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ABSTRACT

We construct the low energy D = 4, N=1 supergravity that arises
in superstring theories for an arbitrary number of generations. The cou-
plings of all massless modes that carry low-energy gauge quantum num-
bers are calculated by truncating the heavy Kaluza-Klein modes of the
ten-dimensional effective field theory. The resulting action is compared to
the most general effective action compatible with the symmetries of the
underlying ten-dimensional field (and string} theories. This comparison in-
dicates which features of the truncation correctly approximate the correct
low-energy action.
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Abstract

We present evidence for the existence of new four-dimensional string
theories, obtained from a smooth variation of background fields in the
twisted sectors of symmetric and asymmetric orbifolds. Flat directions
only in the untwisted sector are shown to reproduce previously
constructed models in terms of Wilson lines, exhibiting a Three-Higgs-
Rule (THR). The new models provide a mechanism to lower the rank of the
gauge group, lead to more flexible Yukawa couplings and give a strict
separation of hidden and observable sectors, which are usually mixed in
(2, 0)-models. Even though Fayet-Iliopoulos terms are induced in some of
the models due to the presence of anomalous U(1)'s supersymmetry
remains, in general, unbroken. Particular examples of the new models
correspond to “blown up” versions of (2, 0)-orbifolds.
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Abstract

We discuss the construction of SU(3)xSU(2)xU(1) three-generation
superstrings through the “degenerate orbifolds” recently described
by the authors. These are lower rank models continuosly connected
to rank-sixteen or twenty-two models through flat directions in the
potential of the scalar fields. The structure of Yukawa couplings is
carefully investigated and special attention is paid to
nonrenormalizable interactions in determining the flat directions
and the induced cubic couplings that are forbidden in the original
model. The importance of twisted oscillator modes and moduli to
this effect is explained. One specific example is presented in detail
and its phenomenological consequences such as quark and lepton
masses, proton stability and neutrino masses are discussed. In this
example there are built-in “strinev” svmmetries that protect Higgs
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Zn*Zy orbifolds and discrete torsion
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Abstract

We extend previous work on Zy-orbifolds to the general ZyxZy; abelian case for
the (2, 2) and (0, 2) models. We classify the corresponding (2, 2)
compactifications and show that a number of models obtined by tensoring
minimal N = 2 superconformal theories can be constructed as ZyxZy;-orbifolds.
Furthermore, ZyxZy-orbifolds allow the addition of discrete torsion which leads
to new (2, 2) compactifications not considered previously. Some of the latter
have negative Euler characteristic and Betti numbers equal to those of some
complete intersection Calabi-Yau (CICY) manifolds. This suggests the existence of
a previously overlooked connection between CICY models and orbifolds.
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Abstract

It is known that the formation of gaugino condensates can be a
source of supersymmetry breaking in string theory. We study the
constraints imposed by target space modular invariance on the
formation of such condensates. We find that the dependence of the
vacuum energy on the moduli of the internal variety is such that
the theory is forced to be compactified. The radius of
compactification is of the order of the string scale and in the
process target space duality is spontaneously broken.
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ABSTRACT

The complete structure of the moduli space of Calabi—Yau manifolds and the
associated Landau-Ginzburg theories, and hence also of the corresponding low-
energy effective theory that results from (2,2) superstring compactification, may
be determined in terms of certain holomorphic functions called periods. These
periods are shown to be readily calculable for a great many such models. We
illustrate this by computing the periods explicitly for a number of classes of
Calabi—Yau manifolds. We also point out that it is possible to read off from the
periods certain important information relating to the mirror manifolds.

CERN-TH. 6865/93
2 August 1993
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Abstract

We report on a search for N = 2 heterotic strings that are dual candi-
dates of type Il compactifications on Calabi-Yau threefolds described as K3
fibrations. We find many new heterotic duals by using standard orbifold tech-
niques. The associated type II compactifications fall into chains in which
the proposed duals are heterotic compactifications related one another by a
sequential Higgs mechanism. This breaking in the heterotic side typically
involves the sequence SU(4) — SU(3) — SU(2) — 0, while in the type II
side the weights of the complex hypersurfaces and the structure of the K3
quotient singularities also follow specific patterns. Some qualitative features
of the relationship between each model and its dual can be understood by

fiber-wise application of string-string duality.
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A Comment on Continuous Spin Representations of

the Poincaré Group and Perturbative String Theory
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ABSTRACT: We make a simple observation that the massless continuous spin representations of
the Poincaré group are not present in perturbative string theory constructions. This represents

one of the very few model-independent low-energy consequences of these models.
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4D dS from 6D Supergravity and Strings



Two Related Questions

* Classical de Sitter from supergravity and
string theory.

e Extensions to the landscape (ACDM) with
light scalars.

