Some of my memories with Anamaría

 and
Classical dS from Supergravity and Strings

Fernando Quevedo
University of Cambridge/CERN

AnLy LAPP Annecy
April 2024

Joint Publications Highlights

```
24 results | \Xi cite all
Citation Summary &u

\section*{Citation Summary}
\(\checkmark\) Exclude self-citations (?)

Citeable (?
23

Citations \(\quad \mathbf{2 , 2 9 5}\)
2,295
h-index ? 37 17

Citations/paper (avg)
99.8
104.3

C.P. Burgess *

Institute for Advanced Study
Princeton, NJ 08540, USA
A. Font \(\dagger\)

Center for Particle Theory
University of Texas at Austin
Austin, TX 78712, USA
and
F. Quevedo \(\ddagger\)

Theory Group
University of Texas at Austin
Austin, TX 78712, USA

\section*{ABSTRACT}

We construct the low energy \(D=4, \dot{N}^{4}=1\) supergravity that arises in superstring theories for an arbitrary number of generations. The couplings of all massless modes that carry low-energy gauge quantum numbers are calculated by truncating the heavy Kaluza-Klein modes of the ten-dimensional effective field theory. The resulting action is compared to the most general effective action compatible with the symmetries of the underlying ten-dimensional field (and string) theories. This comparison indicates which features of the truncation correctly approximate the correct low-energy action.

\title{
Degenerate orbifolds
}
A. Font, L.E. Ibáñez \({ }^{1}\), H.-P. Nilles \({ }^{2}\), F. Quevedo
```

Show more \vee

+ Add to Mendeley <o Share %% Cite

```

\begin{abstract}
We present evidence for the existence of new four-dimensional string theories, obtained from a smooth variation of background fields in the twisted sectors of symmetric and asymmetric orbifolds. Flat directions only in the untwisted sector are shown to reproduce previously constructed models in terms of Wilson lines, exhibiting a Three-HiggsRule (THR). The new models provide a mechanism to lower the rank of the gauge group, lead to more flexible Yukawa couplings and give a strict separation of hidden and observable sectors, which are usually mixed in ( 2,0 )-models. Even though Fayet-Iliopoulos terms are induced in some of the models due to the presence of anomalous \(U(1)\) 's supersymmetry remains, in general, unbroken. Particular examples of the new models correspond to "blown up" versions of ( 2,0 )-orbifolds.
\end{abstract}

\title{
Yukawa couplings in degenerate orbifolds: towards a realistic \(S U(3) \times S U(2) \times U(1)\) superstring
}

\author{
A. Font, L.E. Ibáñez \({ }^{1}\), H.-P. Nilles \({ }^{2}{ }^{3}\), F. Quevedo
}

Show more \(\checkmark\)
+ Add to Mendeley \(\alpha_{0}^{\circ}\) Share 5 Cite
https://doi.org/10.1016/0370-2693(88)90357-7 ォ
Get rights and content \(\pi\)

\begin{abstract}
We discuss the construction of \(\operatorname{SU}(3) \times \operatorname{SU}(2) \times U(1)\) three-generation superstrings through the "degenerate orbifolds" recently described by the authors. These are lower rank models continuosly connected to rank-sixteen or twenty-two models through flat directions in the potential of the scalar fields. The structure of Yukawa couplings is carefully investigated and special attention is paid to nonrenormalizable interactions in determining the flat directions and the induced cubic couplings that are forbidden in the original model. The importance of twisted oscillator modes and moduli to this effect is explained. One specific example is presented in detail and its phenomenological consequences such as quark and lepton masses, proton stability and neutrino masses are discussed. In this example there are built-in "stringy" symmetries that protect Higgs
\end{abstract}


\title{
\(\mathrm{Z}_{\mathrm{N}} \times \mathrm{Z}_{\mathrm{M}}\) orbifolds and discrete torsion
}
A. Font, L.E. Ibáñez, F. Quevedo

Show more V
+ Add to Mendeley \(\alpha_{0}^{\circ}\) Share F Cite
https://doi.org/10.1016/0370-2693(89)90864-2 \(\nearrow\)
Get rights and content \(\pi\)

\section*{Abstract}

We extend previous work on \(Z_{N}\)-orbifolds to the general \(Z_{N} \times Z_{M}\) abelian case for the \((2,2)\) and \((0,2)\) models. We classify the corresponding \((2,2)\) compactifications and show that a number of models obtined by tensoring minimal \(N=2\) superconformal theories can be constructed as \(Z_{N} \times Z_{M}\)-orbifolds. Furthermore, \(Z_{N} \times Z_{M}\)-orbifolds allow the addition of discrete torsion which leads to new \((2,2)\) compactifications not considered previously. Some of the latter have negative Euler characteristic and Betti numbers equal to those of some complete intersection Calabi-Yau (CICY) manifolds. This suggests the existence of a previously overlooked connection between CICY models and orbifolds.

