N=2 coset compactifications with nondiagonal invariants.

G.A, I.Allekotte, A.Font, C. Nuñez (1992)

Anly workshop

1553

Back to Heterotic:

On asymmetric orbifold models and rank reduction

Anly workshop

April 10-11, Annecy, France

G. Aldazabal, CAB-IB, Bariloche, Argentina

Based on collaborations with: E. Andrés, A. Font, K. Narain, I. Zadeh and B. Acharya

Motivation and aims:

- Asymmetric orbifolds, providing a world-sheet description of non-geometric compactifications, not fully explored. New models.
- Asymmetric orbifolds, appear to be required to study certain duality conjectures. i.e. M-theory with K3 involutions and heterotic string compactifications in D=7.
- Asymmetric orbifolds, provide an adequate framework to built up heterotic string models with reduced rank gauge group

Recent work on asymmetric orbifolfds:

Groot-Nibbelink, Vaudrevange '17, Harvey, Moore '18, Kaan Baykara, Harvey '21, Faraggi, Groot-Nibbelink '21, Acharya, G. A, Font, Narain, Zadeh '22, Groot-Nibbelink, Percival '23, Kaan Baykara, Hamada, Tarazi, Vafa '23, Gkountoumis, Hull, Stemerdink, Vandoren Fraiman, Freitas(talk) '24..

Outline:

- Basics of heterotic asymmetric orbifolds
- Non-supersymmetric D=7, $\mathrm{T}^3/\mathbb{Z}_2$ example and M-theory on K3 involutions
- Supersymmetric D=6 T^4/\mathbb{Z}_N models.
- Summary and outlook

Heterotic string in D=10

Basics and notation:

Left sector Right sector X_L^M, Y^I $X_R^M, \bar{\psi}_R^M$ $M = 0, \dots, 9; I = 1, \dots 16$ $P \in \Gamma(16, 0)$

Modular invariance \rightarrow even, self-dual lattice: $\Gamma(16,0) = \Gamma_8 \oplus \Gamma_8$, Γ_{16} (two possible lattices)

$$\Gamma_8 q = \{ P \equiv (m_1, \dots, m_{8q}), (\frac{1}{2}, \dots, \frac{1}{2}) + (m_1, \dots, m_{8q}) | m_i \in \mathbb{Z}, \sum_i^{8q} m_i = even \}$$

massless states P=0 (Cartan's), $P^2 = 2$ (roots \in charged)

$\Gamma_8\oplus\Gamma_8$	\rightarrow	$E_8 imes E_8$	heterotic
Γ_{16}	\rightarrow	SO(32)	heterotic

Heterotic string in D=9-d

Narain '86

Left sectorRight sector X_L^{μ} , $X_R^{\mu}, \bar{\psi}_R^{\mu}$ $\mu = 0, \dots, 9 - d;$ X_L^i, Y_L^I $X_R^i, \bar{\psi}_R^i$ $i = 1, \dots d; I = 1, \dots 16$

Modular invariance \implies even, self-dual lattice: $\Gamma(16 + d, d)$

signature (16 + d, d) $(P_L, P_R) : P_L^2 - P_R^2 = even$

Infinite lattices parameterized by background values of : $g_{ij}(metric), b_{ij}(Kalb - Ramond), A_i^I(WL)$ Torus partition function

 $Z(1,1) = Tr_{\mathcal{H}}(q^{L_0}\bar{q}^{L_0})$

Ibáñez, Uranga '12 Polchinski '98 Blumenhagen, Lüst, Theisen '13

$$\mathbf{Z}_{(1,1)} = \frac{1}{(\sqrt{\tau_2}\bar{\eta}\eta)^{8-d}} \frac{1}{\bar{\eta}^4} \Big(\sum_{p \in \mathbf{V}} -\sum_{p \in \mathbf{Sp}} \Big) \bar{q}^{\frac{1}{2}p^2} \frac{1}{\bar{\eta}^d \eta^{16+d}} \sum_{P \in \Gamma} \bar{q}^{\frac{1}{2}P_R^2} q^{\frac{1}{2}P_L^2}$$

$$m_L^2 = \frac{1}{2}P_L^2 + N_L - 1, \qquad m_R^2 = \frac{1}{2}P_R^2 + N_R + \frac{1}{2}p^2 - \frac{1}{2},$$

massless states : $P_L = 0, N_L = 1; P_L^2 = 2, N_L = 0 \& p^2 = 1, P_R = 0, N_R = 0$

 \downarrow

(10 - d) -dimensional theory with 16 supercharges:

sugra multiplet (with d graviphotons) gauge multiplet $U(1)^{d+16}$ (at generic moduli), enhancement (at specific) moduli i.e. SO(2(d+16))

Keep states invariant under automorphisms, \Rightarrow (asymmetric) orbifolds

Abelian Z_M orbifold partition function:

• orbifold generator g with $g^M = 1$

$$Z = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} Z(\tau, \bar{\tau}) \quad \text{where} \quad Z(\tau, \bar{\tau}) = \sum_{m=0}^{M-1} \left[\frac{1}{M} \sum_{l=0}^{M-1} Z(g^m, g^l) \right]$$

$$Z(g^m, g^l)] = Tr_{\mathcal{H}_m}(g^l q^{L_0} \bar{q}^{L_0})$$

 $\mathcal{H}_m: g^m$ - twisted Hilbert space

- orbifold projection on sector m :

$$\frac{1}{M} \sum_{l=0}^{M-1}$$

•
$$\sum_{m=0}^{M-1} \frac{1}{M} \sum_{l=0}^{M-1}$$

Modular invariant

Asymmetric orbifolds

generator $q \rightarrow \Theta$ acts differently on L and R of $\Gamma = \Gamma(16 + d, d)$ $\Theta = (\theta_L, \theta_R)$ Invariant lattice: $I = \{P \in \Gamma | \Theta P = P\}$ Normal lattice: $N = I^{\perp} = \{P \in \Gamma | P Q = 0, \forall Q \in I\}$ $\Gamma \supset \{P : (P_N, P_I) \text{ with } P_N \in N^*, P_I \in I^*\}$ Full lattice: $I^{*}/I = N^{*}/N$ $\Gamma = (N, I) \bigoplus_{w \in N^*/N} (w, \zeta(w))$ \uparrow $\zeta: N^*/N \to I^*/I$

Glue vectors (correlated classes): even norm, integer scalar product

Example:

$$\Gamma_8 \equiv E_8 = \{ P = (m_1, \dots, m_8), (\frac{1}{2}, \dots, \frac{1}{2}) + (m_1, \dots, m_8), | m_i \in \mathbb{Z}, \sum_i m_i = even \}$$

 $\Theta P = (P_1, P_2, P_3, P_4; -P_5, -P_6, -P_7, -P_8)$ reflection

 $P_L^2 = 2 \longrightarrow 248 = (28, 1) + (1, 28) + (8_v, 8_v) \oplus (8_s, 8_s) \oplus (8_c, 8_c)$

Asymmetric orbifolds:

generator g:

- g rotates $s(\bar{s}) L(R)$ (internal) oscillators
- g on fermions $\rightarrow v_f$ can break all, half, or none supersymmetries
- $g|P_N, P_I \rangle = e^{2i\pi P.v} |\Theta P_N, P_I \rangle, \qquad \Theta = (\Theta_L, \Theta_R)$

Allows to build the untwisted sector partition function:

 $Z = Z_{st} Z_f \mathcal{OL}$

$$Z_{(1,g)} = Tr_{\mathcal{H}_0}(gq^{L_0}\bar{q}^{L_0}) \longrightarrow \mathcal{L}(1,g) = \sum_{P \in I} q^{\frac{1}{2}P_L^2} \bar{q}^{\frac{1}{2}P_R^2} e^{2i\pi P \cdot v}$$

Modular transformations

twisted sectors

 $Z_{(1,g)} \xrightarrow{\tau \to -\frac{1}{\tau}} Z_{(g,1)}$

 $Z_{(q,1)} \xrightarrow{\tau \to \tau + l} Z_{(q,q^l)}$

$$\mathcal{L}(g,1) = \sum_{P \in I^*} q^{\frac{1}{2}(P+v)_L^2} \bar{q}^{\frac{1}{2}(P+v)_R^2}$$

 $Z_{(g,g^M)} \stackrel{g^M=1}{=} Z_{(g,1)} \longrightarrow \frac{1}{2}Mv^2 + \dots \in \mathbb{Z}$ 11

Examples of heterotic asymmetric orbifolds:

• D=7, non-supersymmetric, T^3/\mathbb{Z}_2

• D=6, 16 superchages, T^4/\mathbb{Z}_N

Heterotic on T^3/\mathbb{Z}_2

Motivation: $M/K_3 \approx Het/T^3$

Hull,Townsend; Witten '95

 θ a Nikulin \mathbb{Z}_2 involution

M-theory on $(K_3/\theta) \stackrel{?}{\approx} \operatorname{Het} T^3/\mathbb{Z}_2$

Nikulin 1983

14

Heterotic on T^3 :16 supercharges, rank 22 gauge group, even self-dual $\Gamma(19,3)$ momentum lattice

M-theory on (K_3/θ)

- θ involution reflects holomorphic 2-form (non-symplectic), leaves volume form invariant.
- 75 such involutions characterized $I \in \Gamma(19,3), \ \theta I = I$.
- $I \operatorname{rank} r = 20 s$, signature (r 1, 1) = (19 s, 1). $I^*/I = Z_2^a$
- I uniquely specified by (r, a, δ) triplets with

$$\delta_I = \delta = \begin{cases} 0 & \text{if } P_I^2 \in \mathbb{Z} \quad \forall P_I^2 \in I^* \\ 1 & \text{otherwise } . \end{cases}$$