Both: Multifield set-ups and accelerated expansion



Obstacles for dS from UV Theory

* Classical No-Go Theorems

* Dine Seiberg problem




Different approaches

e String flux compactification EFTs (e.g. KKLT, LVS)

Review: L. McCallister and FQ, 2310.20559

* Classical solutions? (evading no-go theorems)


https://arxiv.org/abs/2310.20559

Classical de Sitter solutions




Classical no-go theorem

Gibbons, De Wit, Maldacena-Nunez...

e The gravity action does not contain higher curvature corrections.

e The potential is non-positive, V' < 0.

e The theory contains massless fields with positive kinetic terms.
e The d dimensional effective Newton’s constant is finite.
d32D — Qz(y) (dx?i + gmndy”dym>

1 _ d
(D — 2)QD—2VQQD = R AT D — QTLL) >0  FordeSitter R >0

. 2 .
But integrating: /d(D—d>y\/§ (VQ<D—2>) <0 Sono de Sitter



Ways out

 Quantum effects,...

* Relax assumptions (e.g. V< 0)



De Sitter from
6D (1,0) Gauged Supergravity



Matter content

Gravity multiplet. Metric gy n a self-dual antisymmetric tensor B]T/[ ~>» one left-handed gravitino

Tensor multiplet. One anti self-dual antisymmetric tensor B, ,,, one scalar ¢, one right-handed

fermion 1 (tensorino).
Vector multiplet. One vector Ays and one fermion A (gaugino).

Hypermultiplet: Two complex scalars ¢', ¢ and one right-handed Weyl fermion ¢ (hyperino) .

In general n; tensor, ny vector and n, hyper multiplets



Scalar fields

* From tensor multiplets n; real scalars

SO(l, TLT)/SO(TLT)

xe

J a=1,..np+1 Qaﬁjajﬂ =1 Jop = 2Jajs — Qaﬁ

n=1 7% =sinh g, j' = coshp

* From hypermultiplets

¢V (U=1,..,4ng) Quaternionic manifold



6D Supergravity (Salam-Sezgin)

S = —/de\/—_g [% gy (RMN +(9M908N90> + % Z

D=6, r=2, A>0

Positive potential (evades Maldacena-Nunez theorem)

Chiral

No maximally symmetric solution in 6D (Dine-Seiberg problem in 6D?)
Maximally symmetric in 4D

Maximally symmetric smooth solution: S?x Minkowski, N=1 SUSY.

@



General 4D Solutions

Gibbons et al 2004
Burgess et al 2005

1 1
Lﬁ —Rx1-— *d¢ N dgb — 56_(’0 * F(z) N F(Q) — 56_2(’0 * H(g) A H(g) — 8g2€g0 *1
Runaway potential! 6D Dine-Seiberg problem?

ds* = gy dz™ dz = W2(y) g, (2) dat da” + Gy (y) dy'dy’

A » 1 —no n = —n n~ij

G =W?gu, Ry :R,W+E(W2 VW™ gy and U = W "V, (W"G90;¢),
1 d ~n—2p d—1 = A7 | Tm i 9. 2¢

n/Mdy\/QW R= %:/ad y\/gNZleaj(an+D_2>1

No singularities/boundaries imply R=H?=0 e.g. S? X R13

(unigueness of Salam-Sezgin solution)



General Solutions

Burgess et al 2005

O x (A)dS, % 3-Branes

Asymptotic near brane solutions (n=4, d=2):

prqlnr and ds®~7r? g, (2) det da” + dr? + 72 f(2) d2%d2?

nw+a(d—1) =1, nw? +a*(d—1) +¢* = 1. Kasner constraints
(BKL: Belinsky et al)




Flat Solutions

Gibbons et al.

ds® = gy dzMda®™ = W?q,, da*dz” + a*df* + «*Widn?,

-
o
-

—2,—Aan
Qo ) cosh[A1(n — n1)]
4gA1 ) cosh[Aa(n —n2)]
3
ig\ ) 2237 cosh® (A1 (n — m)] cosh[Aa(n — n2))]
1
Qa” e A3
el dn A do.
7772 U



Numerical de Sitter solution

-2.5 -

X”—|—62X —0

-0.5

r0.5

e™X = A cosh[\ (n —m)].