\title{
Supersymmetry breaking from duality invariant gaugino condensation
}

\author{
A. Font \({ }^{\text {a }}\), L.E. Ibáñez \({ }^{\text {b }}\), D. Lüst \(^{\text {b }}\), E. Quevedo \({ }^{\text {c }}\) \\ Show more \\ + Add to Mendeley \(\propto_{0}^{0}\) Share gy Cite
}
https://doi.org/10.1016/0370-2693(90)90665-S 才
Get rights and content 7

\begin{abstract}
It is known that the formation of gaugino condensates can be a source of supersymmetry breaking in string theory. We study the constraints imposed by target space modular invariance on the formation of such condensates. We find that the dependence of the vacuum energy on the moduli of the internal variety is such that the theory is forced to be compactified. The radius of compactification is of the order of the string scale and in the process target space duality is spontaneously broken.
\end{abstract}

Strong-weak coupling duality and non-perturbative effects in string theory
A. Font \({ }^{\text {a }}\), L.E. Ibáñez \({ }^{\text {b }}\), D. Lüst \({ }^{\text {b }}\) and F. Quevedo \({ }^{\text {c }}\)
\({ }^{\text {a }}\) Departamento de Fisica, Universita Central de Venezuela, Aptdo 20513, Caracas 1020-A, Venezuela
\({ }^{\text {b }}\) CERN, CH-1211 Geneva 23, Switzerland
c Theoretical Division LANL, Los Alamos, NM 87545, USA
Recerved 13 July 1990

We conjecture the existence of a new discrete symmetry of the modular type relating weak and strong coupling in string theory. The existence of this symmetry would strongly constrain the non-perturbative behaviour in string partition functions and introduces the notion of a maximal (minımal) coupling constant. An effective lagrangian analysis suggests that the dilaton vacuum expectation value is dynamically fixed to be of order one In supersymmetric heterotic strings, supersymmetry (as well as this modular symmetry itself) is generically spontaneously broken
 with a duality transformation for the dilaton field (Type II A strings, however, are not selfdual bu "dual" to type II B strings [22,23] ). Of course, thert is at the moment no idea about how a ten-dimen sional heterotic string could be obtained from an! eleven-dimensional extended structure, but that i: certainly an open possibility. If this was the case duality imboth \(T\) and \(S\) would be expected.