Nikulin points:

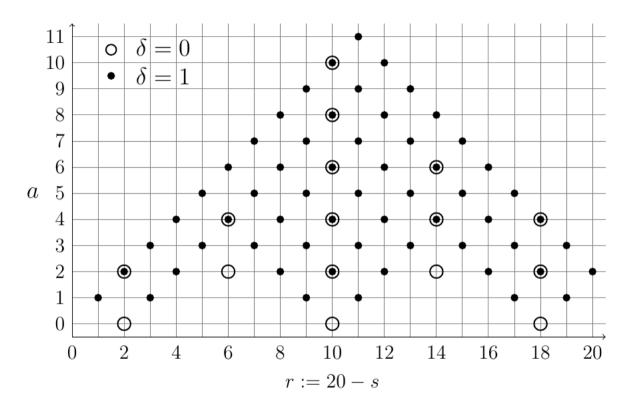


Figure 1: Points (r, a, δ) determining all 75 invariant lattices of signature (r - 1, 1) which are embedded primitively in the K3 lattice $\Gamma_{(19,3)}$.

Example: $(\mathbf{r}, \mathbf{a}, \delta) = (14, 4, 0) \Rightarrow I = U(2) + D_4 + E_8, \qquad N = U(2) + D_4$ 16

Heterotic on T^3/\mathbb{Z}_2

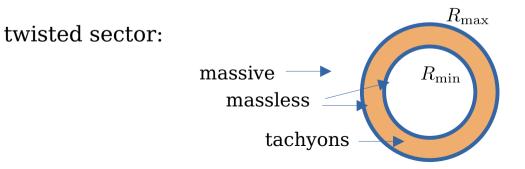
- Non-supersymmetric (non symplectic)
- asymmetric orbiblod $I \in \Gamma(19,3), I \text{ rank } r = 20 s, \text{ signature } (19 s, 1)$

 \longrightarrow $\Theta = (\theta_L, \theta_R)$ Reflects $(s, 2), (P_L, P_R)$ momenta

- g reflects s(2) L(R) (internal) oscillators
- g^2 on fermions -1 breaks all supersymmetries, $g^4 = 1, \Rightarrow Z_4$
- $g|P_N, P_I >= f(P_N)e^{2i\pi P.v}| P_N, P_I >$, shift vector $v, 4v \in I$, \longrightarrow $2v^2 + \frac{s}{4} \in \mathbb{Z}$

Z₄, $f(P_N)$ phase, $f(P_N)f(-P_N) = e^{2i\pi P_N^2} = e^{2i\pi P_I^2} = e^{2i\pi P_I \cdot w}$, $w \in I^*, w^2 + \frac{1}{2}(s-2) \in 2\mathbb{Z}$

- Gravity multiplet \longrightarrow graviton, dilaton, Kalb-Ramond, 1 graviphoton $U(1)^{19} \longrightarrow U(1)^{r-1}$ Further enhancements at special moduli points and from $(P_I, P_N), P_N \neq 0$
- All (r,a,δ) triplets reproduced except (1,1,1), (2,2,1)
 - I has no place for shift v satisfying modular invariance
- Tachyons do not appear in the untwisted sector.



Heterotic asymmetric orbifolds in D=6:

 T^4/\mathbb{Z}_N with 16 superchages and rank reduction

Set up:

• acts on s=2m of 20 *L*-movers, eigenvalues $e^{\pm 2i\pi t_i}, i = 1, \dots, m, t_i = \frac{n_i}{N}$

(20 - s) *L*-movers and all 4 *R* invariant

- no action on world-sheet fermions, all 16 supersymmetries unbroken
- Θ on $\Gamma(20,4)$
 - I Invariant lattice with signature (20 s, 4)
 - N normal lattice, signature (s, 0)

Rank reduction \Rightarrow *N* without roots ($P^2 > 2$) \longrightarrow Leech lattice Λ

24 even self-dual lattices (24,0)

Lerche, Schellekens, Warner ' 89

23 Niemeier lattices:

Root lattices with correlated classes -

 Table 11.3
 The 23 Euclidean self-dual semi-simple Lie algebra lattices in 24 dimensions (conjugacy classes in square brackets should be cyclically permuted)

