA C2050 GPU with CUDA
1 -1.110204E+0 5.454224E+1 6.141046E+2
2 -1.109869E+0 5.454244E +1 6.141047E+2
NVIDIA K20c GPU with OpenCL
1 -1.109953E+0 5.454218E+1 6.141044E+2
2 -1.111517E+0 5.454185E+1 6.141024E+2
AMD Radeon GPU with OpenCL
1 -1.109940E+0 5.454317E+1 6.141038E+2
2 -1.110111E+0 5.454170E+1 6.141044E+2
AMD Trinity APU with OpenCL
1 -1.110023E+0 5.454169E+1 6.141062E+2
2 -1.110113E+0 5.454261E+1 6.141049E+2

F. Jézéquel (LIP6)

Numerical validation using stochastic arith.

Results computed at 3 different points

scheme point in the space domain
pi = (0,19,62) | p, =(50,12,2) | ps = (20,1,46)
AMD Opteron CPU with gcc
1 -1.110479E+0 5.454238E+1 6.141038E+2
2 -1.110426E+0 5.454199E+1 6.141035E+2
NVIDIA C2050 GPU with CUDA
1 -1.110204E+0 5.454224E+1 6.141046E+2
2 -1.109869E+0 5.454244E +1 6.141047E+2
NVIDIA K20c GPU with OpenCL
1 -1.109953E+0 5.454218E+1 6.141044E+2
2 -1.111517E+0 5.454185E+1 6.141024E+2
AMD Radeon GPU with OpenCL
1 -1.109940E+0 5.454317E+1 6.141038E+2
2 -1.110111E+0 5.454170E+1 6.141044E+2
AMD Trinity APU with OpenCL
1 -1.110023E+0 5.454169E+1 6.141062E+2
2 -1.110113E+0 5.454261E+1 6.141049E+2

How to estimate the impact of rounding errors?

F. Jézéquel (LIP6)

Numerical validation using stochastic arith.

The acoustic wave propagation code examined with

CADNA

The code is run on:
@ an AMD Opteron 6168 CPU with gcc
@ an NVIDIA C2050 GPU with CUDA.

With both implementations of the finite difference scheme, the number of exact
digits varies from 0 to 7 (single precision).

Its mean value is:
@ 4.06 with both schemes on CPU
@ 3.43 with scheme 1 and 3.49 with scheme 2 on GPU.

= consistent with our previous observations

Instabilities detected: > 270 000 cancellations

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 69/99

The acoustic wave propagation code examined with

CADNA

Results computed at 3 different points using scheme 1:

Point in the space domain
p1 =(0,19,62) \ p2 = (50,12,2) \ p3 = (20,1,46)
IEEE CPU -1.110479E+0 5.454238E +1 6.141038E+2
IEEE GPU -1.110204E+0 5.454224E +1 6.141046E+2
CADNA CPU | -1.1E+0 5.454E+1 6.14104E+2
CADNA GPU | -1.11E+0 5.45E+1 6.1410E+2
Reference -1.108603879E+0 | 5.454034021E+1 | 6.141041156E+2

Despite differences in the estimated accuracy, the same trend can be observed
on CPU and on GPU.

@ Highest round-off errors impact negligible results.
@ Highest results impacted by low round-off errors.

F. Jézéquel (LIP6)

Numerical validation using stochastic arith.

70/99

Accuracy distribution on CPU

cPU -+

Tt + e o

6 f - ——

Accuracy
=

2t FRET— R

103 102 107! 1 10 102 103

Absolute values

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 71/99

Accuracy distribution on GPU

GPU

Accuracy
=

+H 4

F. Jézéquel (LIP6)

1072 107! 1

Absolute values

Numerical validation using stochastic arith.

72/99

Numerical validation of a shallow-water (SW) simulation

on GPU

@ Numerical model (combination of
finite difference stencils) simulating
the evolution of water height and
velocities in a 2D oceanic basin

@ Focusing on an eddy evolution:

@ 20 time steps (12 hours of
simulated time) on a 1024 x 1024
grid

o CUDA GPU deployment

@ in double precision

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 73/99

SW eddy simulation with CADNA-GPU

At the end of the simulation:

1000

200 400 600

Number of exact significant digits estimated by
CADNA-GPU

Square of water velocity in m?.s~2

@ at eddy center: great accuracy loss
equilibrium between several forces (pressure, Coriolis)
= possible cancellations

@ point at the very center: 9 exact significant digits lost
= no correct digits in SP

o fortunately, velocity values close to zero at eddy center
— negligible impact on the output
— satisfactory overall accuracy

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 74/99

Accuracy analysis... and then?