The \(S\)-duality ve are discussing includes an invar rance ded the ransformation of the string couplin! constant \(g \rightarrow 1 / g\). Montonen and Olive [24] conjec tured some time ago that this type of duality invarı ance does in fact occur in field theory models of thi Georgi-Glashow type (and for any other gauge groui to survive. In this way the effective field theory should with adiount scalars). Thev argued that both the spec he invariant under a full modular aroun SI ( 0 I)


\title{
PERIODS FOR CALABI-YAU AND LANDAU-GINZBURG VACUA
}

\author{
Per Berglund \({ }^{1,2 \sharp}\), Philip Candelas \({ }^{2,3}\), Xenia de la Ossa \({ }^{4 \sharp}\), Anamaría Fon Tristan Hübsch \({ }^{6 b}\), Dubravka Jančić \({ }^{2}\), Fernando Quevedo \({ }^{4}\) \\ \begin{tabular}{ccc}
\({ }^{1}\) Institute for Theoretical Physics & \({ }^{2}\) Theory Group & \({ }^{3}\) Theory Division \\
University of California & Department of Physics & CERN \\
Santa Barbara & University of Texas & CH 1211 Geneva 23 \\
CA 93106, USA & Austin, TX 78712, USA & Switzerland \\
& & \\
\({ }^{4}\) Institut de Physique & \({ }^{5}\) Departamento de Física & \({ }^{6}\) Department of Physics \\
Université de Neuchâtel & Universidad Central de Venezuela & Howard University \\
CH-2000 Neuchâtel & A.P. 20513, Caracas 1020-A & Washington \\
Switzerland & Venezuela & DC 20059, USA
\end{tabular}
}

\begin{abstract}
The complete structure of the moduli space of Calabi-Yau manifolds and the associated Landau-Ginzburg theories, and hence also of the corresponding lowenergy effective theory that results from \((2,2)\) superstring compactification, may be determined in terms of certain holomorphic functions called periods. These periods are shown to be readily calculable for a great many such models. We illustrate this by computing the periods explicitly for a number of classes of Calabi-Yau manifolds. We also point out that it is possible to read off from the periods certain important information relating to the mirror manifolds.
\end{abstract}
```

CERN-TH. 6865/93

```

2 August 1993

\title{
Chains of \(\mathrm{N}=2, \mathrm{D}=4\) heterotic/type II duals
}

\author{
G. Aldazabal \({ }^{* 1}\), A. Font \({ }^{\dagger 2}\), L.E. Ibáñez \({ }^{1,3}\) and F. Quevedo \({ }^{4}\) \\ \({ }^{1}\) Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. \\ \({ }^{2}\) Theory Group, Department of Physics, The University of Texas, Austin, TX 78712, USA. \\ \({ }^{3}\) Department of Physics and Astronomy, \\ Rutgers University, Piscataway, NJ 08855-0849, USA. \\ \({ }^{4}\) Theory Division, CERN, 1211 Geneva 23, Switzerland.
}

\begin{abstract}
We report on a search for \(N=2\) heterotic strings that are dual candidates of type II compactifications on Calabi-Yau threefolds described as K3 fibrations. We find many new heterotic duals by using standard orbifold techniques. The associated type II compactifications fall into chains in which the proposed duals are heterotic compactifications related one another by a sequential Higgs mechanism. This breaking in the heterotic side typically involves the sequence \(S U(4) \rightarrow S U(3) \rightarrow S U(2) \rightarrow 0\), while in the type II side the weights of the complex hypersurfaces and the structure of the \(K 3\) quotient singularities also follow specific patterns. Some qualitative features of the relationship between each model and its dual can be understood by fiber-wise application of string-string duality.
\end{abstract}

\title{
A Comment on Continuous Spin Representations of the Poincaré Group and Perturbative String Theory
}

\author{
Anamaría Font, \({ }^{1}\) Fernando Quevedo \({ }^{2,3}\) and Stefan Theisen \({ }^{4}\) \\ \({ }^{1}\) Departamento de Física, Centro de Física Teórica y Computacional \\ Facultad de Ciencias, Universidad Central de Venezuela \\ A.P. 20513, Caracas1020-A, Venezuela \\ \({ }^{2}\) Abdus Salam ICTP, Strada Costiera 11, Trieste 34014, Italy \\ \({ }^{3}\) DAMTP/CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK. \\ \({ }^{4}\) Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm, Germany
}

Abstract: We make a simple observation that the massless continuous spin representations of the Poincaré group are not present in perturbative string theory constructions. This represents one of the very few model-independent low-energy consequences of these models.
afont@fisica.ciens.ucv.ve; F.Quevedo@damtp.cam.ac.uk; stefan.theisen@aei.mpg.de

\section*{4D dS from 6D Supergravity and Strings}

\section*{Two Related Questions}
- Classical de Sitter from supergravity and string theory.