Y// + 62Y . E62Y~|—Z —0

€
A 4+ _62Y+Z — 07

0.5 1

Kasner

r-0.5

L4 Kasner

c-1.5

Solutions stable under small perturbations!

X,Y,Z linear combinations
of log W, log a, ¢
€ = H?

Burgess et al 2005



6D (1,0) Supergravity From String Theory?

* M-theory/IIA on hyperbolic manifold H!22)

X12+X)2-X32-X42= P2

Consistent truncations give Salam-Sezgin theory

Cvetic, Gibbons, Pope hep-th/0308026

* F-theory on elliptic Calabi-Yau

Grimm, Pugh 1302.3223



https://arxiv.org/abs/1302.3223

10D String on H(2:2) x St

(0, a,B) (z)

Any solution to the 6D equations from:

1 1
£6 —Rx*x1— *d¢/\ dgb — 56_(’0 * F(z) N F(Q) — 56_2(’0 * H(g) A\ H(g) — 8926@ x 1

Can be uplifted to solutions of 10D (string) equations:
Lio= R¥1— 3 A dd— Je P8 Fy A Fiy

From:

e®/4 sh? sinh?
2 (cosh 20)/4 | o—0/4 6/4 24 SO Py 2 (Dp)?
ds7p = (cosh2p) dS +e?d + o 252 dp cosh 2p (Da)” + cosh 2p (DB)

~ sinh 2p 1 ) o
Fay=H =5 i NDaAD —Fo) A h® p Da — sinh” p D
(3) (3) T 25 (cosh 2p)2 P o B+ 25 cosh 2p (2) (COS p Do — sinh” p 5)

e? = (cosh2p) /2 ¢? Cvetic et al 2003

Then the 6D de Sitter solutions can be uplifted to 10D !!!



6D Supergravity from F-theory

Grimm et al 2013

11D M-theory to 5D on elliptically fibred CY; and uplift to D=6

hi, +1 hypermultiplets, hy;-1 tensor multiplets

1 ~ 1 N A ~ A 1 ~ A N 1. ~ A AN A
5(6) — / liR*l — $00pG* NAGP — S gapd)® Ndj” — Shuy DY AADGY
M

—ZQagjabBO[JFAJ/\%FJ—QagbaC]JBB/\FI/\FJ—V(G)ii ,

. . 1 g
6D potential from D7 fluxes vo — g,
32005052



From 6D to 4D

ds? = W (r)2quderdz” + a(r)?d6* + dr* = ' g, datdz” + >N do? + dr?

Field equations

b+ (Q + 4r) b = Ver—2X _ g0A2e—wt2A-20

+ (Q + 4F) Y = ———e 2XF2A720 _ yyep—2X
. . 1 ) .
F+(Q+4F>F H2 2T §(¢+(Q—I—4F)gb)
. ) 2 1 ) )
(4 (Q4+41) O = —ACAZemoF28720 /; 1 (A G
., 2
A (Q 4r) A = Ap+20A — A? ¢ 2x
+(Q+ o+ 355¢
Constraint
2
6H?e™?" — Q0 — 61 + %¢2 + %58 +2Ce” $TANTRAAT _ Ve#mAX %e—2x—29+m =0

x =logvolume, I' =logW, 2 =loga,4 =logA H2>0 de Sitter



or

Asymptotic solutions

Near brane solutions:
20 72

1 1 6 u ~
¢ = qlnr +Inu §q2+182—6w2—4aw+PH2+ o 52_v_2v
= slnr+Inwv u - 202
X (44w —1)g— =5V + —
I'=wlhr+Inx v uy

4u ~
Q=alnr+lny (oz-|—4w—1)s—|—v—2V

A =4d0lnr+1Inz (a+4w—1)w—%H2—|—(a+4w—1)g
a
(a+4w—1)0 — (g +2a—9)d =
20 — q — 2«
Kasner constraints g —25+2
(BKL: Belinsky et al) w— 1
2 8 1 U ~ 56  3H? 224
q——§, 8—5, Oé—§, w—l, 5—0, ﬁv__8_17 ?—g
2 8 1 1 U ~ 8
1=~y °Tyg Ty YTy o2 TRl

5 =



Numerical Solutions H2=
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Numerical dS Solutions H2> 0

)_

Singularities?
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Thank you Anamaria and Congratulations!!!