(i the results accuracy is not satisfactory... |

@ higher precision: single — double — quad — arbitrary precision
...and numerical validation!

@ compensated algorithms
[Kahan’87], [Priest’92], [Ogita & al.’05], [Graillat & al.’09]
e for sum, dot product, polynomial evaluation,...
@ results ~ as accurate as with twice the working precision

@ accurate and reproducible BLAS

o ExBLAS [Collange & al.’15]
RARE-BLAS [Chohra & al.’16]
Repro-BLAS [Ahrens & al.’16]
OzBLAS [Mukunoki & al.’”19]

@ symbolic computation

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

Can we use reduced or mixed precision
to improve performance and energy efficiency?

@ mixed precision linear algebra algorithms
algorithms designed for mixed precision associated to an error threshold

@ precision autotuning

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

Precision autotuning

@ floating-point autotuning tools that intend to deal with large codes:
@ Precimonious [Rubio-Gonzalez & al.’13]
@ source modification with LLVM
o CRAFT [Lam & al.’13]
@ binary modifications on the operations
@ ADAPT [Menon & al.’18]
@ based on algorithmic differentiation
o CRAFT & ADAPT now combined in FloatSmith [Lam & al.’19]

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 77/99

Precision autotuning

@ floating-point autotuning tools that intend to deal with large codes:
@ Precimonious [Rubio-Gonzalez & al.’13]
@ source modification with LLVM
o CRAFT [Lam & al.’13]
@ binary modifications on the operations
@ ADAPT [Menon & al.’18]
@ based on algorithmic differentiation
o CRAFT & ADAPT now combined in FloatSmith [Lam & al.’19]

They rely on comparisons with the highest precision result i

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 77/99

Precision autotuning

@ floating-point autotuning tools that intend to deal with large codes:
@ Precimonious [Rubio-Gonzalez & al.’13]
@ source modification with LLVM
o CRAFT [Lam & al.’13]
@ binary modifications on the operations
@ ADAPT [Menon & al.’18]
@ based on algorithmic differentiation
o CRAFT & ADAPT now combined in FloatSmith [Lam & al.’19]

They rely on comparisons with the highest precision result i

[Rump’ 88] P =333.75y% + x?(11x2y? — y® —121y* —2) + 55y8 + x/(2y)
with x = 77617 and y = 33096
float: P =2.571784e+29

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 77/99

Precision autotuning

@ floating-point autotuning tools that intend to deal with large codes:
@ Precimonious [Rubio-Gonzalez & al.’13]
@ source modification with LLVM
o CRAFT [Lam & al.’13]
@ binary modifications on the operations
@ ADAPT [Menon & al.’18]
@ based on algorithmic differentiation
o CRAFT & ADAPT now combined in FloatSmith [Lam & al.’19]

They rely on comparisons with the highest precision result i

[Rump’ 88] P =333.75y% + x?(11x2y? — y® —121y* —2) + 55y8 + x/(2y)
with x = 77617 and y = 33096

float: P =2.571784e+29

double: P =1.17260394005318

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 77/99

Precision autotuning

@ floating-point autotuning tools that intend to deal with large codes:
@ Precimonious [Rubio-Gonzalez & al.’13]
@ source modification with LLVM
o CRAFT [Lam & al.’13]
@ binary modifications on the operations
@ ADAPT [Menon & al.’18]
@ based on algorithmic differentiation
o CRAFT & ADAPT now combined in FloatSmith [Lam & al.’19]

They rely on comparisons with the highest precision result i

[Rump’ 88] P =333.75y% + x?(11x2y? — y® —121y* —2) + 55y8 + x/(2y)
with x = 77617 and y = 33096

float: P =2.571784e+29

double: P =1.17260394005318

quad: P =1.17260394005317863185883490452018

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 77/99

Precision autotuning

@ floating-point autotuning tools that intend to deal with large codes:
@ Precimonious [Rubio-Gonzalez & al.’13]
@ source modification with LLVM
o CRAFT [Lam & al.’13]
@ binary modifications on the operations
@ ADAPT [Menon & al.’18]
@ based on algorithmic differentiation
o CRAFT & ADAPT now combined in FloatSmith [Lam & al.’19]
They rely on comparisons with the highest precision result i
[Rump’ 88] P =333.75y% + x?(11x2y? — y® —121y* —2) + 55y8 + x/(2y)
with x = 77617 and y = 33096
float: P =2.571784e+29
double: P =1.17260394005318
quad: P =1.17260394005317863185883490452018
exact: P ~-0.827396059946821368141165095479816292

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 77/99

PROMISE (PRecision OptiMISE) [Graillat & al:19]

promise.lip6.fr

PROMISE
@ provides a mixed precision code (half, single, double, quad)
taking into account a required accuracy

@ uses CADNA to validate a type configuration

@ uses the Delta Debug algorithm [zeller’ 09] to search for a valid type
configuration with a mean complexity of O(nlog(n)) for n variables.