- Extensions to the landscape ( \(\Lambda \mathrm{CDM}\) ) with light scalars.

Both: Multifield set-ups and accelerated expansion

\section*{Obstacles for dS from UV Theory}
- Classical No-Go Theorems
- Dine Seiberg problem


\section*{Different approaches}
- String flux compactification EFTs (e.g. KKLT, LVS)

Review: L. McCallister and FQ, \(\underline{2310.20559}\)
- Classical solutions? (evading no-go theorems)

\section*{Classical de Sitter solutions}

\section*{Classical no-go theorem}

Gibbons, De Wit, Maldacena-Nunez...
- The gravity action does not contain higher curvature corrections.
- The potential is non-positive, \(V \leq 0\).
- The theory contains massless fields with positive kinetic terms.
- The \(d\) dimensional effective Newton's constant is finite.
\[
\begin{gathered}
d s_{D}^{2}=\Omega^{2}(y)\left(d x_{d}^{2}+\hat{g}_{m n} d y^{n} d y^{m}\right) \\
\frac{1}{(D-2) \Omega^{D-2}} \nabla^{2} \Omega^{D-2}=\quad R+\Omega^{2}\left(-T_{\mu}^{\mu}+\frac{d}{D-2} T_{L}^{L}\right) \geq 0 \quad \text { For de Sitter } \quad R \geq 0
\end{gathered}
\]

But integrating: \(\quad \int d^{(D-d)} y \sqrt{\hat{g}}\left(\hat{\nabla} \Omega^{(D-2)}\right)^{2} \leq 0 \quad\) So no de Sitter

\section*{Ways out}
- Quantum effects,...
- Relax assumptions (e.g. V \(\leq \mathbf{0}\) )

\section*{De Sitter from 6D (1,0) Gauged Supergravity}

\section*{Matter content}
- Gravity multiplet. Metric \(g_{M N}\) a self-dual antisymmetric tensor \(B_{M N}^{+}\), one left-handed gravitino \(\Psi_{M}^{\alpha}\).
- Tensor multiplet. One anti self-dual antisymmetric tensor \(B_{M N}^{-}\), one scalar \(\phi\), one right-handed fermion \(\psi\) (tensorino).
- Vector multiplet. One vector \(A_{M}\) and one fermion \(\lambda\) (gaugino).
- Hypermultiplet: Two complex scalars \(q^{1}, q^{2}\) and one right-handed Weyl fermion \(\xi\) (hyperino).

In general \(n_{T}\) tensor, \(n_{V}\) vector and \(n_{H}\) hyper multiplets

\section*{Scalar fields}
- From tensor multiplets \(n_{T}\) real scalars
\[
\begin{gathered}
\operatorname{SO}\left(1, n_{T}\right) / S O\left(n_{T}\right) \\
j^{\alpha} \quad \alpha=1, \ldots n_{T}+1 \quad \Omega_{\alpha \beta} j^{\alpha} j^{\beta}=1 \quad g_{\alpha \beta}=2 j_{\alpha} j_{\beta}-\Omega_{\alpha \beta} \\
\mathbf{n}_{T}=\mathbf{1} \quad j^{0}=\sinh \varphi, \quad j^{1}=\cosh \varphi
\end{gathered}
\]
- From hypermultiplets
\[
q^{U}\left(U=1, \ldots, 4 n_{H}\right) \quad \text { Quaternionic manifold }
\]

\section*{6D Supergravity (Salam-Sezgin)}
\[
\begin{aligned}
& S=-\int \mathrm{d}^{D} x \sqrt{-g}\left[\frac{1}{2 \kappa^{2}} g^{M N}\left(R_{M N}+\partial_{M} \varphi \partial_{N} \varphi\right)+\frac{1}{2} \sum_{r} \frac{1}{\left(p_{r}+1\right)!} e^{-p_{r} \varphi} F_{r}^{2}+\mathcal{A} e^{\varphi}\right], \\
& \mathbf{D}=\mathbf{6}, \mathbf{r}=\mathbf{2}, \mathbf{A}>\mathbf{0}
\end{aligned}
\]
- Positive potential (evades Maldacena-Nunez theorem)
- Chiral
- No maximally symmetric solution in 6D (Dine-Seiberg problem in 6D?)
