

MAX-PLANCK-INSTITUT FÜR PHYSIK

The M-Theoretic Emergence Proposal

Ralph Blumenhagen

in collaboration with N. Cribiori, A. Gligovic and A. Paraskevopoulou

[arXiv: 2309.11551+2309.11554+2404.01371]

Review: [arXiv:2404.05801]

AnLy Meeting A. Font, April. 11, 2024

Collaboration with Anamaria

Dilaton tadpoles, warped geometries and large extra dimensions nonsupersymmetric strings

Ralph Blumenhagen (Humboldt U., Berlin), Anamaria Font (Humboldt U., Berlin) Nov, 2000

15 pages Published in: *Nucl.Phys.B* 599 (2001) 241-254 e-Print: hep-th/0011269 [hep-th] DOI: 10.1016/S0550-3213(01)00028-1 Report number: HUB-EP-00-55 View in: AMS MathSciNet, ADS Abstract Service

 \Box reference search \rightarrow 88 citations

	9 results 📑 cite all	Citation Summary 🛄
	Citation Summary	
	Exclude self-citations ?	
		Citeable ?
	Papers	9
	Citations	483
	h-index ⑦	8
9	Citations/paper (avg)	53.7
s for	Citations per year	
		Dynamic Dobordis Anamar heard ta already May 202 in Pisa
8 citations		

Reflection on Emergence

sense of characterizability and reproducibility. [Butterfield, (2011)]

Example: I-loop annulus amplitude for D-branes \rightarrow tree-level graviton exchange

- a.) $g_s \ll 1$ regime: no open strings without closed strings \rightarrow no emergence
- hierarchical pattern: $m_{\rm pert} \sim g^{\alpha} \Lambda$,

(string case: $\Lambda = M_s$, $g = g_s$)

In QG: Appearance of properties of a system that are novel with respect to other (more fundamental) descriptions of the same system and robust in the

b.) emergence of gravity: consistent QG theory with light D-branes and decoupled open/closed strings

 $(\alpha \ge 0, \beta > 0)$

$$m_{\rm class} \sim \frac{\Lambda}{g^{\beta}}$$

Introduction

Historically: One explores the realm of Quantum Gravity from one of its perturbative corners

- <u>QG in infinite distance limits</u>
 - SDC: towers of states become light [Ooguri, Vafa (2006)]
 - fund.string - Emergent string conjecture decomp. [Lee, Lerche, Weigand (2019)]
 - QG cut-off: species scale $\tilde{\Lambda} \sim \frac{M_{\rm pl}^{(d)}}{N_{\rm sp}^{\frac{1}{d-2}}}$

QG in the bulk - QG cut-off at $M_{\perp}^{(10)}$ [Long, Montero, Vafa, Valenzuela (2021)]

Perturbative fundamental string

- Species scale $\tilde{\Lambda} \sim M_{c}$
- All other towers are non-perturbative: (classical = coherent quantum states)

Can appear in different disguises (dual descriptions)

• Type IIA on K3 fibered CY₃ in the infinite distance limit $t_b \rightarrow \lambda t_b$, $g_s \rightarrow \lambda^{1/2} g_s$ so that $M_{pl}^{(4)} = \text{const, emergent string} = NS5$ wrapped on K3

Emergent string limit

• Lighest towers are strings, mass scale M_s , string coupling $g_s \ll 1$ • Accompanied by particle like states of mass $M \sim M_s$, KK + winding

$$m_{Dp} \simeq \frac{\tilde{\Lambda}}{g_s}, \qquad m_{NS5} \simeq \frac{\tilde{\Lambda}}{g_s^2}$$

