

Back to Heterotic:

On asymmetric orbifold models and rank reduction

Anly workshop

April 10-11, Annecy, France

G. Aldazabal, CAB-IB, Bariloche, Argentina

Based on collaborations with: E. Andrés, A. Font, K. Narain, I. Zadeh and B. Acharya

Motivation and aims:

- Asymmetric orbifolds, providing a world-sheet description of non-geometric compactifications, not fully explored. New models.
- Asymmetric orbifolds, appear to be required to study certain duality conjectures. i.e. M-theory with K3 involutions and heterotic string compactifications in $\mathrm{D}=7$.
- Asymmetric orbifolds, provide an adequate framework to built up heterotic string models with reduced rank gauge group

Recent work on asymmetric orbifolfds:

Groot-Nibbelink, Vaudrevange '17, Harvey, Moore '18, Kaan Baykara, Harvey '21, Faraggi, Groot-Nibbelink '21, Acharya, G. A, Font, Narain, Zadeh '22, Groot-Nibbelink, Percival '23, Kaan Baykara, Hamada, Tarazi, Vafa '23, Gkountoumis, Hull, Stemerdink,Vandoren Fraiman, Freitas(talk) '24..

Outline:

- Basics of heterotic asymmetric orbifolds
- Non-supersymmteric $\mathrm{D}=7, \mathrm{~T}^{3} / \mathbb{Z}_{2}$ example and M-theory on K3 involutions
- Supersymmetric $\mathrm{D}=6 \mathrm{~T}^{4} / \mathbb{Z}_{N}$ models.
- Summary and outlook

Heterotic string in $\mathrm{D}=10$

Basics and notation:
Left sector
X_{L}^{M}, Y^{I}
$P \in \Gamma(16,0)$

Modular invariance \Rightarrow even, self-dual lattice: $\Gamma(16,0)=\Gamma_{8} \oplus \Gamma_{8}, \Gamma_{16} \quad$ (two possible lattices)

$$
\Gamma_{8} q=\left\{P \equiv\left(m_{1}, \ldots, m_{8 q}\right), \left.\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)+\left(m_{1}, \ldots, m_{8 q}\right) \right\rvert\, m_{i} \in \mathbb{Z}, \sum_{i}^{8 q} m_{i}=\text { even }\right\}
$$

massless states $\mathrm{P}=0$ (Cartan's), $\mathrm{P}^{2}=2$ (roots \in charged $)$

$$
\begin{array}{rlll}
\Gamma_{8} \oplus \Gamma_{8} & \rightarrow & E_{8} \times E_{8} & \text { heterotic } \\
\Gamma_{16} & \rightarrow & S O(32) & \text { heterotic }
\end{array}
$$

Heterotic string in $\mathrm{D}=9-\mathrm{d}$

Left sector
X_{L}^{μ},
X_{L}^{i}, Y_{L}^{I}

Right sector

$$
\begin{array}{ll}
X_{R}^{\mu}, \bar{\psi}_{R}^{\mu} & \mu=0, \ldots, 9-d \\
X_{R}^{i}, \bar{\psi}_{R}^{i} & i=1, \ldots d ; I=1, \ldots 16
\end{array}
$$

$$
\text { signature } \quad(16+d, d) \quad\left(P_{L}, P_{R}\right): P_{L}^{2}-P_{R}^{2}=\text { even }
$$

Infinite lattices parameterized by background values of :

$$
g_{i j}(\text { metric }), b_{i j}(\text { Kalb }- \text { Ramond }), A_{i}^{I}(W L)
$$

Torus partition function
 $$
Z(1,1)=\operatorname{Tr}_{\mathcal{H}}\left(q^{L_{0}} \bar{q}^{L_{0}}\right)
$$

$$
\begin{aligned}
& \mathrm{Z}_{(1,1)}=\frac{1}{\left(\sqrt{\tau_{2}} \bar{\eta} \eta\right)^{8-d}} \frac{1}{\bar{\eta}^{4}}\left(\sum_{p \in \mathrm{~V}}-\sum_{p \in \mathrm{Sp}}\right) \bar{q}^{\frac{1}{2} p^{2}} \frac{1}{\bar{\eta}^{d} \eta^{16+d}} \sum_{P \in \Gamma} \bar{q}^{\frac{1}{2} P_{R}^{2}} q^{\frac{1}{2} P_{L}^{2}} \\
& m_{L}^{2}=\frac{1}{2} P_{L}^{2}+N_{L}-1, \quad m_{R}^{2}=\frac{1}{2} P_{R}^{2}+N_{R}+\frac{1}{2} p^{2}-\frac{1}{2}
\end{aligned}
$$

