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Why I started
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Once upon a time…

 Master theses (2009) => Linux kernel module

 5 months : module is working well on full KDE session !

 Lets try on a real CEA simulation (1,5 millions C++ lines app & 16 threads)
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My source of thinking

 Mostly my own ( home / PhD / post-docs / engineering ) work

 I hardly unit test since 13 years

 4 years of scrum dev in team

 Sample

 17 projects

 190129 code lines

 C++ / C / rust / python / NodeJS / Java / GO

 From 3700 lines to 33173 lines

 Code coverage starting from 43% to 93%

 Some projects without unit tests ! 

 150 000 lines project & 50 devs
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A little bit of philosophy

& motivation

7



How much mistakes costs later .. ?

 Manhattan project, 1945, Hanford

 There was a nuclear reactor

 For plutonium production

 Takes water in

 Cooled the reactor

 ….and dump the water out…
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https://commons.wikimedia.org/wiki/File:Hanford_N_Reactor_adjusted.jpg

https://commons.wikimedia.org/wiki/File:Hanford_N_Reactor_adjusted.jpg


Then there was wastes to handle… 9

▶Easy and quick and cheap solution

▶Make a hole,

▶Dump everything in

▶Cover with sand.

▶Costs estimation…. ~12 mens, 

▶An excavator

▶A truck 

http://www.planetexperts.com/hard-lessons-in-the-us-environmental-protection-agency/

http://www.planetexperts.com/hard-lessons-in-the-us-environmental-protection-agency/


Then there was wastes to handle…

 For liquids / muds….

 Solution was to build 177 tanks

 Store 710,000 m3

 In the desert,

 Dump wastes in

 And cover with sand….

 Now, 55 years later….

 They now (2010) start to leak…
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https://tlarremore.wordpress.com/2016/02/28/uncontrolled-spread-of-contamination-nuclear-waste-material-hanford-nuclear-
reservation-usa/

https://tlarremore.wordpress.com/2016/02/28/uncontrolled-spread-of-contamination-nuclear-waste-material-hanford-nuclear-reservation-usa/
https://tlarremore.wordpress.com/2016/02/28/uncontrolled-spread-of-contamination-nuclear-waste-material-hanford-nuclear-reservation-usa/


Today: that’s technical debt 11

https://pixabay.com/photos/cat-redhead-striped-funny-posture-3602557/

https://www.hanford.gov/files.cfm/2019_Hanford_Lifecycle_Report_w-Transmittal_Letter.pdf

Cleanup until 2090

And estimated 

~300-600 billions $.

https://pixabay.com/photos/cat-redhead-striped-funny-posture-3602557/
https://www.hanford.gov/files.cfm/2019_Hanford_Lifecycle_Report_w-Transmittal_Letter.pdf


Came back to software…. 12

Source: Applied Software Measurement, Capers Jones, 1996

Capers Jones, 1996

(640x)



Thinking about testing
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Lets think you are a car engineer

 You work for Renault (we are French… :D)

 You want to build a car

 You work on the gear box
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http://dwww.auto-innovations.com/site/images8b/Renault_scenic_TL4.jpg

http://dwww.auto-innovations.com/site/images8b/Renault_scenic_TL4.jpg


You make no test…

 Sell the car directly to customer and see

 Would you by ?
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Method 1 : manual test

 Way to test a new gear we added

 Make a Grenoble – Marseille
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Méthode 2 : manual testing

 A bit better : in controlled environment

 Test circuit

 Get a precise list of tests to perform

 We need to define
“a test plan”
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Method 3 : automated integration 

tests
 We build a prototype and we run the tests

 Each time you change a gear in the gear box ?
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https://es.wikipedia.org/wiki/Veh%C3%ADculo_aut%C3%B3nomo#/media/Archivo:Hands-free_Driving.jpg

https://www.needpix.com/photo/download/367388/accident-auto-crash-car-road-free-pictures-free-photos-free-images-royalty-free

http://maguy69.m.a.pic.centerblog.net/o/969011b4.jpg

https://es.wikipedia.org/wiki/Veh%C3%ADculo_aut%C3%B3nomo#/media/Archivo:Hands-free_Driving.jpg
https://www.needpix.com/photo/download/367388/accident-auto-crash-car-road-free-pictures-free-photos-free-images-royalty-free
http://maguy69.m.a.pic.centerblog.net/o/969011b4.jpg


Method 4 : unit test

 You use a test bench

 Test only the gear box 

 In controlled situation

 Can:

 put infrared camera

 Probes to see temperature.

