
Unit tests

a philosophy and a help

face to its own software

Feedback on 13 years of personal

practice

GRAY SCOTT RELOADED SCHOOL – LAPP - ANNECY – 1/07/2024

1

Sébastien Valat

Tests unitaires

une philosophie et une aide

face à son logiciel

Retour sur 13 ans de pratique

personnelle en HPC

GRAY SCOTT RELOADED SCHOOL – LAPP - ANNECY – 1/07/2024

2

Sébastien Valat

Plan

1. Why I started

2. A little bit of philosophy & motivation

3. Thinking about testing methods

4. My own experience, feelings

5. Timings

3

Why I started

4

Once upon a time…

 Master theses (2009) => Linux kernel module

 5 months : module is working well on full KDE session !

 Lets try on a real CEA simulation (1,5 millions C++ lines app & 16 threads)

5

Start to

run

Run for half

an hour

Saving

data
Kernel panic

during exit

2 months of

painfull

debugging

By searching

buggy sequence

in 75M log entries

Starting PhD.

On malloc()

Unit test

everything

My source of thinking

 Mostly my own (home / PhD / post-docs / engineering) work

 I hardly unit test since 13 years

 4 years of scrum dev in team

 Sample

 17 projects

 190129 code lines

 C++ / C / rust / python / NodeJS / Java / GO

 From 3700 lines to 33173 lines

 Code coverage starting from 43% to 93%

 Some projects without unit tests !

 150 000 lines project & 50 devs

6

A little bit of philosophy

& motivation

7

How much mistakes costs later .. ?

 Manhattan project, 1945, Hanford

 There was a nuclear reactor

 For plutonium production

 Takes water in

 Cooled the reactor

 ….and dump the water out…

8

https://commons.wikimedia.org/wiki/File:Hanford_N_Reactor_adjusted.jpg

https://commons.wikimedia.org/wiki/File:Hanford_N_Reactor_adjusted.jpg

Then there was wastes to handle… 9

▶Easy and quick and cheap solution

▶Make a hole,

▶Dump everything in

▶Cover with sand.

▶Costs estimation…. ~12 mens,

▶An excavator

▶A truck

http://www.planetexperts.com/hard-lessons-in-the-us-environmental-protection-agency/

http://www.planetexperts.com/hard-lessons-in-the-us-environmental-protection-agency/

Then there was wastes to handle…

 For liquids / muds….

 Solution was to build 177 tanks

 Store 710,000 m3

 In the desert,

 Dump wastes in

 And cover with sand….

 Now, 55 years later….

 They now (2010) start to leak…

10

https://tlarremore.wordpress.com/2016/02/28/uncontrolled-spread-of-contamination-nuclear-waste-material-hanford-nuclear-
reservation-usa/

https://tlarremore.wordpress.com/2016/02/28/uncontrolled-spread-of-contamination-nuclear-waste-material-hanford-nuclear-reservation-usa/
https://tlarremore.wordpress.com/2016/02/28/uncontrolled-spread-of-contamination-nuclear-waste-material-hanford-nuclear-reservation-usa/

Today: that’s technical debt 11

https://pixabay.com/photos/cat-redhead-striped-funny-posture-3602557/

https://www.hanford.gov/files.cfm/2019_Hanford_Lifecycle_Report_w-Transmittal_Letter.pdf

Cleanup until 2090

And estimated

~300-600 billions $.

https://pixabay.com/photos/cat-redhead-striped-funny-posture-3602557/
https://www.hanford.gov/files.cfm/2019_Hanford_Lifecycle_Report_w-Transmittal_Letter.pdf

Came back to software…. 12

Source: Applied Software Measurement, Capers Jones, 1996

Capers Jones, 1996

(640x)

Thinking about testing

13

Lets think you are a car engineer

 You work for Renault (we are French… :D)

 You want to build a car

 You work on the gear box

14

http://dwww.auto-innovations.com/site/images8b/Renault_scenic_TL4.jpg

http://dwww.auto-innovations.com/site/images8b/Renault_scenic_TL4.jpg

You make no test…

 Sell the car directly to customer and see

 Would you by ?