massless states : $P_{L}=0, N_{L}=1 ; P_{L}^{2}=2, N_{L}=0 \& p^{2}=1, P_{R}=0, N_{R}=0$

$$
\Downarrow
$$

$(10-d)$-dimensional theory with 16 supercharges:
sugra multiplet (with d graviphotons)
gauge multiplet $U(1)^{d+16}$ (at generic moduli), enhancement (at specific) moduli i.e. $S O(2(d+16))$

Abelian Z_{M} orbifold partition function:

- orbifold generator g with $g^{M}=1$

$$
Z=\int_{\mathcal{F}} \frac{d^{2} \tau}{\tau_{2}^{2}} Z(\tau, \bar{\tau}) \quad \text { where } \quad Z(\tau, \bar{\tau})=\sum_{m=0}^{M-1}\left[\frac{1}{M} \sum_{l=0}^{M-1} Z\left(g^{m}, g^{l}\right)\right]
$$

$$
\left.Z\left(g^{m}, g^{l}\right)\right]=\operatorname{Tr}_{\mathcal{H}_{m}}\left(g^{l} q^{L_{0}} \bar{q}^{L_{0}}\right)
$$

- orbifold projection on sector $m: \frac{1}{M} \sum_{l=0}^{M-1}$
- $\sum_{m=0}^{M-1} \frac{1}{M} \sum_{l=0}^{M-1} \longrightarrow$ Modular invariant

Asymmetric orbifolds

generator $\quad g \rightarrow \Theta$

$$
\Theta=\left(\theta_{L}, \theta_{R}\right) \quad \text { acts differently on } L \text { and } R \text { of } \quad \Gamma=\Gamma(16+d, d)
$$

Invariant lattice:

$$
I=\{P \in \Gamma \mid \Theta P=P\}
$$

Normal lattice:

$$
N=I^{\perp}=\{P \in \Gamma \mid P \cdot Q=0, \forall Q \in I\}
$$

Full lattice: $\quad \Gamma \supset\left\{P:\left(P_{N}, P_{I}\right)\right.$ with $\left.P_{N} \in N^{*}, P_{I} \in I^{*}\right\}$

$$
\begin{aligned}
I^{*} / I & =N^{*} / N \\
\Gamma & =(N, I) \underset{w \in N^{*} / N}{\oplus}(w, \zeta(w)) \quad \zeta: N^{*} / N \rightarrow I^{*} / I
\end{aligned}
$$

Glue vectors (correlated classes): even norm, integer scalar product

Example:

$$
P_{L}^{2}=2 \longrightarrow \mathbf{2 4 8}=(\mathbf{2 8}, \mathbf{1})+(\mathbf{1}, \mathbf{2 8})+\left(\mathbf{8}_{v}, \mathbf{8}_{v}\right) \oplus\left(\mathbf{8}_{s}, \boldsymbol{8}_{s}\right) \oplus\left(\mathbf{8}_{c}, \boldsymbol{8}_{c}\right)
$$

$$
\begin{aligned}
& \Gamma_{8} \equiv E_{8}=\left\{P=\left(m_{1}, \ldots, m_{8}\right),\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)+\left(m_{1}, \ldots, m_{8}\right), \mid m_{i} \in \mathbb{Z}, \sum_{i} m_{i}=\text { even }\right\} \\
& \Theta P=\left(P_{1}, P_{2}, P_{3}, P_{4} ;-P_{5},-P_{6},-P_{7},-P_{8}\right) \quad \text { reflection } \\
& I=\left\{\left(m_{1}, \ldots, m_{4} ; \mathbf{0}\right), \sum_{i} m_{i}=\text { even }\right\}=D_{4}, \quad N=\left\{\mathbf{0} ;\left(m_{5}, \ldots, m_{8}\right), \sum_{i} m_{i}=\text { even }\right\}=D_{4} \\
& I^{*} / I=N^{*} / N=Z_{2} \times Z_{2} \\
& E_{8}=\left(D_{4}, D_{4}\right) \oplus\left(V_{4}, V_{4}\right) \oplus\left(S_{4}, S_{4}\right) \oplus\left(C_{4}, C_{4}\right) \\
& \Gamma=(N, I) \underset{w \in N * / N}{\oplus} \stackrel{\rightharpoonup}{(w, \stackrel{\zeta}{\zeta}(w))} \quad \mathrm{C}_{4}=\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+\left(m_{1}, m_{2}, m_{3}, m_{4}\right)
\end{aligned}
$$