Lie algebra	Glue vector	
D ₂₄	(S)	
$D_{16}E_{8}$	(S,0)	
E_{8}^{3}	(0,0,0)	
A_{24}	(5)	
D_{12}^2	(S,V), (V,S)	
$A_{17}E_{7}$	(3, 1)	
$D_{10}E_{7}^{2}$	(S,1,0), (C,0,1)	
	(2, S)	
D_{8}^{3}	(S,V,V), (V,S,V), (V,V,S)	
$D_8^3 \\ A_{12}^2$	(1,5)	
$A_{11}D_7E_6$	(1,S,1)	
E_{6}^{4}	$(1, 0, 1, \overline{1}), (1, \overline{1}, 0, 1), (1, 1, \overline{1}, 0)$	
$\begin{array}{c}E_6^4\\A_9^2D_6\end{array}$	(2, 4, 0), (5,0,S), (0,5,C)	
D_6^4	Even permutations of (0,S,V,C)	
A_{8}^{3}	(1, 1, 4), (4, 1, 1), (1, 4, 1)	
$A_{7}^{2}D_{5}^{2}$	(1,1,S,V), (1,7,V,S)	
A_{6}^{4}	(1, 2, 1, 6), (1, 6, 2, 1), (1, 1, 6, 2)	
$A_{5}^{4}D_{4}$	(2, [0, 2, 4], 0), (3,3,0,0,S), (3,0,3,0,V), (3,0,0,3,C)	
D_{4}^{6}	(S,S,S,S,S,S), (0,[0,V,C,C,V])	
A_{4}^{6}	(1, [0, 1, 4, 4, 1])	
A_{3}^{8}	(2, [2, 0, 0, 1, 0, 1, 1])	
D_{4}^{6} A_{8}^{3} $A_{7}^{2}D_{5}^{2}$ A_{6}^{4} $A_{5}^{4}D_{4}$ D_{4}^{6} A_{4}^{4} A_{8}^{3} A_{1}^{12} A_{1}^{24}	(2, [1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2])	
A_{1}^{24}	(1, [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1]	

$\mathrm{T}^4/\mathbb{Z}_N$ Orbifold on the Leech lattice Λ

• Rank reduction $\Rightarrow N$ without roots, look at automorphisms of Λ

Conway Group= Co_0

- Λ sublattices fixed by Co_0 elements have been classified Höhn, Mason '16 290 distinct invariant lattices I (r , 0), with normal N (s, 0), r + s = 24
- Look for I, with signature (r-4,4) such that $I^*/I = N^*/N$
- Θ Automorphism of N preserves correlated classes in N^*/N

 $\Gamma(24,0) \Rightarrow \Gamma(20,4)$

$$g|P_L, P_R \rangle = e^{2i\pi P \cdot v} |\theta P_L, P_R \rangle \qquad 10v \in I$$

$$Z_{(1,g)} \xrightarrow{\mathrm{S,T}} Z(\tau,\bar{\tau}) = \sum_{m=0}^{9} \left[\frac{1}{10} \sum_{l=0}^{9} Z(g^m, g^l) \right]$$

 $Full\ partition\ function\ can\ be\ computed$

modular invariance: $10v^2 \in 2\mathbb{Z}$

$$e^{2i\pi P_I.5v} = e^{i\pi P_I.10v} = 1 \Rightarrow 5v \in I^* \longrightarrow g^5: P + 5v = P' \in I^* \text{ massless states}$$

Partition function — spectrum

Untwisted sector

No-massless states $(P_L^2 \ge 4)$

Twisted sector

v=0: 20 massless states \longrightarrow U(1)²⁰

 $v{\ne}0$: Can be chosen such that there are no massless states in twisted sectors, except $4 \text{ in } g^5 \longrightarrow U(1)^4$

Further check on massive states sector

SO(5,1)

e.g $Z_{(g,1)} = 24 + 1280q^{\frac{1}{5}} + \dots$ $24 = 3 \times 8$ 3 massless vector multiplets

 $1280 = 16 \times 80$ 16 massive states

Further compactification to D=5 with spectator circle with a shift

$$(\mathbf{T}^{4} \times S^{1})/\mathbb{Z}_{10}, \qquad \Gamma[21, 5] = \Gamma[20, 4] + U[1, 1]$$

g: $(\Theta, v_{U}) \qquad v_{U} = \frac{1}{10}(\frac{n}{2R} + mR, \frac{n}{2R} - mR)$

1-vector multiplet in untwisted sector \rightarrow U(1) almost an island

Other candidates, work in progress

Summary and outlook:

- Further develop asymmetric orbifold constructions to deal with non-geometric compactifications
- $T^3/\mathbb{Z}_2, D = 7$

Non-supersymmetric. Nikulin involutions of M-theory on (K_3/θ) reproduced (except 2).

• T^4/\mathbb{Z}_M , D=6, 16 (and 8, not discussed here) supercharges and rank reduction.

Normal latti \mathbb{N} with no-roots required. Contructions using Leech lattice Λ T^4/\mathbb{Z}_{10} Candidate for D=6 island (no gauge group) example.

Obstruction due to Modular Invariance $U(1)^4$ but U(1) in D=5

• Explore D=4 dimensions

