7 %JCub

Iréne Joliot-Curie

Laboratoire de Physique
des 2 Infinis

-

Programmation non-euclidienne

comment avoir les threads qui se touchent... avant I'infini ?

Vincent LAFAGE

L1JCLab, Laboratoire de Physique des 2 Infinis Iréne Joliot-Curie
Université Paris-Saclay

() °
e université
RENOTDED A PARIS-SACLAY
des 2 infinis

PTG G NSNS AAITETIS

Iréne Joliot-Curie

July 1st 2024

mailto:vincent.lafage@in2p3.fr

t'h Why parallelize %

+ o+ o+ o+ o+ o+ o+

MOORE's Law : Gordon MOORE's observation (1965) éle

« Cramming More Components onto Integrated Circuits. » : ‘5?_ {H //
The number of transistors fgi A

in a dense integrated circuit (IC) §§ v /"
doubles about every two years. 52 2 7

(even before microprocessors) Z;E §

registers _’g i

memory cache § : §§§§§§§§§§§§§§§EE

processor instructions

bus size (4 bits — 64 bits)

memory management (MMU)

processing units (one, then many ALU/FPU, vector ALU/FPU...)
pipeline depth (superscalars cf Pentium ca 1993)

complex branch predictor / out-of-order execution unit

Heat/Power Wall : P = - C - V3% - f+ Vg - Ty + Vg - iear
Frequency Wall : « Free lunch is over » (already for 15 years, almost 20 years)

1971 = 10pm, 2012 = 22nm, 2014 = 14nm, 10nm in (slow) progress (Intel).
TSMC, Samsung : 7nm, 5nm factories. 3nm and beyond down to 1.4 nm in Intel
roadmap. Tunnel effect = Quantum Wall

Money Wall

July 1st 2024

fb Why parallelize

+ o+ o+ o+ o+ o+ o+

MOORE's Law : Gordon MOORE's observation (196552

« Cramming More Components onto Integrated Circuits. » :

Years of Microprocessor Trend Data

The number of transistors “’; i ransisors

in a dense integrated circuit (IC) 1:5 SingloThread

doubles about every two years. o : (Spoama 50

(even before microprocessors) 10 N | Froaueney ()
} 102 - piceT B s A A

registers o b im =t 3{"{ W o ...4 o+ 7| Nomber o

memory cache s “ R 8k R ogiealGores

processor instructions 1870 1980 1990 2000 2010 2020

bus size (4 bits — 64 bits) o i et v . v v s e

memory management (MMU)
processing units (one, then many ALU/FPU, vector ALU/FPU...)
pipeline depth (superscalars cf Pentium ca 1993)

complex branch predictor / out-of-order execution unit
Heat/Power Wall : P = - C - V3% - f+ Vg - Ty + Vg - iear
Frequency Wall : « Free lunch is over » (already for 15 years, almost 20 years)

1971 = 10pm, 2012 = 22nm, 2014 = 14nm, 10nm in (slow) progress (Intel).
TSMC, Samsung : 7nm, 5nm factories. 3nm and beyond down to 1.4 nm in Intel
roadmap. Tunnel effect = Quantum Wall

Money Wall

l'h Why parallelize %

"ﬂ‘ The Current Power Trend
Sun’s
10000 Surface
= Rocket
Eio Nozzle =
E /
> Nuclea > #
s 100 B
5 /
[=] 4
— 8086
g 8008 80! '/P'Plsmb
5 & 'entiu
o et S . T
1970 1980 1990 2000 2010
Year Source: Intel Corp.
ECE 4100/6100 (23)

Introduction to Multicore architecture, Tao ZHANG — Oct. 21, 2010

July 1st 2024

t'h Why parallelize

Information technologies : growing part of a rare, expensive & dirty energy.
1.6 MW for the first room of IN2P3 Computing Centre : 0,5 to 1 M€ /yr

Moving from PFlops to Exascale requires a breakthrough...