Asymmetric orbifolds:

generator g :

- g rotates $s(\bar{s}) L(R)$ (internal) oscillators
- g on fermions $\rightarrow v_{f}$ can break all, half, or none supersymmteries
- $g\left|P_{N}, P_{I}>=e^{2 i \pi P \cdot v}\right| \Theta P_{N}, P_{I}>, \quad \Theta=\left(\Theta_{L}, \Theta_{R}\right)$

Allows to build the untwisted sector partition function: $\quad Z=Z_{s t} Z_{f} \mathcal{O} \mathcal{L}$

$$
\begin{aligned}
& \mathrm{Z}_{(1, g)}=\operatorname{Tr}_{\mathcal{H}_{0}}\left(g q^{L_{0}} \bar{q}^{L_{0}}\right) \longrightarrow \mathcal{L}(1, g)=\sum_{P \in I} q^{\frac{1}{2} P_{L}^{2}} \bar{q}^{\frac{1}{2} P_{R}^{2}} e^{2 i \pi P \cdot v} \\
& \text { Modular transformations }
\end{aligned} \quad \longrightarrow \text { twisted sectors } ~ \$ ~ l
$$

$$
Z_{(1, g)} \xrightarrow{\tau \rightarrow-\frac{1}{\tau}} Z_{(g, 1)}
$$

$$
\mathcal{L}(g, 1)=\sum_{P \in I^{*}} q^{\frac{1}{2}(P+v)_{L}^{2}} \bar{q}^{\frac{1}{2}(P+v)_{R}^{2}}
$$

$$
Z_{(g, 1)} \xrightarrow{\tau \rightarrow \tau+l} Z_{\left(g, g^{l}\right)}
$$

$$
Z_{\left(g, g^{M}\right)} \stackrel{g^{M}=1}{=} Z_{(g, 1)} \quad \longrightarrow \quad \frac{1}{2} M v^{2}+\cdots \in \mathbb{Z}
$$

Examples of heterotic asymmetric orbifolds:

- $\mathrm{D}=7$, non-supersymmetric, $\mathrm{T}^{3} / \mathbb{Z}_{2}$
- $\mathrm{D}=6,16$ superchages, $\mathrm{T}^{4} / \mathbb{Z}_{N}$

Heterotic on $\mathrm{T}^{3} / \mathbb{Z}_{2}$

Motivation: $\quad \mathrm{M} / \mathrm{K}_{3} \approx \mathrm{Het} / T^{3}$

$$
\begin{aligned}
& \text { M-theory on }\left(\mathrm{K}_{3} / \theta\right) \stackrel{?}{\approx} \operatorname{Het} T^{3} / \mathbb{Z}_{2} \\
& \theta \text { a Nikulin } \mathbb{Z}_{2} \text { involution }
\end{aligned}
$$

M-theory on K3 :16 supercharges, rank 22 gauge group, membranes wrapped on 2-cycles of K3 charged with charge lattice $\Gamma(19,3)$

Heterotic on T^{3} :16 supercharges, rank 22 gauge group, even self-dual $\Gamma(19,3)$ momentum

M-theory on $\left(\mathrm{K}_{3} / \theta\right)$

- θ involution reflects holomorphic 2-form (non-symplectic), leaves volume form invariant.
- 75 such involutions characterized $I \in \Gamma(19,3), \theta I=I$.
- I rank $r=20-s$, signature $(r-1,1)=(19-s, 1) . I^{*} / I=Z_{2}^{a}$
- I uniquely specified by (r, a, δ) triplets with

$$
\delta_{I}=\delta= \begin{cases}0 & \text { if } P_{I}^{2} \in \mathbb{Z} \quad \forall P_{I}^{2} \in I^{*} \\ 1 & \text { otherwise }\end{cases}
$$

Nikulin points:

Figure 1: Points (r, a, δ) determining all 75 invariant lattices of signature $(r-1,1)$ which are embedded primitively in the K3 lattice $\Gamma_{(19,3)}$.