Decompactification Limit

 $(\lambda \gg 1, M_{\rm pl}^{(d)} = const.)$ Via the relations this is the M-theory limit

d + k = 10Consider type IIA compactified to d-dimensions on X_k , **Decompactification limit:** $g_{s} \to \lambda^{\frac{3(d-2)}{2(d-1)}} g_{s}$, $M_{s} \to \lambda^{\frac{d-4}{2(d-1)}} M_{s}$, $R_{I} \to \lambda^{\frac{1}{d-1}} R_{I}$. $M_s^2 = M_*^3 R_{11}, \qquad g_s = (M_* R_{11})^{\frac{3}{2}}.$ $R_{11} \rightarrow \lambda R_{11}, \qquad M_* \rightarrow \frac{M_*}{\lambda \frac{1}{d-1}}, \qquad R_I \rightarrow \lambda \frac{1}{d-1} R_I,$ $M_{D0} \sim M_s / g_s \sim M_{\rm pl}^{(d)} / \lambda$ Lightest degrees of freedom: D0-branes with $\tilde{\Lambda} \sim M_{\rm pl}^{(d)} / \lambda^{1/(d-1)} \sim M_{\rm pl}^{(d+1)} \sim M_*$ For such a KK-like tower, the species scale is $M_{D2,NS5} \sim M_s / g_s^{1/3} \sim M_{\rm pl}^{(d)} / \lambda^{1/(d-1)} \sim \tilde{\Lambda}$ Room for additional light towers

[Blumenhagen, Cribiori, Gligovic, Paraskevopulou, 2309.11554]

Emergence Proposal

Emergence Proposal:

from review [Palti, (2019)]

Schwinger integral:

- [Heidenreich, Reece, Rudelius (2018)], [Grimm, Palti, Valenzuela (2018)]
- see also [Marchesano, Melotti (2022)] [Castellano, Herráez, Ibáñez (2022)] [Bhg, Gligovic, Paraskevopulou (2023)]
- The dynamics (kinetic terms) for all fields are emergent in the infrared by integrating out towers of states down from an ultraviolet scale, which is below the Planck scale.

I-loop correction to gauge coupling: tower $M_n = n\Delta m$ with $M_n, q \leq \Lambda_{UV}$,

$$\sim \sum_{n=1}^{n_{\text{max}}} Q_n^2 \log\left(\frac{M_n^2}{\mu^2}\right) \sim \frac{1}{g_{U(1)}^2} \bigg|_{\text{class}}$$

Emergence Proposal

Originally checked at leading order in a (toy) QFT approach with $M_n \leq \tilde{\Lambda}$

Is it realized in full quantum gravity (string theory)?

Problem: Quantization of M-theory?

Objective • Collect evidence from 1/2 BPS saturated amplitudes which admit geometric formulation

> • Higher derivative R^4 -terms in theories with maximal supersymmetry by Green-Gutperle-Vanhove (1997) (and Kiritsis, Obers, Pioline) [Blumenhagen, Cribiori, Gligovic, Paraskevopulou, 2404.01371]

Swampland program provides a new view on these seminal works

• Topological amplitudes \mathcal{F}_g in 4D with N=2 supersymmetry

a la Gopakumar-Vafa (1998) [Blumenhagen, Cribiori, Gligovic, Paraskevopulou, 2309.11551] [Hattab, Palti, 2312.15440+2404.05176]

Emergent String: I-loop correction to R^4 term

Higher derivative term

$$S_{R^4} \simeq M_s^{d-8} V_k \int d^d x \sqrt{-g} a_d t_8 t_8 R^4,$$

with the one-loop contribution

KK+ winding numbers $M^2 = m_i G$ undo integral τ_1 : $a_d^{(1)} \simeq \frac{2\pi}{V_k} \sum_{m_i, n}^{\infty}$

General expansion in
$$g_s$$

$$a_d = \frac{c_0}{g_s^2} + \left(c_1 + \mathcal{O}(e^{-S_{ws}})\right) + \mathcal{O}(e^{-S_{st}})$$
$$\underbrace{1-\text{loop}}$$

$$\sum_{m_i,n^i \in \mathbb{Z}} \int_{\mathscr{F}} \frac{d^2 \tau}{\tau_2^{\frac{d-6}{2}}} e^{-\pi \tau_2 M^2 - 2\pi i \tau_1 m_i n^i}$$

$$I/2 \text{ BPS: } m_i n^i = 0$$

$$G^{ij}m_j + n^i G_{ij}n^j$$

$$\sum_{a^{i} \in \mathbb{Z}} \int_{0}^{\infty} \frac{dt}{t^{\frac{d-6}{2}}} \,\delta(\text{BPS}) \, e^{-\pi t M^{2}},$$

$$\bigcup \text{UV divergence}$$

9

Regularizing UV divergence

Example 9D:

