
Vectorization : Data parallelism

Row & Order
Special Vectorization Unit

Vincent Lafage

1IJCLab, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie
Université Paris-Saclay

July 1st 2024

V. Lafage (University Paris-Saclay) July 1st 2024 1 / 6

mailto:vincent.lafage@in2p3.fr


Scales of parallelism
Processes (in well separated environments) :

▶ so called embarassingly parallel problems
— particle physics event-wise distributed processing on a grid

▶ inter-process communication à la Unix
— pipe
— shared memory
— semaphore

▶ with separate computer and message passing across the network (distributed memory systems) :
— PVM « Parallel Virtual Machine » 1989
— MPI « Message Passing Interface » 1994

Threads (a.k.a. « lightweight processes »)
▶ Reduced Overhead : compared to a process

— C/C++ pthread « POSIX thread » 1995
— Ada task / protected objects

▶ Shared Memory on SMP « Symmetric Multi Processing » machines :
— OpenMP « Open Multi Processing » 1997.

Vectorization :
▶ even thread have too much overhead when concurrent tasks are elementary :

⇒ we can use no CPU thread for individual sum or products of many data
▶ ILP « Instruction Level Parallelism »

— vector processor « à la Cray » : SIMD « Single Instruction, Multiple Data »
— modern processor with fixed length SIMD

MMX « MultiMedia eXtension » 1997 Pentium P5
SSE « Streaming Extension » 1999 Pentium ///
AVX « Advanced Vector eXtension » 2008-2011
AVX512 2013-2017

V. Lafage (University Paris-Saclay) July 1st 2024 2 / 6



How to vectorize? ordering data

We know Bit Level Parallelism :
we can AND or OR 8, 16, 32, 64 bits in one instruction
In the same way, for our vector instruction to perform fluently, we need to
align our vector of data on memory boundary.

We have better order data of same nature as an (aligned) (contiguous)
array
⇒ for data contiguity we prefer a

structure of array
to the classical object-oriented

collection (array) of objects (structure)

V. Lafage (University Paris-Saclay) July 1st 2024 3 / 6



How to vectorize?

Vectorization, an industrialization process :

see your computation as a production line

Pincer movement around performance :
parallelizing from the top,
vectorizing from the bottom

… + keep the cache hot !

V. Lafage (University Paris-Saclay) July 1st 2024 4 / 6



How to vectorize?

1 handcraft vector code with dedicated low level instructions (intrinsics)
2 use vector libraries
3 let the compiler do it, provided we can

1 express the data parallelism (high-level aspect)
⇒ Harnessing the Power of Arrays (à la Matlab / Fortran 90)

2 hint the data contiguity & alignement to the compiler (low-level aspect)
And then, how to check that it was properly vectorized ?

compiler’s flagS to report vectorisation
check the resulting assembly (yuk !)
maqao
…indirectly, perf

V. Lafage (University Paris-Saclay) July 1st 2024 5 / 6



How to vectorize?

Complex numbers : a symbolic vectorization
… that gets in the way of practical vectorization !

(𝑎 + 𝑖𝑏) × (𝑐 + 𝑖𝑑) = (𝑎𝑐 − 𝑏𝑑) + 𝑖(𝑎𝑑 + 𝑏𝑐)

We need a complex of vector rather than a vector of complex.

(𝑎1 + 𝑖𝑏1) × (𝑐1 + 𝑖𝑑1) = (𝑎1𝑐1 − 𝑏1𝑑1) + 𝑖(𝑎1𝑑1 + 𝑏1𝑐1)
(𝑎2 + 𝑖𝑏2) × (𝑐2 + 𝑖𝑑2) = (𝑎2𝑐2 − 𝑏2𝑑2) + 𝑖(𝑎2𝑑2 + 𝑏2𝑐2)
(𝑎3 + 𝑖𝑏3) × (𝑐3 + 𝑖𝑑3) = (𝑎3𝑐3 − 𝑏3𝑑3) + 𝑖(𝑎3𝑑3 + 𝑏3𝑐3)
(𝑎4 + 𝑖𝑏4) × (𝑐4 + 𝑖𝑑4) = (𝑎4𝑐4 − 𝑏4𝑑4) + 𝑖(𝑎4𝑑4 + 𝑏4𝑐4)

V. Lafage (University Paris-Saclay) July 1st 2024 6 / 6