Example: $\quad(\mathrm{r}, \mathrm{a}, \delta)=(14,4,0) \Rightarrow I=U(2)+D_{4}+E_{8}, \quad N=U(2)+D_{4}$

Heterotic on $\mathrm{T}^{3} / \mathbb{Z}_{2}$

- Non-supersymmetric (non - symplectic)
- asymmetric orbiblod $\mathrm{I} \in \Gamma(19,3), I$ rank $r=20-s$, signature $(19-s, 1)$
$\longrightarrow \quad \Theta=\left(\theta_{L}, \theta_{R}\right) \quad$ Reflects $(s, 2),\left(P_{L}, P_{R}\right)$ momenta
- g reflects $s(2) L(R)$ (internal) oscillators
- g^{2} on fermions -1 breaks all supersymmetries, $g^{4}=1, \Rightarrow \mathrm{Z}_{4}$
- $g\left|P_{N}, P_{I}>=f\left(P_{N}\right) e^{2 i \pi P . v}\right|-P_{N}, P_{I}>$, shift vector $v, 4 v \in I, \quad \xrightarrow{\text { M.I. }} 2 \mathrm{v}^{2}+\frac{s}{4} \in \mathbb{Z}$
$\mathrm{Z}_{4}, f\left(P_{N}\right)$ phase, $f\left(P_{N}\right) f\left(-P_{N}\right)=e^{2 i \pi P_{N}^{2}}=e^{2 i \pi P_{I}^{2}}=e^{2 i \pi P_{I} \cdot w}, \quad \mathrm{w} \in I^{*}, w^{2}+\frac{1}{2}(s-2) \in 2 \mathbb{Z}$

Z_{2}

- Gravity multiplet \longrightarrow graviton, dilaton, Kalb-Ramond, 1 graviphoton

$$
\mathrm{U}(1)^{19} \longrightarrow \mathrm{U}(1)^{r-1}
$$

Further enhancements at special moduli points and from $\left(\mathrm{P}_{I}, P_{N}\right), P_{N} \neq 0$

- All (r,a, δ) triplets reproduced except (1, 1, 1), (2, 2, 1)

I has no place for shift v satisfying modular invariance

- Tachyons do not appear in the untwisted sector.
twisted sector:

Heterotic asymmetric orbifolds in $\mathrm{D}=6$:
$\mathrm{T}^{4} / \mathbb{Z}_{N}$ with 16 superchages and rank reduction

Set up:

$\mathrm{Z}_{N} \quad \cdot$ acts on $\mathrm{s}=2 \mathrm{~m}$ of $20 L$-movers, eigenvalues $\quad \mathrm{e}^{ \pm 2 i \pi t_{i}}, i=1, \ldots, m, t_{i}=\frac{n_{i}}{N}$ (20 - s) L-movers and all $4 R$ invariant

- no action on world-sheet fermions, all 16 supersymmetries unbroken
- Θ on $\Gamma(20,4)$
I Invariant lattice with signature (20 - s, 4)
N normal lattice, signature (s, 0)

Rank reduction $\Rightarrow N$ without roots $\left(P^{2}>2\right) \rightarrow$ Leech lattice Λ

23 Niemeier lattices:

Root lattices with correlated classes

Table 11.3 The 23 Euclidean self-dual semi-simple Lie algebra lattices in
24 dimensions (conjugacy classes in square brackets should be cyclically
permuted) (2

Leech lattice

$\mathrm{T}^{4} / \mathbb{Z}_{N}$ Orbifold on the Leech lattice Λ

- Rank reduction $\Rightarrow N$ without roots, look at automorphisms of Λ

Conway Group $=C o_{0}$

- Λ sublattices fixed by $C o_{0}$ elements have been classified

290 distinct invariant lattices $\mathrm{I}(\mathrm{r}, 0)$, with normal $\mathrm{N}(\mathrm{s}, 0), \mathrm{r}+\mathrm{s}=24$

- Look for I, with signature (r-4,4) such that $I^{*} / I=N^{*} / N$
- Θ Automorphism of N preserves correlated classes in N^{*} / N

$$
\Gamma(24,0) \Rightarrow \Gamma(20,4)
$$

$\mathrm{T}^{4} / \mathbb{Z}_{10}$ asymmetric orbifold with rank 4 Island?