15

Method 1 : manual test

 Way to test a new gear we added

 Make a Grenoble – Marseille

16

Méthode 2 : manual testing

 A bit better : in controlled environment

 Test circuit

 Get a precise list of tests to perform

 We need to define
“a test plan”

17

Method 3 : automated integration

tests
 We build a prototype and we run the tests

 Each time you change a gear in the gear box ?

18

https://es.wikipedia.org/wiki/Veh%C3%ADculo_aut%C3%B3nomo#/media/Archivo:Hands-free_Driving.jpg

https://www.needpix.com/photo/download/367388/accident-auto-crash-car-road-free-pictures-free-photos-free-images-royalty-free

http://maguy69.m.a.pic.centerblog.net/o/969011b4.jpg

https://es.wikipedia.org/wiki/Veh%C3%ADculo_aut%C3%B3nomo#/media/Archivo:Hands-free_Driving.jpg
https://www.needpix.com/photo/download/367388/accident-auto-crash-car-road-free-pictures-free-photos-free-images-royalty-free
http://maguy69.m.a.pic.centerblog.net/o/969011b4.jpg

Method 4 : unit test

 You use a test bench

 Test only the gear box

 In controlled situation

 Can:

 put infrared camera

 Probes to see temperature.

 Vibration measurement

19

https://www.techbriefs.com/component/content/article/tb/features/application-briefs/13978

https://www.techbriefs.com/component/content/article/tb/features/application-briefs/13978

Notice contiguous transition….

 There is unit test

 Test one gear

 A little bit more, still unit test

 Test two gears

 …

 A little bit more, integration test

 Test the gear box

 End to end, now test in the car.

20

https://www.indiamart.com/proddetail/automotive-spur-gear-19598784273.html
https://en.wikipedia.org/wiki/Spiral_bevel_gear#/media/File:Gear-kegelzahnrad.svg

https://www.indiamart.com/proddetail/automotive-spur-gear-19598784273.html
https://en.wikipedia.org/wiki/Spiral_bevel_gear#/media/File:Gear-kegelzahnrad.svg

Run example - OK 21

But how it looks ?

 The simplest test in python :

22

def test_abs_value(self):
assert abs_value(-10) == 10
assert abs_value(10) == 10

What is a unit test in python ?

 Example extracted from one of my projects

23

def test_move():
build a particle
particle = Particle(0)

test the initial position
assert particle.get_x() == 0

move
particle.move(10)

test the final position
assert particle.get_x() == 10

A bit more advanced one 24

def test_collide():
build two particles
particle1 = Particle(0,5, -1.5)
particle2 = Particle(-0,5, 1.5)

collide particules
dt = 1.0
collide = Physics.elastic_collide(particle1, particle2, dt)
assert collide == True

checks
assert particle1.get_vx() == 1.5
assert particle2.get_vx() == -1.5

Most unit test frameworks

relies on:

assert keywords

Run example - failure 25

A realistic case 26

My my own experience, feelings

27

When trying to push in teams….

[integration]
 Integration test

 Mostly everybody agree

 Not exactly on the way to do it….

 One dev. already made a dirty bash script !

 Seems easier at first look

 Quickly cost a lot

 Eg. CEA project, 10 000 MPI tests, …. 5000 fails…

 One week to run everything

 Depressing

 Harder to debug

 Nobody looked on results except me and another one

28

When trying to push in teams….

[integration]

 Another integration case (costs):

 Eg. in another team (scrum)

 Only integration test

 Test suite time : 40 minutes

 Day to day maintainance : 1.5 dev fully dedicated to it (team 15 dev)

 If your CI env is not stable:

 Lots of issues to maintain the env running

 Lots of non code related issues (timeout, …)

 Company migrated the CI env : ~5 months consumed to migrate

29

versus 9.42 seconds in unit

versus 1 week in unit

When trying to push in teams….

[unit tests]
 Unit tests

 Required an investment

 Initial effort

 We are slower to start

 Hard to convince devs who never made unit tests

 Hard to introduce in pre-existing software

 Common first kill :

 “This one is too hard to test”

 “This one call many others”

 “I’m sure of this function, it is so simple”

 “Hola, do not touch this part of the code !”