- Maximally symmetric in 4D
- Maximally symmetric smooth solution: \(S^{2} x\) Minkowski, \(N=1\) SUSY.

\section*{General 4D Solutions}

Gibbons et al 2004
Burgess et al 2005
\[
\mathcal{L}_{6}=R * \mathbf{1}-* d \phi \wedge d \phi-\frac{1}{2} e^{-\varphi} * F_{(2)} \wedge F_{(2)}-\frac{1}{2} e^{-2 \varphi} * H_{(3)} \wedge H_{(3)}-8 g^{2} e^{\varphi} * \mathbf{1}
\]

Runaway potential! 6D Dine-Seiberg problem?
\[
\begin{aligned}
& \mathrm{d} s^{2}=\hat{g}_{M N} \mathrm{~d} x^{M} \mathrm{~d} x^{N}=W^{2}(y) g_{\mu \nu}(x) \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\tilde{g}_{i j}(y) \mathrm{d} y^{i} \mathrm{~d} y^{j} \\
& \hat{g}_{\mu \nu}=W^{2} g_{\mu \nu}, \quad \hat{R}_{\mu \nu}=R_{\mu \nu}+\frac{1}{n}\left(W^{2-n} \tilde{\nabla}^{2} W^{n}\right) g_{\mu \nu} \quad \text { and } \quad \hat{\square} \varphi=W^{-n} \tilde{\nabla}_{i}\left(W^{n} \tilde{g}^{i j} \partial_{j} \varphi\right), \\
& \frac{1}{n} \int_{M} \mathrm{~d}^{d} y \sqrt{\tilde{g}} W^{n-2} R=-\sum_{\alpha} \int_{\Sigma_{\alpha}} \mathrm{d}^{d-1} y \sqrt{\tilde{g}} N_{i}\left[W^{n} \tilde{g}^{i j} \partial_{j}\left(\ln W+\frac{2 \varphi}{D-2}\right)\right]
\end{aligned}
\]

No singularities/boundaries imply \(\mathrm{R}=\mathrm{H}^{2}=0\) e.g. \(\mathbf{S}^{\mathbf{2}} \mathbf{X} \mathbf{R}^{1,3}\)

\section*{General Solutions}

Asymptotic near brane solutions ( \(n=4, d=2\) ):
\[
\begin{aligned}
& \varphi \approx q \ln r \quad \text { and } \quad \mathrm{d} s^{2} \approx r^{2 w} g_{\mu \nu}(x) \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathrm{d} r^{2}+r^{2 \alpha} f_{a b}(z) \mathrm{d} z^{a} \mathrm{~d} z^{b}, \\
& n w+\alpha(d-1)=1 . \quad n w^{2}+\alpha^{2}(d-1)+q^{2}=1 . \quad \begin{array}{l}
\text { Kasner constraints } \\
\text { (BKL: Belinsky et al) }
\end{array} \\
& -\frac{1}{\sqrt{n}} \leq w \leq \frac{1}{\sqrt{n}}, \quad-\frac{1}{\sqrt{d-1}} \leq \alpha \leq \frac{1}{\sqrt{d-1}} \quad \text { and } \quad-1 \leq q \leq 1 .
