The Power of Modular Symmetry

Hans Peter Nilles

Bethe Center für Theoretische Physik (bctp)

und Physikalisches Institut,

Universität Bonn

Outline

- Joint work with Anamaria
- 1988 paper on "Concept of Naturalness in string theory"
- Traditional (discrete) flavor symmetries
- Modular (discrete) flavor symmetries
- Eclectic Flavor Group
- Local Flavor Unification
- Specific properties of Modular Symmetry
- UV-IR relation: the hidden power of modular flavor symmetry

Influence of winding modes on low-energy effective theory (Work with Baur, Knapp-Perez, Liu, Ratz, Ramos-Sanchez, Trautner, Vaudrevange, 2019-23)

Work with Anamaria

We met at CERN after she had come to Annecy. Joint work:

- Degenerate orbifolds,
 A. Font, L.E. Ibanez, H.P. Nilles and F. Quevedo, Nucl.Phys.B 307 (1988) 109-129,
- Yukawa couplings in degenerate orbifolds: towards a realistic $SU(3) \times SU(2) \times U(1)$ superstring A. Font, L.E. Ibanez, H.P. Nilles and F. Quevedo, Phys.Lett.B 210 (1988) 101,
- On the Concept of Naturalness in String Theory, A. Font, L.E. Ibanez, H.P. Nilles and F. Quevedo, Physics. Lett. B213(1988)274

Earliest work on Yukawa couplings, scalar potential, flat directions, blow-up modes in orbifold compactifications

Stringy Miracles

Today I shall make a connection to the third paper

 On the Concept of Naturalness in String Theory, A. Font, L.E. Ibanez, H.P. Nilles and F. Quevedo, Physics. Lett. B210(1988)101

It elaborated on a conformal field theory selection rule in string theory (called "Rule 4")

- that could not be understood through the symmetries of the low-energy effective action of massless modes
- in particular the vanishing of couplings of fields localized at the same fixed point

This remained a puzzle till recently and found its explanation in modular symmetry and a UV-IR relation

Various Types of Symmetries

It is all a question of properties of (flavor) symmetries.

Typically we are dealing with traditional flavor symmetries:

- they are linearly realised
- need flavon fields for symmetry breakdown

Another type of symmetries are modular symmetries

- motivated by string theory dualities (Lauer, Mas, Nilles, 1989)
- applied recently to the question of flavor (Feruglio, 2017)
- modular symmetries are nonlinearly realised!
- Yukawa couplings are modular forms

Combine with traditional flavor symmetries to the so-called "eclectic flavor group" (Nilles, Ramos-Sanchez, Vaudrevange, 2020)

String Geometry of extra dimensions

Strings are extended objects and this reflects itself in special aspects of geometry (including winding modes). We have:

- normal symmetries of extra dimensions as observed in quantum field theory traditional flavor symmetries.
- String duality transformations lead to modular or symplectic flavor symmetries that cannot be realised linearly in low-energy effective theory.
- They still give restrictions on the low-energy action
- provide constraints from the UV-sector of the theory
 In the following we illustrate with a simple example
 - twisted 2D-torus with localized matter fields

Traditional Flavor Symmetries

In string theory discrete symmetries can arise form geometry and string selection rules.

As an example we consider the orbifold T_2/Z_3

Discrete symmetry $\Delta(54)$

- untwisted and twisted fields
- S₃ symmetry from interchange of fixed points
- $Z_3 \times Z_3$ symmetry from string theory selection rules

- $\Delta(54)$ as multiplicative closure of S_3 and $Z_3 \times Z_3$
- ▶ $\Delta(54)$ various singlet, doublet and triplet reps.
- e.g. flavor symmetry for three families of quarks (as triplets of $\Delta(54)$)

String dualities

Consider a particle on a circle with radius R

- discrete spectrum of momentum modes (KK-modes)
- density of spectrum is governed by m/R (*m* integer)
- heavy modes decouple for $R \to 0$

Now consider a string

- KK modes as before m/R
- Strings can wind around circle
- spectrum of winding modes governed by nR
- massless modes for $R \to 0$

T-duality

This interplay of momentum and winding modes is the origin of T-duality where one simultaneously interchanges

momentum \rightarrow winding
 $R \rightarrow 1/R$

This transformation maps a theory to its T-dual theory: it is a map not a symmetry

• self-dual point is $R^2 = 1 = \alpha' = 1/M_{\text{string}}^2$

If the string scale $M_{\rm string}$ is large, the low energy effective theory describes the momentum states and the winding states are heavy.

Does T-duality restrict the low-energy effective theory?

Torus compactification

Strings can wind around several cycles

Complex modulus M (in complex upper half plane)

The Power of Modular Symmetry, Font-Fest, Annecy, April 2024 - p. 11/26

Modular Transformations

Modular transformations (dualities) exchange windings and momenta and act nontrivially on the moduli of the torus. In D = 2 these transformations are connected to the group SL(2, Z) acting on Kähler and complex structure moduli. The group SL(2, Z) is generated by two elements

S, T: with
$$S^4 = (ST)^3 = 1$$
 and $S^2T = TS^2$.

A modulus \boldsymbol{M} transforms as

S:
$$M \to -\frac{1}{M}$$
 and T: $M \to M + 1$

Further transformations might include $M \rightarrow -\overline{M}$ and mirror symmetry between Kähler and complex structure moduli.

Fundamental Domain

Three fixed points at M = i, $\omega = \exp(2\pi i/3)$ and $i\infty$

Modular Forms

String dualities give important constraints on the action of the theory via the modular group SL(2, Z):

$$\gamma: M \to \frac{aM+b}{cM+d}$$

with ad - bc = 1 and integer a, b, c, d.