1E416
1E415
1E+14

16413

@ moving to a better W/MIPS ratio i
(or W/MFLOPS) :
Intel XScale!, 600 MHz, 0.5 W g

5 x slower, 80 x cheaper in energy! i

£ 1ews

5

@ reduce frequency, using more cores Freor

= 1E+06
15

=

1403

« The number of computations per joule of energy dissi- il
pated doubled about every 1.57 years. »

16401

1E+00 -
190 1950 1960 1970 10 1980 2000 2010

Figure — KOOMEY's law, 2010

V. Lafage (University Pa_ July 1st 2024

l'h Why parallelize %

“ﬂ‘ The Memory Wall
o P
e :O"r/‘:/‘;r
100 ‘Processor-Memory
Performance Gap:
(grows 50% / year)
=
DRAM
T%lyr.
DRAM
1

ECE 4100/6100 (19)

Introduction to Multicore architecture, Tao ZHANG — Oct. 21, 2010

July 1st 2024

l'h Why parallelize %

(Dt vee

Data is moved through wires
Wires/memory behave like an RC circuit
Trade-off :

@ Longer response time 7 = RC (“latency”)
@ Higher current I (= more power)

Physics says :
Communication is slow, power-hungry, or both

Hierarchy of memories
@ Small amount of fast memory close to CPU

@ Large amount of slow memory far from CPU

CPU register « Level 1 cache « Level 2 cache « Level 3 cache « Main memory « Disk « Internet

July 1st 2024

t'h Why parallelize %

We must feed the CPU = some problems will be memory bound.
The distinction between memory bound and CPU bound algorithms can often be related to
their arithmetic intensity :
for N-sized problem, how many operations ?
@ dotproducts : O(N) data, O(N) ops
convolution
@ matrix-vector products : O(N(N + 1)) data, O(N?) ops

@ matrix-matrix products : O(2N?) data, O(N?3) ops
matrix inversion, diagonalisation, Fourier/Bessel transform..

“If the only tool you have is a hammer, you tend to see every problem as a nail.”

MASLOW 's gavel
=

“If the only tool you have is a GPU, you tend to see every problem as a matrix product.”

July 1st 2024

i'h Architecture

Central Processing Unit

@ TURING Machine s _— Gonteol ri

@ VON NEUMANN architecture Artmeteiosie Ut
(Princeton architecture)

= VON NEUMANN bottleneck

@ Harvard architecture

Instruction
memory

iversity Paris—Sacl_ r : July 1st 2024

execute typical instruction 1ns
fetch from L1 cache memory 0.5ns
branch misprediction 5ns
fetch from L2 cache memory 7ns
Mutex lock/unlock 25 ns
fetch from main memory 100 ns
send 2K bytes over 1Gbps network 20000 ns

read 1MB sequentially from memory 250000 ns

fetch from new disk location (seek) 8000000 ns
read 1IMB sequentially from disk 20000000 ns
send packet US to Europe and back 150000000 ns

T — T

July 1st 2024

¢°b Know your too

hwlo

Machine (31GB total)
O
Package L#0 2,0 2,0 | PCI 01:00.0
| NUMANode L#0 P#0 (31GB) | GPU :1.0
| L3 (8192KB) | PCI 00:19.0
| L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | Net ethO |
| L1d (32KB) | | L1d (32KB)| | L1d (32KB) | | L1d (32KB) | 0.2 0.2 | PCI 5¢:00.0
| L1i (32KB) | | L1i (32KB) | | L1i (32KB)| | L1i (32KB) | Net wlan0
Core L#0 Core L#1 Core L#2 Core L#3 PCI 00:1f.2
PU L#0 PU L#2 PU L#4 PU L#6
Block sdb
P#0 P#2 P#4 P#6 698 GB
PU L#1 PU L#3 PU L#5 PU L#7
P#1 P#3 P#5 P#7 Block sda
476 GB
Host: serval
Date: mar. 07 déc. 2021 19:37:32

d'h Know your too

Machine (62GB total)

Package L#0

‘ NUMANode L#0 P#0 (62GB) |

‘ L3 (24MB) |

l L2 (1280K8) I l L2 (1280K8) | l 12 (1280K8) | l L2 (1280KB) | l L2 (1280KB) | l L2 (1280KB) H L2 (1280KB) H L2 (1zBuKBD|