\end{aligned}
\]

\section*{Flat Solutions}

\section*{Gibbons et al.}
\[
\begin{aligned}
\mathrm{d} s^{2} & =\hat{g}_{M N} \mathrm{~d} x^{M} \mathrm{~d} x^{N}=W^{2} q_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+a^{2} \mathrm{~d} \theta^{2}+a^{2} W^{8} \mathrm{~d} \eta^{2} \\
e^{\varphi} & =W^{-2} e^{-\lambda_{3} \eta} \\
W^{4} & =\left(\frac{Q \lambda_{2}}{4 g \lambda_{1}}\right) \frac{\cosh \left[\lambda_{1}\left(\eta-\eta_{1}\right)\right]}{\cosh \left[\lambda_{2}\left(\eta-\eta_{2}\right)\right]} \\
a^{-4} & =\left(\frac{g Q^{3}}{\lambda_{1}^{3} \lambda_{2}}\right) e^{-2 \lambda_{3} \eta} \cosh ^{3}\left[\lambda_{1}\left(\eta-\eta_{1}\right)\right] \cosh \left[\lambda_{2}\left(\eta-\eta_{2}\right)\right] \\
F & =\left(\frac{Q a^{2}}{W^{2}}\right) e^{-\lambda_{3} \eta} \mathrm{~d} \eta \wedge \mathrm{~d} \theta
\end{aligned}
\]

\section*{Numerical de Sitter solution}
\[
\begin{aligned}
& X^{\prime \prime}+e^{2 X}=0 \\
& Y^{\prime \prime}+e^{2 Y}-\epsilon e^{2 Y+Z}=0 \\
& Z^{\prime \prime}+\frac{\epsilon}{2} e^{2 Y+Z}=0
\end{aligned}
\]
\[
e^{-X}=\lambda_{1}^{-1} \cosh \left[\lambda_{1}\left(\eta-\eta_{1}\right)\right] .
\]
\(X, Y, Z\) linear combinations
of \(\log \mathrm{W}, \log \mathrm{a}, \varphi\)
\[
\epsilon=H^{2}
\]


\section*{6D \((1,0)\) Supergravity From String Theory?}
- M-theory/IIA on hyperbolic manifold \(\mathrm{H}^{(2,2)}\)
\[
x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}=\rho^{2}
\]

Consistent truncations give Salam-Sezgin theory
Cvetic, Gibbons, Pope hep-th/0308026
- F-theory on elliptic Calabi-Yau

Grimm, Pugh 1302.3223

\section*{10D String on \(\mathbf{H}^{(2,2)} \mathbf{x} \mathbf{S}^{\mathbf{1}}\) \\ \((\rho, \alpha, \beta)\)}

Any solution to the 6D equations from:
\(\mathcal{L}_{6}=R * \mathbf{1}-* d \phi \wedge d \phi-\frac{1}{2} e^{-\varphi} * F_{(2)} \wedge F_{(2)}-\frac{1}{2} e^{-2 \varphi} * H_{(3)} \wedge H_{(3)}-8 g^{2} e^{\varphi} * \mathbf{1}\)
Can be uplifted to solutions of 10D (string) equations:
\[
\mathcal{L}_{10}=\hat{R} \hat{*} \mathbf{1}-\frac{1}{2} \hat{\star} d \hat{\phi} \wedge d \hat{\phi}-\frac{1}{2} e^{-\hat{\phi}} \hat{\star} \hat{F}_{(3)} \wedge \hat{F}_{(3)}
\]

From:
\[
\begin{aligned}
& d \hat{s}_{10}^{2}=(\cosh 2 \rho)^{1 / 4}\left[e^{-\phi / 4} d s_{6}^{2}+e^{\phi / 4} d z^{2}+\frac{e^{\phi / 4}}{2 \bar{g}^{2}}\left(d \rho^{2}+\frac{\cosh ^{2} \rho}{\cosh 2 \rho}(D \alpha)^{2}+\frac{\sinh ^{2} \rho}{\cosh 2 \rho}(D \beta)^{2}\right)\right] \\
& \hat{F}_{(3)}=H_{(3)}+\frac{\sinh 2 \rho}{2 \bar{g}(\cosh 2 \rho)^{2}} d \rho \wedge D \alpha \wedge D \beta+\frac{1}{2 \bar{g} \cosh 2 \rho} F_{(2)} \wedge\left(\cosh ^{2} \rho D \alpha-\sinh ^{2} \rho D \beta\right)
\end{aligned}
\]
\[
e^{\hat{\phi}}=(\cosh 2 \rho)^{-1 / 2} e^{\varphi}
\]

Then the 6D de Sitter solutions can be uplifted to 10D !!!