Regularize via minimal subtraction + zeta function:

$$a_{9,m=0}^{(1)} \simeq \frac{2\pi}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} e^{-\pi t \rho^2 n^2} = -\frac{1}{\rho} \sum_{\substack{n \neq 0}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \rho^2 n^2} e^{-\pi t \rho$$

with
$$\int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi tA} = \frac{2}{\sqrt{\epsilon}} - 2\pi\sqrt{A}$$

No emergence!

$$a_{9,\text{string}}^{(1)} \simeq \frac{2\pi^2}{3} \left(1 + \frac{1}{\rho^2} \right)$$

 $+ -\frac{1}{2}$. (string comp.)

 $-4\pi^2 \sum_{\substack{n\neq 0 \\ n\neq 0}} |n| = \frac{2\pi^2}{3}, \qquad a_{9,n=0}^{(1)} \simeq \frac{2\pi^2}{3\rho^2},$ $= 2\zeta(-1)$ + $\mathcal{O}(\sqrt{\epsilon})$, works $a_{10,\text{string}}^{(1)} \simeq \frac{2\pi^2}{3}$ 10,501115 except $a_{10}^{(1)} \simeq 0$ 10D

Higher derivative term

$$S_{R^4} \simeq M_s^{d-8} V_k \int d^d x \sqrt{-g} a_d t_8 t_8 R^4,$$

with the coefficient

$$a_{d,\mathrm{M}}^{(1)} \simeq \frac{2\pi}{r_{11}\mathcal{V}_k} \sum_{N^I, m \in \mathbb{Z}} \int_0^\infty \frac{dt}{t^{\frac{d-6}{2}}} \,\delta(\mathrm{BPS}) \,\exp\left(-\pi t \,N^I \mathcal{M}_{IJ} N^J - \pi t \,\frac{m^2}{r_{11}^2}\right),$$

KK, M2, M5 transverse wrapping numb $\mathcal{M} = \operatorname{diag}\left(\frac{1}{r_i^2}, t_{ij}^2, t_{ijklm}^2\right)$ particle masses

M-theoretic Emergence of R^4 term

ers
$$(N^{I}) = \left(m_{i}, n^{ij}, n^{ijklm}\right)$$

(axions will induce off-diagonal entries)

П

Emergence of R^4 term

1/2 BPS conditions $n^{[ij} n^{kl]} + m_p n^{pijkl} = 0, \qquad \# = \binom{k}{4}$ $n^{i[j} n^{klmnp]} = 0, \qquad \# = \binom{k}{6}$

Particle states and 1/2 BPS conditions

d	k	Particles $SL(k)$ reps.	$E_{k(k)}(Z)$	Λ_{E_k}	$1/2$ -BPS: λ_{E_k}
9	1	$[1]_{p}$	1	1	0
8	2	$[2]_p + [1]_{M2}$	SL(2)	3	2
7	3	$[3]_p + [3]_{M2}$	$SL(3) \times SL(2)$	(3,2)	(3,1)
6	4	$[4]_p + [6]_{M2}$	SL(5)	10	5
5	5	$[5]_p + [10]_{M2} + [1]_{M5}$	SO(5,5)	16	10
4	6	$[6]_p + [15]_{M2} + [6]_{M5}$	E_6	27	27

 $n^{ij}m_i = 0, \qquad \# = k$

equivalent to section constraints in ExFT (analogous truncation of modes)

[Bossard, Kleinschmidt (2015)]

Emergence in 9D

Example 9D: Evaluate

as before plus
$$\int_{0}^{\infty} \frac{dx}{x^{1-\lambda}} e^{-\frac{b}{x}-cx} = 2 \left| \frac{b}{c} \right|^{\frac{\lambda}{2}} K_{\lambda} \left(\frac{b}{c} \right)^{\frac{\lambda}{2}} = \frac{b}{c} \left| \frac{b}{c} \right|^{\frac{\lambda}{2}} = \frac{b}{c} \left| \frac{b}{c} \right|^{\frac$$