 Vibration measurement
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https://www.techbriefs.com/component/content/article/tb/features/application-briefs/13978

https://www.techbriefs.com/component/content/article/tb/features/application-briefs/13978


Notice contiguous transition….

 There is unit test

 Test one gear

 A little bit more, still unit test

 Test two gears

 …

 A little bit more, integration test

 Test the gear box

 End to end, now test in the car.
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https://www.indiamart.com/proddetail/automotive-spur-gear-19598784273.html
https://en.wikipedia.org/wiki/Spiral_bevel_gear#/media/File:Gear-kegelzahnrad.svg

https://www.indiamart.com/proddetail/automotive-spur-gear-19598784273.html
https://en.wikipedia.org/wiki/Spiral_bevel_gear#/media/File:Gear-kegelzahnrad.svg


Run example - OK 21



But how it looks ?

 The simplest test in python :
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def test_abs_value(self):
assert abs_value(-10) == 10
assert abs_value(10) == 10



What is a unit test in python ?

 Example extracted from one of my projects
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def test_move():
# build a particle
particle = Particle(0)

# test the initial position
assert particle.get_x() == 0

# move
particle.move(10)

# test the final position
assert particle.get_x() == 10



A bit more advanced one 24

def test_collide():
# build two particles
particle1 = Particle( 0,5, -1.5)
particle2 = Particle(-0,5,  1.5)

# collide particules
dt = 1.0
collide = Physics.elastic_collide(particle1, particle2, dt)
assert collide == True

# checks
assert particle1.get_vx() == 1.5
assert particle2.get_vx() == -1.5

Most unit test frameworks

relies on:

assert keywords



Run example - failure 25



A realistic case 26



My my own experience, feelings

27



When trying to push in teams…. 

[integration]
 Integration test

 Mostly everybody agree

 Not exactly on the way to do it….

 One dev. already made a dirty bash script !

 Seems easier at first look

 Quickly cost a lot 

 Eg. CEA project, 10 000 MPI tests, …. 5000 fails…

 One week to run everything

 Depressing

 Harder to debug

 Nobody looked on results except me and another one

28



When trying to push in teams…. 

[integration]

 Another integration case (costs):

 Eg. in another team (scrum)

 Only integration test

 Test suite time : 40 minutes

 Day to day maintainance : 1.5 dev fully dedicated to it (team 15 dev)

 If your CI env is not stable:

 Lots of issues to maintain the env running

 Lots of non code related issues (timeout, …)

 Company migrated the CI env : ~5 months consumed to migrate

29

versus 9.42 seconds in unit

versus 1 week in unit



When trying to push in teams…. 

[unit tests]
 Unit tests

 Required an investment

 Initial effort

 We are slower to start

 Hard to convince devs who never made unit tests

 Hard to introduce in pre-existing software

 Common first kill :

 “This one is too hard to test”

 “This one call many others”

 “I’m sure of this function, it is so simple”

 “Hola, do not touch this part of the code !”
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First time I made unit tests

 I was not convinced

 But I tried

 Had the impression to loose my time

 It was hard

 I didn’t see the benefits

 I already had most of my codes

 Painfull to unit test for weeks

31

https://depositphotos.com/fr/vector/exhausted-emoticon-13971204.html

https://depositphotos.com/fr/vector/exhausted-emoticon-13971204.html


That’s also adequate tools 

and ways to work

32



Day to day methodology : 

discipline

 “This is a POC…. I will make my tests later”

 You will never do them later

 Because your design will not permit

 Because you will want to move to other stuff

 Nobody will be happy to write unit tests for ~4 weeks

 Your boss/commercial manager already sold it to clients….

 You already loosed half the benefits of unit tests

 Become a more or less useless investment

33



Benefits of unit test

 That’s not only testing (~20%)

 It forces you to think your design

 Forbids global variables

 Make spec, also for internal APIs

 Open easy door for refactoring / rewriting

 New developers are more confident (you in 6 months…)

34



A safety for QA guy

 Quality loss and rush warnings. 