‘ L1d (48KB) | ‘ L1d (48KB) | ‘ L1d (48KB) | ‘ L1d (48KB) | ‘ L1d (48KB) | ‘ L1d (48KB) | ‘ L1d (48K8) | ‘ L1d (48K8) |

lLl\ (32KB) | lLl\ (32KB) | lLl\ (32KB) | lLl\ (32KB) | l‘-l‘ (32KB) | lLl\ (32KB) | l\.n (32KB) | l\.n (32KB) |

Core L#0. Core L#1 Core L#2 Core L#3. Core L#4. Core L#5. Core L#6. Core L#7
PUL#O PUL#2 PUL#A PUL#G PUL#S PUL#10 PU L#12; PUL#14
P#0 P#1 P#2 P#3 P#d P#5 P#6 P#7
PUL#L PUL#3 PUL#S PULET PUL#Y PUL#11 PU L#13; PUL#1S
P#8 P#9 P#10 P#11 P#12 P#13 P#14 P#15
(==t

e —
20 16 | PCI 01:00.0

CoProc openclod0.
40 compute units
7973 Mi

PCI 00:02.

I —
39 3.9/ PCI02:00.0

6
Net enp0s31f6

Host: Il-lafage
Date: Sun Jul 9 15:15:38 2023

University Paris—SaC_ vt July 1st 2024

#a Why parallelize ?

.

1 GAN HAZ
TERAFLOPZ,
PL1?

IMPERATIVE PROGRAMMING = programming sequence of
instructions/subtasks to the processor
program as an ordered shopping list, as an ordered recipe

SEQUENTIALITY is essential to programming

V. Lafage (University Paris—Sa_ iroed July 1st 2024

[
th Concurrenc

With only one processor, tasks will get executed one after the other.
Often this order is compulsory : permuting tasks would change the result
.. sometimes this order is contingent : permuting tasks wouldn’t change the result

If we can identify all these permutable tasks,
@ we could run those OUT OF SEQUENCE

@ we could run those CONCURRENTLY on multiple processors, or execution
units

(exhibiting concurrency in a program is an industrialization process).

V. Lafage (University Pa_ July 1st 2024

4'“ Task & Threa

Logical level : we want to identify TASKS and among them, order-independent tasks.
Physical level : we want to assign tasks to execution THREADS.
Multitasking can occur on one processor :

@ time sharing of processing ressource among threads
@ context switching between threads
If we have a multiprocessor, some/each processor can be assigned one or many threads
PARALLEL programming = CONCURRENT programming on a MULTIPROCESSOR
(a.k.a multiprocessing) (a.k.a. multiprogramming)
two kinds of loops :

— iterations depends on the previous one(s)
= what we usually call an iterative process

— iterations are independent of the previous ones
= more duplication (or N-uplication) than iteration

= embarassingly parallel = lowest possible concurrency = as decoupled as possible

= delightfuly parallel !

very common in particle physics : each event is independent and can be processed on a separate
processor / in a separate process

= DISTRIBUTED processing

e Purity

When we apply the same function on a collection of objects, the collection of result is
independent of the order of application of the function.

To ensure that this is right we need PURE functions :

= computer functions that are as close as possible to mathematical functions

— the function return values are identical for identical arguments
(no variation with local static variables, non-local variables, mutable reference arguments
or input streams.) i.e. its evaluation relies on a DETERMINISTIC ALGORITHM : given
a particular input, will always produce the same output, with the underlying machine
always passing through the same sequence of states
= function are referentially transparent (see below)

— the function application has no SIDE EFFECTS : no mutation of local static variables,
non-local variables, mutable reference arguments or input/output streams

Pure = deterministic 4+ without side effects

.% Purity down-to-earth functional

@ input arguments must be immutable : C++ const, Fortran intent (in),..