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

78/99

promise.lip6.fr

Searching for a valid configuration with 2 types

Higher precision I |

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 79/99

Searching for a valid configuration with 2 types

Higher precision II |
v

Lower precision || |

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 79/99

Searching for a valid configuration with 2 types

Higher precision II |

Lower precision :l !

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 79/99

Searching for a valid configuration with 2 types

Higher precision II |
v

Lower precision [

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 79/99

Searching for a valid configuration with 2 types

Higher precision II |
v

Lower precision [

i
v '
I
| I
- A& Y | Not tested \
Y |
AIreadyj t_e;ted ‘/ ___________________________
\4
L B |

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 79/99

Searching for a valid type configuration

PROMISE with 2 types (ex: double & single precision)

From a code in double, the Delta Debug (DD) algorithm finds which variables
can be relaxed to single precision.

e

single

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

80/99

Searching for a valid type configuration

PROMISE with 2 types (ex: double & single precision)

From a code in double, the Delta Debug (DD) algorithm finds which variables
can be relaxed to single precision.

e

single

PROMISE with 3 types (ex: double, single & half precision)

The Delta Debug algorithm is applied twice.

ouble - single
Sl é half

F. Jézéquel (LIP6)

Numerical validation using stochastic arith.

Precision auto-tuning using PROMISE

MICADO: simulation of nuclear cores (EDF)

@ neutron transport iterative solver
@ 11,000 C++ code lines

double Speed memor
Digits - % ain y
float P 9
10 19-32 1.01 1.00
8 18-33 1.01 1.01
6 13-38 1.20 1.44
i 0-51 1.32 1.62

@ Speedup, memory gain: w.r.t. double precision
@ Speed-up up to 1.32 and memory gain 1.62

@ Mixed precision approach successful: speed-up 1.20 and memory
gain 1.44

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 81/99

Neural Network Precision Tuning

@ Q. Ferro, S. Graillat, T. Hilaire, F. Jézéquel, B. Lewandowski, Neural Network Precision Tuning
Using Stochastic Arithmetic, 15th International Workshop on Numerical Software Verification,
August 2022. http://hal.archives-ouvertes.fr/hal-03682645

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 82/99

http://hal.archives-ouvertes.fr/hal-03682645

Neural Network

Computing system defined by several neurons distributed on different layers
Input Layer 1 Layer 2

0 @
N —

(1) ())
X5 &2 X

/

(1) (@)
X3 X3

XU — gD () (0 4 pliet1))

with W the weight matrix, b the bias vector and g the activation function

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 83/99

Neural networks studied

@ Sine NN: approximation of sine function

@ MNIST NN: classification of handwritten digits
(MNIST Database)

@ CIFAR NN: classification of pictures among 10
classes (dogs, cats, deer, car, boat...) (CIFAR10
Database)

@ Inverted Pendulum: computation of a Lyapunov
function [Chang et al., 2020]

F. Jézéquel (LIP6) Numerical validation using stochastic arith.

ugunx“

84/99

Methodology

@ Neural Networks created and trained in Python code with Keras or PyTorch
@ Python scripts to pass them into C++ instrumented code

/ Neural network Python file

@ One type per neuron

@ One type per layer
With input in double precision / Model parameters in CSV files

C++ file with PROMISE variables

Model saved in HDF file /

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 85/99

Output layer 1

Weights Input Bias
Approximation of sine function: wih il °
weh bohy _ #
@ Scalar input tann | R
. . . Waoh bzoh x?
@ 3 dense layers with tanh activation 2
fu nCtIOﬂ : Weights Input L2 Bias Output layer 2
x® @)
@ 20 neurons — 21 types to set s o .
@ 6 neurons — 7 types to set tanh | = e e I e [l
@ 1 neuron — 2 types to set W R Wiz e Cila o
@ Scalar output oo oot
Weights x‘;: Bias
= 30 types to set in total tann | (RN~ S - AN | -
scalar output
0

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 86/99

Sine NN w/ input=0.5

30 100
HL, 3 half
90 single
25 [I double
80 |-m— time
T
) 70
S 20
= 2
g ® 3
=) L 29 o
< 15 30|30 | o9 - 50 _g
8 40
[
2 10 30
20
51 e .
1
oL 1. 0
0]