yields $a_{9} \simeq \frac{2\zeta(3)}{g_{s}^{2}} + \frac{2\pi^{2}}{3} \left(1 + \frac{1}{\rho_{1}^{2}}\right) + \frac{2\pi^{2}}{3} \left(1 + \frac{1}{\rho_{1}^{2}}\right) + \frac{1}{\rho_{1}^{2}} + \frac{1}{\rho_{1}$ ED0 brane instanstons missing (reminiscent to 10D string) tree level

$$a_{9,\mathrm{M}}^{(1)} \simeq \frac{2\pi}{r_{11}r_1} \sum_{\substack{(m,n) \neq (0,0)}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \left(\frac{m^2}{r_{11}^2} + \frac{n^2}{r_1^2}\right)}$$

invoking Poisson resummation of n and the same regularization procedure

$$2\sqrt{|bc|}$$

$$-\frac{8\pi}{g_s}\sum_{\substack{m\neq 0 \ n\geq 1}}\sum_{n\geq 1}\left|\frac{m}{n}\right|K_1\left(2\pi|m|n\frac{\rho_1}{g_s}\right)$$

Emergence in dim=d

For 8D, new sector with D2-branes and mass

$$a_{8,M;M2}^{(1)} \simeq \underbrace{\frac{2\pi^2}{3}}_{n_1,n_2 \ge 1} + \frac{8\pi}{r_{11}t_{12}} \sum_{n_1,n_2 \ge 1} \frac{1}{n_2} e^{-2\pi n_1 n_2 r_{11}t_{12}} = -\frac{2\pi}{T} \log\left(\left|\eta(iT)\right|^4\right)$$

The full amplitude from I-loop Schwinger-integral!

- Full result for 7D, partial results $d \le 6$
- Transverse M2,M5 yield all instantons
- Conjecture: $a_{d,M}^{(1)}(\text{transv}) = a_{d,M}^{(1)}(\text{transv} + \text{longi})$
 - pert. $r_{11} \gg 1$ desert: $r_{11} = O(1)$

proof for $d \ge 4$ [Bossard, Kleinschmidt (2015)] [Bossard, Pioline (2016)]

$$M^2 = n^2 t_{12}^2 + \frac{m^2}{r_{11}^2}$$

Particle states	Instantons
$(D0, \mathrm{KK}_{(k)})$	$ED0_{(k)}$
$(D2_{(ij)}, \mathrm{KK}_{(k)})$	$ED2_{(ijk)}$
$(NS5_{(ijklm)}, KK_{(n)})$	$ENS5_{(ijklmn)}$
$(D2_{(ij)}, D0)$	$EF1_{(ij)}$
$(NS5_{(ijklm)}, D0)$	$ED4_{(ijklm)}$
$(NS5_{(ijklm)}, D2_{lm})$	$\overline{ED2_{(ijk)}}$

M-theoretic Emergence Proposal

In the equi-dimensional infinite distance M-theory limit $M_*R_{11} \gg 1$, a perturbative QG theory arises whose low energy effective description emerges via quantum effects by integrating out the full infinite towers of states with a mass scale parametrically not larger than the IID Planck scale. These are transverse M2-, M5-branes carrying momentum along the eleventh direction (D0-branes) and along any potentially present compact direction

pert. string theory

$$g_{s} \ll 1 \qquad g_{s} = a_{d} = \frac{c_{0}}{g_{s}^{2}} + \underbrace{\left(c_{1} + \mathcal{O}\left(e^{-S_{ws}}\right)\right)}_{1-\text{loop}} + \mathcal{O}\left(e^{-S_{st}}\right) = a_{d,M}^{(1)}(\text{tr})$$

Outlook

- More evidence from 1/2 BPS amplitudes in theories with lower susy
- Non BPS amplitudes like 10D kinetic terms
 - \triangle Requires quantization of M-theory, i.e. include non-BPS states
 - \triangle Space-time itself has to emerge
 - \triangle **Problem:** susy implies vanishing Schwinger integrals
 - Compute appropriate couplings, like 1-loop(!) graviton scattering \triangle in BFSS matrix model

 $V = -\frac{15 v^4}{16 r^7} + \dots, \qquad \text{(velocity } v \text{ breaks susy)}$

congrats for L'Oréal-UNESCO International Award

"For Women in Science" !

and thanks for your friendship

Looking forward to 2031

17