 Noticed via a technical channel not through quality exigent guy !

35



That’s a discret teacher !

 You get feedback by yourself

 No need to get critics from someone else

 If you don’t know how to write your test :

 Your internal API is badly designed !

36

https://www.seekpng.com/ima/u2q8i1q8a9q8y3a9/

https://www.seekpng.com/ima/u2q8i1q8a9q8y3a9/


That’s also constraints

 Not all codes are unit test-able

37
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Test a gas machine 

 If your test become too complex

 You are certainly 

on the wrong way

 Stop, think and KISS

38

morning_not_kiss()



What looks simpler to test ? 39



Facing the entropy ! 40

Refactoring

Time
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Way of working 41

Refactor Test Refactor Test
New 

feature
Test



Team dynamic - silos

 Without test it is hard to go on a part we do not know !

 Especially in HPC !

 So each dev will have his part

 It reduces the discussions in the team

 Favor heroes

42

https://www.flickr.com/photos/docsearls/5500714140

https://www.flickr.com/photos/docsearls/5500714140


Corner 

cases 

Knowledge

Keep the knowledge !

 The hard corner cases are encoded into the tests

 Useful:

 On turnover or retirement

 Very usefull in case of rewriting a V2

 To translate in another language

 Eg: porting my memory allocator:

 C original implementation : ~1 year

 C++ translation + new algo : 1 month

 Rust translation : 2.5 weeks for the biggest part

43
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A basement of agile methods

 That’s a REQUIREMENT for the method, not an option

 For the technical validity of the method

 For the dynamic of the team

 In agile you didn’t plan…

 If you cannot refactor => you are scrued or get very lucky !

44

Never do AGILE or SCRUM

without unit test !



Ecology argument

 You can make the whole dev localy on your laptop

 No need of a large dev cluster

 Once done and validated with unit tests:

 Make real test on cluster

 Once a week or two weeks

 Not anymore per team cluster

 Less debugging at scale so less CPU hours !

45

https://www.freeiconspng.com/downloadimg/36144
https://www.vigindustries.in/products/server-rack

https://www.freeiconspng.com/downloadimg/36144
https://www.vigindustries.in/products/server-rack


Ecology argument - 2

 CI cycle takes ~ a minute

 Instead of 40 minutes

with only integration tests

 Require less CI server ressources

46

https://www.qfs.de/fr/blog/article/utiliser-qf-test-dans-des-systemes-continuous-integration.html

https://www.qfs.de/fr/blog/article/utiliser-qf-test-dans-des-systemes-continuous-integration.html


The test density

 The three « levels »

 Build (or use) dedicated tools for each level

47
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Reproductibility

 It help portability

 Reproduce in an other environnement

 Because no one has the same…

 And it evolve quicly

 Not stay stucked to fixed old versions

48



Research

 You have tons of ideas !

 You want to change path

 Refactoring python code ?

 Or explore others

 You don’t know where you go !

 Not loose time in debugging

49

http://garesettrains.canalblog.com/archives/2020/07/14/38430007.html

http://garesettrains.canalblog.com/archives/2020/07/14/38430007.html


Mocking

50



The turtle case

 Many unit test introduction courses uses:

 The turtle example

 A turtle

 Has a position

 Can move forward

 This is a too simple example

 Not pointing problems of a real case

51

https://snipstock.com/image/png-images-turtle-24-png-17769

https://snipstock.com/image/png-images-turtle-24-png-17769


Should we test everythings ? 52

Code to test

External library code 1 External library code 2 External library code 3

We consider that

external libs are tested 

“are tested and working”



Intriducting mocking (factice) 53

Class to test

Semi complex object Complex object Semi complex object

Mocked complex

object

http://dwww.auto-innovations.com/site/images8b/Renault_scenic_TL4.jpg

http://dwww.auto-innovations.com/site/images8b/Renault_scenic_TL4.jpg


The mocking 54

Function_to_test()

sub_fonction_to_mock()calc_somme()

test()

Mock():
return 25.3

Implémentation():
b = do_complex_work()

print(b)
a = b + d + c * 10
return 56.5 * a

Injection du 

mock



What is a mock in python ?