30

First time I made unit tests

 I was not convinced

 But I tried

 Had the impression to loose my time

 It was hard

 I didn’t see the benefits

 I already had most of my codes

 Painfull to unit test for weeks

31

https://depositphotos.com/fr/vector/exhausted-emoticon-13971204.html

https://depositphotos.com/fr/vector/exhausted-emoticon-13971204.html

That’s also adequate tools

and ways to work

32

Day to day methodology :

discipline

 “This is a POC…. I will make my tests later”

 You will never do them later

 Because your design will not permit

 Because you will want to move to other stuff

 Nobody will be happy to write unit tests for ~4 weeks

 Your boss/commercial manager already sold it to clients….

 You already loosed half the benefits of unit tests

 Become a more or less useless investment

33

Benefits of unit test

 That’s not only testing (~20%)

 It forces you to think your design

 Forbids global variables

 Make spec, also for internal APIs

 Open easy door for refactoring / rewriting

 New developers are more confident (you in 6 months…)

34

A safety for QA guy

 Quality loss and rush warnings.

 Noticed via a technical channel not through quality exigent guy !

35

That’s a discret teacher !

 You get feedback by yourself

 No need to get critics from someone else

 If you don’t know how to write your test :

 Your internal API is badly designed !

36

https://www.seekpng.com/ima/u2q8i1q8a9q8y3a9/

https://www.seekpng.com/ima/u2q8i1q8a9q8y3a9/

That’s also constraints

 Not all codes are unit test-able

37

All possible codes

D
o

-a
b

le

W
o

rk
a

b
le

Te
sta

b
le

--K
IS
S
--

Test a gas machine

 If your test become too complex

 You are certainly

on the wrong way

 Stop, think and KISS

38

morning_not_kiss()

What looks simpler to test ? 39

Facing the entropy ! 40

Refactoring

Time

C
o

m
p

le
x
it
y

Refactoring

Refactoring

Way of working 41

Refactor Test Refactor Test
New

feature
Test

Team dynamic - silos

 Without test it is hard to go on a part we do not know !

 Especially in HPC !

 So each dev will have his part

 It reduces the discussions in the team

 Favor heroes

42

https://www.flickr.com/photos/docsearls/5500714140

https://www.flickr.com/photos/docsearls/5500714140

Corner

cases

Knowledge

Keep the knowledge !

 The hard corner cases are encoded into the tests

 Useful:

 On turnover or retirement

 Very usefull in case of rewriting a V2

 To translate in another language

 Eg: porting my memory allocator:

 C original implementation : ~1 year

 C++ translation + new algo : 1 month

 Rust translation : 2.5 weeks for the biggest part

43

Code

Corner

cases

knowledge

€€

€€€€€€€€€

€€€€€€€€€

A basement of agile methods

 That’s a REQUIREMENT for the method, not an option

 For the technical validity of the method

 For the dynamic of the team

 In agile you didn’t plan…

 If you cannot refactor => you are scrued or get very lucky !

44

Never do AGILE or SCRUM

without unit test !

Ecology argument

 You can make the whole dev localy on your laptop

 No need of a large dev cluster

 Once done and validated with unit tests:

 Make real test on cluster

 Once a week or two weeks

 Not anymore per team cluster

 Less debugging at scale so less CPU hours !

45

https://www.freeiconspng.com/downloadimg/36144
https://www.vigindustries.in/products/server-rack

https://www.freeiconspng.com/downloadimg/36144
https://www.vigindustries.in/products/server-rack

Ecology argument - 2

 CI cycle takes ~ a minute

 Instead of 40 minutes

with only integration tests

 Require less CI server ressources

46

https://www.qfs.de/fr/blog/article/utiliser-qf-test-dans-des-systemes-continuous-integration.html

https://www.qfs.de/fr/blog/article/utiliser-qf-test-dans-des-systemes-continuous-integration.html

The test density

 The three « levels »

 Build (or use) dedicated tools for each level

47

Unitaire Intégration
End-to-

end

C
o

û
t / te

m
p

s

Test density

Reproductibility

 It help portability

 Reproduce in an other environnement

 Because no one has the same…

 And it evolve quicly

 Not stay stucked to fixed old versions

48

Research

 You have tons of ideas !

 You want to change path

 Refactoring python code ?

 Or explore others

 You don’t know where you go !