111
12 3 456 7 8 9 101112131415
required accuracy (nb of digits)

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 87/99

Sine NN w/ input=0.5

3 half
single
L [double
3 !
] —m— time
4 2
s L2f o
g £
utl 1/
[

12 3 45 6 7 8 9 10111213 1415
required accuracy (nb of digits)

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 88/99

MNIST NN

Classification of handwritten digits:

@ Input: vector of size 784 (flatten image)
@ 2 dense layers:

L X 0000000@PDOCO0L 000

@ 64 neurons and RelLU activation function (VAN 2 070NN

2222232 F2221222A224

— 65 types to set 3333333533583333

@ 10 neurons and softmax activation PR ANEA AN EINA

1 bebblGCbbbocorébiol

function — 11 types to set b

. e ®)

@ output vector of size 10: probability SEASSSSS SO SN

distribution for the 10 different classes

wikipedia.org

= 76 types to set in total

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 89/99

MNIST NN w/ input = test_data[61]

76
70

60

50

40

30

number of given type

20

F. Jézéquel (LIP6)

74

42| (42| (42| |42]| |42| |42]||42]| (42| |42]||42| |42

1

2 3 4 5 6 7 8 9 10 11 12 13
required accuracy (nb digits)

Numerical validation using stochastic arith.

1,400

-1,350

1,300
1,250

-{1.200

1,150
1,100
1,050
1,000
950
900
850

time (s)

MNIST NN w/ input = test_data[61]

3 half

single

/ I double

L2 ~m— Runtime
4 =
d; [}
g £

L1+

12 3 4 5 6 7 8 9 10 11 12 13
required accuracy (nb digits)

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 91/99

CIFAR NN

Classification of pictures in 10 classes:

@ Input: tensor of shape 32x32x3
@ 5 layers:

o Convolutional layer with 32 neurons and ReLU wore

activation function — 33 types to set automabile E

o Max-pooling layer of size (2x2) — 1 type to set o

e Convolutional layer with 64 neurons and ReLU door

activation function — 65 types to set des

o Flatten layer — 1 type to set

@ Dense layer of 10 neurons and no activation stip

function — 11 types to set

‘d-liy E A

@ output vector of size 10 estoronto.edu

= 111 types to set in total

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 92/99

CIFAR NN

o--4--4- -

M Poolng FatonngLayer DeTSe Laver

3D-image Convolutional Layer
input +RelU Output

Convolutional Layer
+ReLU

zéquel (LIP6)

93/99

CIFAR NN w/ input=test_data[386]

111

100

number of given type

F. Jézéquel (LIP6)

80

60

40

20

108

1

2 3 45 6 7 8 9 10 11 12 13
required accuracy (nb of digits)

Numerical validation using stochastic arith.

3 half
single

I double

~m- time

time (s)

94/99

CIFAR NN w/ input=test_data[386]

1 half
single
400 I double
L5+ A —=— time
Lal | o 300 _
7] 2
] L
ENE] 200 g
— =
L2 100
L1

1 2 3 45 6 7 8 9 10 11 12 13
required accuracy (nb of digits)

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 95/99

Pendulum NN

Learner to find a Lyapunov function:

@ Input: state vector x € R?

@ 2 dense layers with tanh activation
function:
@ 6 neurons — 7 types to set
e 1 neuron — 2 types to set

@ output vector of size 10

S A e A AT,

= 9 types to set in total

wikipedia.org

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 96/99

Inverted Pendulum w/ input=(0.5,0.5)

3 half
sl single
I double
~m— Runtime
8
ERd
f =
[—
> 2
> °
S al £
[
Ke)
£
>
<
ol
0

123 456 7 8 9101112131415
required accuracy (nb digits)

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 97/99

Pendulum NN w/ input=(0.5,0.5)

3 half
10 single
I double
Lol 8 - Runtime
- —
® L 6 @
E o °
5 4 g
L1 2
0

12 3 45 6 7 8 9101112131415
required accuracy (nb digits)

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 98/99

Conclusion

Stochastic arithmetic can estimate which digits are affected by round-off errors
and possibly explain reproducibility failures.

@ Relatively low overhead

@ Support for wide range of codes (GPU, vectorised, MPI, OpenMP)

@ Numerical instabilities sometimes difficult to understand in a large code
@ Easily applied to real life applications

CADNA has been successfully used for the numerical validation of academic
and industrial simulation codes in various domains such as astrophysics,
atomic physics, chemistry, climate science, fluid dynamics, geophysics.

F. Jézéquel (LIP6) Numerical validation using stochastic arith. 99/99