@ evaluation must not rely on (mutable) global variables
(e.g. in Fortran, it shouldn’t rely on COMMON variables, but it can rely on module
parameters or protected variables.
In C++, you can use const / constexpr / static constexpr global)

@ a pure function can only call pure functions

@ no exceptions
REFERENTIAL TRANSPARENCY :
= the expression can be replaced with its corresponding value (and vice-versa) without
changing the program’s behavior.
= allows MEMOIZATION :
optimization technique used primarily to speed up computer programs by storing the results of
expensive function calls and returning the cached result
a specific type of LOOKUP TABLE (LUT) :
= a collection / an array of precomputed results that one reuses instead of recomputing.
Lookup tables are usually initialised at start, while memoization fills it on the fly.

Mixing functional paradigm (purity) with object-oriented paradigm will strongly change
your object-oriented style

Side effects

what happens when the functi

@ Input/Output : displaying something occur in a given order, storing data to disk (can be
seen as a global object)

@ hardware related behavior : depends on the interaction with environment, which is a
global variable

@ time dependency : time is a global variable

@ exceptions : your function is not returning a value of the expected type, likely because of
limited definition domain for the arguments.
A mathematical function is not only pure, it also aims at totality (maximal expansion of
the definition domain)

@ most random number generators rely on a hidden state changing on each call.

= in the long run, no computer function can ever be called pure : running a computer
requires energy and increases the entropy of the Universe, which is a global variable =
side effect...

¢°b Purer than pure sim

Fortran'23

A pure procedure changes variables outside its scope only through its arguments. This allows it
to be used in parallel constructs, where concurrency issues would otherwise prevent use.

A simple procedure is a pure procedure that in addition is restricted to reference variables
outside its scope only through its arguments. = It represents an entirely local calculation.

If all the intent in arguments are constants and there are no intent inout arguments, it may be
performed by the compiler at compile time.

A simple procedure must satisfy all the requirements of a pure procedure. In addition,

it must not reference a variable by use or host association,
it must not reference a variable in a common block,

all its dummy procedures must be simple,

all its internal procedures must be simple,

all procedures it references must be simple,

when used in a context that requires it to be simple, its interface must be explicit and
specify that it is simple, and

it must not contain a entry statement.

All the intrinsic functions are simple.

All the module functions in all of the intrinsic modules are simple.

t short warnin

CAVEAT !

Floating point evaluation are usually dependent on the order of evaluation :

floating point operations are NOT associative, contrarily to the real number corresponding
operation : V(a, b,c),(a+b)+c=a+ (b+c) BUT J(a,b,c),(a®b)PcEad® (bdc)
= out-of-order operation might change ever so slightly the result

Subtle side-effects introduced by the languages, compilers and optimization options...

@ C strictly conforms to your order of computation
@ Fortran, i.e. FORmula TRANslator, tries to somehow optimize your computation :
mathematically equivalent, numerically not strictly equivalent

Some purity check by compiler are rather formal (particularly on heterogeneous architectures)...

V. Lafage (University Pari_ July 1st 2024

t What could go wrong ?

REENTRANCY
a subroutine is called reentrant if

@ multiple invocations can safely run concurrently on multiple processors,

@ or on a single processor system, where a reentrant procedure can be interrupted in the
middle of its execution and then safely be called again ("re-entered”) before its previous
invocations complete execution.

@ Reentrant code may not hold any static or global non-constant data without synchronization.

Reentrant code may not modify itself without synchronization.

@ Reentrant code may not call non-reentrant computer programs or routines.

THREAD SAFETY

Thread-safe code only manipulates shared data structures in a manner that ensures that all
threads behave properly and fulfill their design specifications without unintended interaction. (no
data race)

reentrant = thread-safe
thread-safe = reentrant

https://en.wikipedia.org/wiki/Reentrancy_(computing)

https://stackoverflow.com/questions/856823/threadsafe-vs-re-entrant

July 1st 2024

https://en.wikipedia.org/wiki/Reentrancy_(computing)
https://stackoverflow.com/questions/856823/threadsafe-vs-re-entrant

M When some task t

CRITICAL SECTION is a part of code where concurrent accesses to shared resources would
lead to erroneous behavior.

= we need to protect these accesses

Lock / mutex (mutual exclusion), protected object

(atomic instruction)

During a critical section, we loose all benefits of the multiprocessor.

HWarning !!!: dead lock
synchronization point, or rendez-vous :

sometimes one task has to wait for the completion of another one

July 1st 2024