$$
\begin{aligned}
& \mathrm{s}=20 \\
& \mathrm{~N} \in(20,0) \quad \mathrm{G}_{N}=
\end{aligned}
$$

$$
\mathrm{N}^{*} / N=Z_{2}^{3} \times Z_{10}
$$

$$
\mathrm{e}^{ \pm 2 i \pi t_{i}} \quad \text { eigenvalues }
$$

$$
t=\frac{1}{10}(1,1,1,2,3,3,3,4,5,5)
$$

$$
G_{I}=\left(\begin{array}{cccc}
4 & -2 & -2 & 2 \\
-2 & 4 & 0 & 0 \\
-2 & 0 & 4 & -2 \\
2 & 0 & -2 & 4
\end{array}\right) \rightarrow P . P^{\prime} \in 2 \mathbb{Z}
$$

$$
\begin{aligned}
& g\left|P_{L}, P_{R}>=e^{2 i \pi P \cdot v}\right| \theta P_{L}, P_{R}>\quad 10 v \in I \\
& Z_{(1, g)} \xrightarrow{\mathrm{S}, \mathrm{~T}} \quad Z(\tau, \bar{\tau})=\sum_{m=0}^{9}\left[\frac{1}{10} \sum_{l=0}^{9} Z\left(g^{m}, g^{l}\right)\right] \quad \text { Full partition function can be computed }
\end{aligned}
$$

$$
\text { modular invariance: } \quad 10 v^{2} \in 2 \mathbb{Z}
$$

$$
\mathrm{e}^{2 i \pi P_{I} .5 v}=e^{i \pi P_{I} \cdot 10 v}=1 \Rightarrow 5 v \in I^{*} \longrightarrow \quad \mathrm{~g}^{5}: P+5 v=P^{\prime} \in I^{*} \quad \text { massless states }
$$

Partition function \rightarrow spectrum

Untwisted sector
No-massless states $\left(P_{L}^{2} \geq 4\right)$
Twisted sector
$\mathrm{v}=0: 20$ massless states $\longrightarrow \mathrm{U}(1)^{20}$
$\mathrm{v} \neq 0$: Can be chosen such that there are no massless states in twisted sectors, except 4 in $\mathrm{g}^{5} \longrightarrow \mathrm{U}(1)^{4}$

Further check on massive states sector
e.g $\quad Z_{(g, 1)}=24+1280 q^{\frac{1}{5}}+\ldots \quad 24=3 \times 8 \quad 3$ massless vector multiplets
$1280=16 \times 80 \quad 16$ massive states

Further compactification to $\mathrm{D}=5$ with spectator circle with a shift

$$
\begin{aligned}
& \left(\mathrm{T}^{4} \times S^{1}\right) / \mathbb{Z}_{10}, \quad \Gamma[21,5]=\Gamma[20,4]+U[1,1] \\
& \mathrm{g}:\left(\Theta, v_{U}\right) \quad v_{U}=\frac{1}{10}\left(\frac{n}{2 R}+m R, \frac{n}{2 R}-m R\right)
\end{aligned}
$$

$$
\text { 1-vector multiplet in untwisted sector } \quad \longrightarrow \mathrm{U}(1) \quad \text { almost an island }
$$

Other candidates, work in progress

Summary and outlook:

- Further develop asymmetric orbifold constructions to deal with non-geometric compactifications
- $\mathrm{T}^{3} / \mathbb{Z}_{2}, D=7$

Non-supersymmetric. Nikulin involutions ofM-theory on $\left(\mathrm{K}_{3} / \theta\right) \quad$ reproduced (except 2).

- $\mathrm{T}^{4} / \mathbb{Z}_{M}, D=6,16$ (and 8, not discussed here) supercharges and rank reduction.

Normal lattiNe with no-roots required. Contructions using Leech lattice $\quad \Lambda$ $\mathrm{T}^{4} / \mathbb{Z}_{10}$ Candidate for $\mathrm{D}=6$ island (no gauge group) example.

Obstruction due to Modular Invariance $\mathrm{U}(1)^{4}$ but $\mathrm{U}(1)$ in $\mathrm{D}=5$

- Explore $\mathrm{D}=4$ dimensions