 Not loose time in debugging

49

http://garesettrains.canalblog.com/archives/2020/07/14/38430007.html

http://garesettrains.canalblog.com/archives/2020/07/14/38430007.html

Mocking

50

The turtle case

 Many unit test introduction courses uses:

 The turtle example

 A turtle

 Has a position

 Can move forward

 This is a too simple example

 Not pointing problems of a real case

51

https://snipstock.com/image/png-images-turtle-24-png-17769

https://snipstock.com/image/png-images-turtle-24-png-17769

Should we test everythings ? 52

Code to test

External library code 1 External library code 2 External library code 3

We consider that

external libs are tested

“are tested and working”

Intriducting mocking (factice) 53

Class to test

Semi complex object Complex object Semi complex object

Mocked complex

object

http://dwww.auto-innovations.com/site/images8b/Renault_scenic_TL4.jpg

http://dwww.auto-innovations.com/site/images8b/Renault_scenic_TL4.jpg

The mocking 54

Function_to_test()

sub_fonction_to_mock()calc_somme()

test()

Mock():
return 25.3

Implémentation():
b = do_complex_work()

print(b)
a = b + d + c * 10
return 56.5 * a

Injection du

mock

What is a mock in python ?

 Example extracted from one of my projects

55

From unittest import mock

def test_collide():
build two particles
particle1 = Particle(0,5, -1.5)
particle2 = Particle(-0,5, 1.5)

override random function by mock
with mock.patch(‘random.randrange’, return_value=0.75):

collide particules
dt = 1.0
collide = Physics.collide(particle1, particle2, dt)
assert collide == True

checks

assert particle1.get_vx() == 1.5
assert particle2.get_vx() == -1.5

'

Some framework 56

Language Test framework Mocking

Python Unittest

pytest

unitest.mock

C++ Google test

Catch2

Boost test library

cppunit

…

Google mock

FakeIT

C Google test

Criterion

Bash bats

Rust [native] mockall

Go [native] gomock

Timings on 1 examples
COSTS AND EXAMPLES

57

CERN lhcb-daqpipe

 LHCB Acquisition R&D code for scaling studies

 Need to handle 40 Tb/s on

 InfiniBand

 Omni-Path

 100G ethernet

 Over 500 servers (continuous 80 Gb/s all-to-all) + send to ~3000

58

Compare costs

5

3

5

11

5

3

1

4

1

0,5

8

2

1

0 2 4 6 8 10 12

Core dev

Libfabric

TCP

IB Verbs

OmniPath

RapidIO

Failure recovery model

Failure recovery driver

Months

V1 V2

59

IB driver :

V1 => student made an IB simu.

V2 => No MPI or RDMA knowledge

TCP driver :

V1 => network expert

V2 => very basic C/C++ knowledge

Failure recovery:

Restart and reconnect in middle of

continuous all-to-all communications

(InfiniBand).

Not gaining only time !
DON’T BE AFRAID BY REAL PROBLEMS

60

MALT 61

December

Mid-Feb

March

• Working on laptop Core2Duo

• OS: Gentoo / Debian

• First run as a POC

• Basic backend + draft GUI

• A “real” test at ViHPS

• With a Phd. student stucked

with his app

MALT

 The PhD. student aside me:

 Stuck with his code failing on cluster due to out-of-memory

 “I develop a tool for this, maybe we can test ?”

 “I’m not sure because I started 3 month ago”

 Never tested MPI

 Biggest (~uniq) code was 1000 lines, C.

 His one was 256 tasks, ~30000 Fortran, Ifort, Intel MPI

 Cluster OS: Redhat (I tested Gentoo)

62

MALT 63

Install

• Success

Unit test
fail

• Due to redhat old feature

• Fixed in 5 minutes

First run

• In Debug mode + assert

• One too strict assert [comment]

• One fatal error

• Both fix 10 minutes

He forgot global variable

Biggest than what he

thought

12-20

GB

MALT

 Total dev : ~8 month at the lab

 1.5 year latter without touching

 Run at CERN on lhcb-daqpipe (30000 C++ lines) => Success

 Run on Lhcb framework (~2 million lines + XXXX libraries)

 Backend success

 NodeJS not loading Json file larger than 600MB => mine 690MB 

 ~1.5 week data reshaping and recursive call stack compactation

 File 250MB => display OK

64

No fear to

quickly expose

to real app !