 Example extracted from one of my projects
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From unittest import mock

def test_collide():
# build two particles
particle1 = Particle( 0,5, -1.5)
particle2 = Particle(-0,5,  1.5)

# override random function by mock
with mock.patch(‘random.randrange’, return_value=0.75):

# collide particules
dt = 1.0
collide = Physics.collide(particle1, particle2, dt)
assert collide == True

# checks

assert particle1.get_vx() == 1.5
assert particle2.get_vx() == -1.5

' 



Some framework 56

Language Test framework Mocking

Python Unittest

pytest

unitest.mock

C++ Google test

Catch2

Boost test library

cppunit

…

Google mock

FakeIT

C Google test

Criterion

Bash bats

Rust [native] mockall

Go [native] gomock



Timings on 1 examples
COSTS AND EXAMPLES
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CERN lhcb-daqpipe

 LHCB Acquisition R&D code for scaling studies

 Need to handle 40 Tb/s on 

 InfiniBand

 Omni-Path

 100G ethernet

 Over 500 servers (continuous 80 Gb/s all-to-all) + send to ~3000
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Compare costs

5

3

5

11

5

3

1

4

1

0,5

8

2

1

0 2 4 6 8 10 12

Core dev

Libfabric

TCP

IB Verbs

OmniPath

RapidIO

Failure recovery model

Failure recovery driver

Months

V1 V2

59

IB driver :

V1 => student made an IB simu.

V2 => No MPI or RDMA knowledge

TCP driver :

V1 => network expert

V2 => very basic C/C++ knowledge

Failure recovery:

Restart and reconnect in middle of 

continuous all-to-all communications 

(InfiniBand).



Not gaining only time !
DON’T BE AFRAID BY REAL PROBLEMS

60



MALT 61

December

Mid-Feb

March

• Working on laptop Core2Duo

• OS: Gentoo / Debian

• First run as a POC

• Basic backend + draft GUI

• A “real” test at ViHPS

• With a Phd. student stucked

with his app



MALT

 The PhD. student aside me:

 Stuck with his code failing on cluster due to out-of-memory

 “I develop a tool for this, maybe we can test ?”

 “I’m not sure because I started 3 month ago”

 Never tested MPI

 Biggest (~uniq) code was 1000 lines, C.

 His one was 256 tasks, ~30000 Fortran, Ifort, Intel MPI

 Cluster OS: Redhat (I tested Gentoo)

62



MALT 63

Install

• Success

Unit test 
fail

• Due to redhat old feature

• Fixed in 5 minutes

First run

• In Debug mode + assert

• One too strict assert [comment]

• One fatal error

• Both fix 10 minutes

He forgot global variable

Biggest than what he 

thought

12-20 

GB



MALT

 Total dev : ~8 month at the lab

 1.5 year latter without touching

 Run at CERN on lhcb-daqpipe (30000 C++ lines) => Success

 Run on Lhcb framework (~2 million lines + XXXX libraries) 

 Backend success

 NodeJS not loading Json file larger than 600MB => mine 690MB 

 ~1.5 week data reshaping and recursive call stack compactation

 File 250MB => display OK

64

No fear to 

quickly expose 

to real app !



Conclusion

65



My time rules

 Of course, depend on language / objectives / complexity

66

> ~weeks project

2-3 weeks Months - Yearstests

C
o

v
e

ra
g

e
python

~90%

C/C++

~80%

~1 or 2 months slower

A least 

1 test per

function / class



Learning in an exiting software 67

https://pngimg.com/image/61708

https://pngimg.com/image/61708


Son code : votre meilleur ami

 C’est avec lui que vous allez passer la majorité de vos journées

 Vous allez lui parler

 Il va vous répondre……

Run

68

https://uxwing.com/error-icon/

Run

https://uxwing.com/error-icon/


A bridge in middle of the team 69



Conclusion

 Always compare with real world engineering

 We tend to think because it is virtual it cost nothing

 That’s absolutely wrong on long term

 In research we want to explore algos

 We need to change the code many times

 Hard if we lose months on debugging

 There is a human aspect 

 the more interesting part for me

 In research => we let code to the next guy (due to short contracts) !

70



Be patient, 

look the dragon in the eyes

71



Thanks

72
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