Matter fields transform as (i) representations $\rho(\gamma)$ and (ii) modular functions of weight k

$$\gamma: \phi \to (cM+d)^k \rho(\gamma) \phi$$
.

Yukawa-couplings transform as modular forms. $G = K + \log |W|^2$ must be invariant under T-duality

(Ferrara, Lüst, Theisen, 1989)

Towards Modular Flavor Symmetry

Modular flavor symmetry

On the T_2/Z_3 orbifold some of the moduli are frozen,

- I lattice vectors e_1 and e_2 have the same length
- angle is 120 degrees

Modular transformations form a subgroup of SL(2, Z)

- $\Gamma(3) = SL(2, 3Z)$ as a mod(3) subgroup of SL(2, Z)
- discrete modular flavor group $\Gamma'_3 = SL(2,Z)/\Gamma(3)$
- the discrete modular group is $\Gamma'_3 = T' \sim SL(2,3)$ (which acts nontrivially on twisted fields); the double cover of $\Gamma_3 \sim A_4$ (which acts only on the modulus).
- the CP transformation $M \rightarrow -\overline{M}$ completes the picture. Full discrete modular group is GL(2,3).

Eclectic Flavor Groups

We have thus two types of flavor groups

- the traditional flavor group that is universal in moduli space (here $\Delta(54)$)
- the modular flavor group that transforms the moduli nontrivially (here T')

The eclectic flavor group is defined as the multiplicative closure of these groups. Here we obtain for T_2/Z_3

• $\Omega(1) = SG[648, 533]$ from $\Delta(54)$ and T' = SL(2, 3)

• SG[1296, 2891] from $\Delta(54)$ and GL(2, 3) including CP

The eclectic group is the largest possible flavor group for the given system, but it is not necessarily linearly realized.

Local Flavor Unification

Moduli space of $\Gamma(3)$

Fixed lines and points

Moduli space of flavour groups

Im M

"Local Flavor Unification"

Comparison

Traditional and modular flavor symmetries are fundamentally different

- Inear versus non-linear realization
- traditional is subgroup of $SU(3)_{\text{flavor}}$
- modular symmetry is not a subgroup of $SU(3)_{\text{flavor}}$
- Yukawa couplings are modular forms (that depend nontrivially on the modulus)
- Iocal enhancement at specific locations

This peculiar behaviour of modular flavor symmetry allows a description of the influence of winding modes on the low energy effective theory (thus gives a UV-IR connection)

Back to our 1988 Paper

String dualities connect winding to momentum modes. Winding modes are heavy. Could there be nonetheless an effect at low energies?

- "Stringy Miracles" and naturalness in string theory need introduction of "Rule 4" (Font, Ibanez, Nilles, Quevedo, 1988)
- selection rules of CFT lead to vanishing of certain couplings that could not be understood through the symmetries of the low energy effective theory
- extended later including "Rule 5" and "Rule 6" (Kobayashi, Parameswaran, Ramos-Sanchez, Zavala, 2011)

 these "Stringy Miracles" remained a puzzle till recently
 Calculations with eclectic flavor symmetries explain "Rule 4" (Nilles, Ramos-Sanchez, Vaudrevange, 2020)

"Stringy Miracles"

Yukawa couplings of twisted fields are modular forms that depend nontrivially on the modulus M.

Consider, for example, the twisted fields of the T_2/Z_3 orbifold, located at the fixed points *X*, *Y* and *Z*.

Ususally the allowed couplings are:

 $f(M)(X^3 + Y^3 + Z^3) + g(M)XYZ$

with both non-vanishing modular forms f(M) and g(M).

Stringy miracles are cases where f(M) is absent.

Can we identify the reason for this peculiar situation?

Modular Flavor

What is the reason for this?

- It is the presence of the discrete modular flavor symmetry and the modular weights.
- modular group SL(2, Z) with $S^4 = 1$ and $S^2 \neq 1$
- PSL(2, Z) with $S^2 = 1$ acts on moduli
- additional Z₂ corresponds to the double cover of finite modular group (originates from CFT selection rules)
- it is also part of the traditional flavor group. It looks "traditional" but it is intrinsically "modular"
- Modular weights of matter fields and Yukawa couplings play a crucial role

(Work in progress)

Example T_2/Z_3

Superpotential is restricted by the eclectic flavor group

- $SG[648, 533] = \Omega(1)$ from $\Delta(54)$ and T'
- a Z_2 symmetry is common to $\Delta(54)$ and T'
- responsible for double cover T' of A_4
- extends $\Delta(27)$ to $\Delta(54)$ (connected to $S^2 = -1$)
- $\Delta(54)$ contains nontrivial singlet 1' as well as two 3-dimensional representations 3_1 and 3_2
- vev of 1' breaks $\Delta(54)$ to $\Delta(27)$ with one triplet rep.
- \checkmark twisted oscillator modes transform as 1' rep. of $\Delta(54)$

This Z_2 as part of $\Delta(54)$ together with the action of T' completes the explanation of the "Stringy Miracles".

Summary

String theory provides the necessary ingredients for flavor:

- traditional flavor group
- discrete modular flavor group
- a natural candidate for CP
- the concept of local flavour unification

The eclectic flavor group provides the basis:

- it includes a non-universality of flavor symmetry in moduli space
- Ieads to a non-trivial UV-IR relation: the "hidden power" of modular flavor symmetry