Conclusion

65

My time rules

 Of course, depend on language / objectives / complexity

66

> ~weeks project

2-3 weeks Months - Yearstests

C
o

v
e

ra
g

e
python

~90%

C/C++

~80%

~1 or 2 months slower

A least

1 test per

function / class

Learning in an exiting software 67

https://pngimg.com/image/61708

https://pngimg.com/image/61708

Son code : votre meilleur ami

 C’est avec lui que vous allez passer la majorité de vos journées

 Vous allez lui parler

 Il va vous répondre……

Run

68

https://uxwing.com/error-icon/

Run

https://uxwing.com/error-icon/

A bridge in middle of the team 69

Conclusion

 Always compare with real world engineering

 We tend to think because it is virtual it cost nothing

 That’s absolutely wrong on long term

 In research we want to explore algos

 We need to change the code many times

 Hard if we lose months on debugging

 There is a human aspect

 the more interesting part for me

 In research => we let code to the next guy (due to short contracts) !

70

Be patient,

look the dragon in the eyes

71

Thanks

72

	Diapositive 1 Unit tests a philosophy and a help face to its own software Feedback on 13 years of personal practice
	Diapositive 2 Tests unitaires une philosophie et une aide face à son logiciel Retour sur 13 ans de pratique personnelle en HPC
	Diapositive 3 Plan
	Diapositive 4 Why I started
	Diapositive 5 Once upon a time…
	Diapositive 6 My source of thinking
	Diapositive 7 A little bit of philosophy & motivation
	Diapositive 8 How much mistakes costs later .. ?
	Diapositive 9 Then there was wastes to handle…
	Diapositive 10 Then there was wastes to handle…
	Diapositive 11 Today: that’s technical debt
	Diapositive 12 Came back to software….
	Diapositive 13 Thinking about testing
	Diapositive 14 Lets think you are a car engineer
	Diapositive 15 You make no test…
	Diapositive 16 Method 1 : manual test
	Diapositive 17 Méthode 2 : manual testing
	Diapositive 18 Method 3 : automated integration tests
	Diapositive 19 Method 4 : unit test
	Diapositive 20 Notice contiguous transition….
	Diapositive 21 Run example - OK
	Diapositive 22 But how it looks ?
	Diapositive 23 What is a unit test in python ?
	Diapositive 24 A bit more advanced one
	Diapositive 25 Run example - failure
	Diapositive 26 A realistic case
	Diapositive 27 My my own experience, feelings
	Diapositive 28 When trying to push in teams…. [integration]
	Diapositive 29 When trying to push in teams…. [integration]
	Diapositive 30 When trying to push in teams…. [unit tests]
	Diapositive 31 First time I made unit tests
	Diapositive 32 That’s also adequate tools and ways to work
	Diapositive 33 Day to day methodology : discipline
	Diapositive 34 Benefits of unit test
	Diapositive 35 A safety for QA guy
	Diapositive 36 That’s a discret teacher !
	Diapositive 37 That’s also constraints
	Diapositive 38 Test a gas machine
	Diapositive 39 What looks simpler to test ?
	Diapositive 40 Facing the entropy !
	Diapositive 41 Way of working
	Diapositive 42 Team dynamic - silos
	Diapositive 43 Keep the knowledge !
	Diapositive 44 A basement of agile methods
	Diapositive 45 Ecology argument
	Diapositive 46 Ecology argument - 2
	Diapositive 47 The test density
	Diapositive 48 Reproductibility
	Diapositive 49 Research
	Diapositive 50 Mocking
	Diapositive 51 The turtle case
	Diapositive 52 Should we test everythings ?
	Diapositive 53 Intriducting mocking (factice)
	Diapositive 54 The mocking
	Diapositive 55 What is a mock in python ?
	Diapositive 56 Some framework
	Diapositive 57 Timings on 1 examples
	Diapositive 58 CERN lhcb-daqpipe
	Diapositive 59 Compare costs
	Diapositive 60 Not gaining only time !
	Diapositive 61 MALT
	Diapositive 62 MALT
	Diapositive 63 MALT
	Diapositive 64 MALT
	Diapositive 65 Conclusion
	Diapositive 66 My time rules
	Diapositive 67 Learning in an exiting software
	Diapositive 68 Son code : votre meilleur ami
	Diapositive 69 A bridge in middle of the team
	Diapositive 70 Conclusion
	Diapositive 71 Be patient, look the dragon in the eyes
	Diapositive 72 Thanks