\section*{6D Supergravity from F-theory}

Grimm et al 2013

11D M-theory to 5D on elliptically fibred \(\mathrm{CY}_{3}\) and uplift to \(\mathrm{D}=6\)
\(\mathrm{h}_{12}+1\) hypermultiplets, \(\mathrm{h}_{11}-1\) tensor multiplets
\[
\begin{aligned}
S^{(6)} & =\int_{\mathcal{M}_{6}}\left[\frac{1}{2} \hat{R} \hat{*} 1-\frac{1}{4} \hat{g}_{\alpha \beta} \hat{G}^{\alpha} \wedge \hat{*} \hat{G}^{\beta}-\frac{1}{2} \hat{g}_{\alpha \beta} d \hat{j}^{\alpha} \wedge \hat{*} d \hat{j}^{\beta}-\frac{1}{2} \hat{h}_{U V} \hat{D} \hat{q}^{U} \wedge \hat{*} \hat{D} \hat{q}^{V}\right. \\
& \left.-2 \Omega_{\alpha \beta} \hat{j}^{\alpha} b^{\beta} C_{I J} \hat{F}^{I} \wedge \hat{*} \hat{F}^{J}-\Omega_{\alpha \beta} b^{\alpha} C_{I J} \hat{B}^{\beta} \wedge \hat{F}^{I} \wedge \hat{F}^{J}-\hat{V}^{(6)} \hat{*} \hat{1}\right]
\end{aligned}
\]

6D potential from D7 fluxes
\[
\hat{V}_{\text {flux }}^{(6)}=\frac{1}{32 \Omega_{\alpha \beta} \hat{j}^{\alpha} b^{\beta} \hat{\mathcal{V}}^{2}} C^{-1 i j} \theta_{i} \theta_{j}
\]

\section*{From 6D to 4D}
\[
d s^{2}=W(r)^{2} q_{\mu \nu} d x^{\mu} d x^{\nu}+a(r)^{2} d \theta^{2}+d r^{2}=e^{2 \Gamma(r)} q_{\mu \nu} d x^{\mu} d x^{\nu}+e^{2 \Omega(r)} d \theta^{2}+d r^{2}
\]

\section*{Field equations}
\[
\begin{aligned}
& \ddot{\varphi}+(\dot{\Omega}+4 \dot{\Gamma}) \dot{\varphi}=\tilde{V} e^{\varphi-2 \chi}-2 C \dot{\Delta}^{2} e^{-\varphi+2 \Delta-2 \Omega} \\
& \ddot{\chi}+(\dot{\Omega}+4 \dot{\Gamma}) \dot{\chi}=-\frac{k^{2}}{4} e^{-2 \chi+2 \Delta-2 \Omega}-4 \tilde{V} e^{\varphi-2 \chi} \\
& \ddot{\Gamma}+(\dot{\Omega}+4 \dot{\Gamma}) \dot{\Gamma}=3 H^{2} e^{-2 \Gamma}-\frac{1}{2}(\ddot{\varphi}+(\dot{\Omega}+4 \dot{\Gamma}) \dot{\varphi}) \\
& \ddot{\Omega}+(\dot{\Omega}+4 \dot{\Gamma}) \dot{\Omega}=-4 C \dot{\Delta}^{2} e^{-\varphi+2 \Delta-2 \Omega}-\frac{k^{2}}{8} e^{-2 \chi+2 \Delta-2 \Omega}-\frac{1}{2}(\ddot{\varphi}+(\dot{\Omega}+4 \dot{\Gamma}) \dot{\varphi}) \\
& \ddot{\Delta}+(\dot{\Omega}+4 \dot{\Gamma}) \dot{\Delta}=\dot{\Delta} \dot{\varphi}+2 \dot{\Omega} \dot{\Delta}-\dot{\Delta}^{2}+\frac{k^{2}}{32 C} e^{\varphi \varphi-2 x}
\end{aligned}
\]

\section*{Constraint}
\[
6 H^{2} e^{-2 \Gamma}-4 \dot{\Omega} \dot{\Gamma}-6 \dot{\Gamma}^{2}+\frac{1}{2} \dot{\varphi}^{2}+\frac{1}{4} \dot{\chi}^{2}+2 C e^{-\varphi-2 \Omega+2 \Delta} \dot{\Delta}^{2}-\tilde{V} e^{\varphi-2 \chi}-\frac{k^{2}}{16} e^{-2 \chi-2 \Omega+2 \Delta}=0
\]
\(\chi=\log\) volume, \(\Gamma=\log \mathrm{W}, \Omega=\log \mathrm{a}, \Delta=\log \mathrm{A}\)

\section*{Asymptotic solutions}

\section*{Near brane solutions:}
\[
\begin{aligned}
\varphi & =q \ln r+\ln u \\
\chi & =s \ln r+\ln v \\
\Gamma & =w \ln r+\ln x \\
\Omega & =\alpha \ln r+\ln y \\
\Delta & =\delta \ln r+\ln z
\end{aligned}
\]
\[
\begin{aligned}
\frac{1}{2} q^{2}+\frac{1}{4} s^{2}-6 w^{2}-4 \alpha w+\frac{6}{x^{2}} H^{2}+\frac{2 C z^{2}}{u y^{2}} \delta^{2}-\frac{u}{v^{2}} \tilde{V} & =0 \\
(\alpha+4 w-1) q-\frac{u}{v^{2}} \tilde{V}+\frac{2 C z^{2}}{u y^{2}} \delta^{2} & =0 \\
(\alpha+4 w-1) s+\frac{4 u}{v^{2}} \tilde{V} & =0
\end{aligned}
\]
\[
(\alpha+4 w-1) w-\frac{3}{x^{2}} H^{2}+(\alpha+4 w-1) \frac{q}{2}=0
\]
\[
(\alpha+4 w-1) \delta-(q+2 \alpha-\delta) \delta=0
\]
\[
2 \delta-q-2 \alpha=0
\]

Kasner constraints
\[
q-2 s+2=0
\]
(BKL: Belinsky et al)
\[
w-1=0
\]
or
\[
q=-\frac{2}{9}, \quad s=\frac{8}{9}, \quad \alpha=\frac{1}{9}, \quad w=1, \quad \delta=0, \quad \frac{u}{v^{2}} \tilde{V}=-\frac{56}{81}, \quad \frac{3 H^{2}}{x^{2}}=\frac{224}{81}
\]
\[
q=-\frac{2}{9}, \quad s=\frac{8}{9}, \quad \alpha=\frac{1}{9}, \quad w=\frac{1}{9}, \quad \delta=0, \quad \frac{u}{v^{2}} \tilde{V}=\frac{8}{81}
\]

\section*{Numerical Solutions \(\mathbf{H}^{\mathbf{2}}=\mathbf{0}\)}





\section*{Numerical AdS Solutions \(\mathbf{H}^{\mathbf{2}} \leq \mathbf{0}\)}





\section*{Numerical dS Solutions \(\mathbf{H}^{2} \geq \mathbf{0}\)}





Singularities?


PPEFT,...Stay tuned...

Personal Memories

\section*{In Austin 1984?}



\section*{ICTP Prize 1998}


\section*{Trieste 2019}





Thank you Anamaría and Congratulations!!!```

