Ondes gravitationnelles L'aube d'une nouvelle science de l'univers

Nicola Tamanini

Laboratoire des 2 Infinis - Toulouse CNRS / IN2P3 / Univ. Paul Sabatier

03/07/2023

Ondes gravitationnelles L'aube d'une nouvelle science de l'univers

OUTLINE

- Main concepts and detections strategy of GWs
- GW observations: the story so far
- GWs from theory to observations
- The scientific potential of GW astronomy

OUTLINE

- Main concepts and detections strategy of GWs
- GW observations: the story so far
- GWs from theory to observations
- The scientific potential of GV
 astronomy

Gravitational waves from a merging binary system

Credit: LIGO Caltech

Scale of Effect Vastly Exaggerated

But what are gravitational waves? In which medium do they propagate?

Image: Hubble Space Telescope

Gravitational waves are emitted by highly energetic cosmic sources, such as compact stellar binary systems

They travel across the Universe until eventually reach us

Credit: SXS Collaboration

Einstein's general relativity theory of gravity

"Spacetime tells matter how to move, and matter tells spacetime how to curve"

Gravitational waves = dynamical spacetime

Gravitational waves are ripples in space and time caused by changing gravitational fields

Credit: R. Hurt / LIGO / Caltech / JPL

Gravitational waves = dynamical spacetime

Gravitational waves are ripples in space and time caused by changing gravitational fields

GW190412

7

How gravitational waves "move" matter

Gravitational Waves: waves of space-time curvature that accelerate free-falling particles

Electromagnetic waves: waves of EM field that accelerate charged particles

How gravitational waves "move" matter

Gravitational Waves: waves of space-time curvature that accelerate free-falling particles

S. Vitale U.Trento/TIFPA

How gravitational waves "move" matter

$$\Rightarrow \frac{\Delta L}{I} \sim 10^{-38}$$

@ laboratory distances

$$\Rightarrow \frac{\Delta L}{L} \sim 10^{-21}$$

@ cosmological distances

INDIRECT DETECTION

Indirectly from the effects they leave on a source

GWs take away energy and (angular) momentum

\Downarrow

Orbits shrinks / period decreases

INDIRECT DETECTION

Hulse–Taylor pulsar Nobel Prize 1993

Credit: John Rowe animations

PTA DETECTION

Indirectly from the effects they leave on an array of EM sources

GWs stretch the spacetime in between us and the pulsars

 \downarrow

Change in the arrival time of EM pulses

PTA DETECTION

HIER!!! 29/06/2023

EPTA announces evidence for nanohertz gravitational waves

EPTA joins international teams in reporting evidence for low frequency gravitational waves

NANOGrav's 15-Year Data Release

PUB: 28 JUN 2023

Artist's interpretation of an array of pulsars being affected by gravitational ripples produced by a supermassive black hole binary in a distant galaxy. Credit: Aurore Simonnet for the NANOGrav Collaboration

Public Briefing

We invite all interested members of the public to join our public announcement event on **Thursday, June 29, 2023 at 1:00 PM Eastern US Time.** The announcement will report results of the analysis of NANOGrav's 15-year data set, and interpretations of those results.

The announcement will be <u>broadcast live on YouTube</u> / from the National Science Foundation (NSF), and will report on NANOGrav's ongoing search for low-frequency gravitational waves.

DIRECT DETECTION

Directly from the effects they imprint on test masses

GWs transfer energy (and momentum)

\Downarrow

Distance between to free-falling masses change

LASER INTERFEROMETRY

DIRECT DETECTION

Directly from the effects they imprint on test masses

GWs transfer energy (and momentum)

\Downarrow

Distance between to free-falling masses change

Laser interferometry

DIRECT DETECTION

The gravitational wave spectrum

Quantum fluctuations in early universe Binary Supermassive Black Holes in galactic nuclei Sources Compact Binaries in our **Different GW instruments** Galaxy & beyond observe at different Compact objects captured by frequencies / wavelengths Supermassive Rotating NS, **Black Holes** Supernovae age of wave period universe years hours sec ms log(f) -12 Different target sources -14 -8 -16 -10 -6 -4 -2 0 +2 Cosmic Microwave Pulsar Timing Terrestrial Space Detectors Background Interferometers Interferometers Polarization Credit: NASA / WMAP Science Team Credit: NRAO/AUI/NSF Credit: NASA/ESA Credit: LIGO Laboratory The gravitational wave spectrum Radio Microwave Infrared Ultraviolet : X-ray Gamma www. The electromagnetic spectrum Visible light

The Gravitational Wave Spectrum

Credit: NASA

OUTLINE

- Main concepts and detections strategy of GWs
- GW observations: the story so far
- GWs from theory to observations
- The scientific potential of GV
 astronomy

The current network of interferometers

The current network of interferometers

GW150914: the first gravitational wave detection

Home

News

LIGO Scientific Collaboration

Educational resources

LIGO science

For researchers Multimedia Partners

Credit: SXS Collaboration

Gravitational Waves Detected 100 Years After Einstein's Prediction

Advanced LIGO

LIGO Lab

Join

About

LSC/internal

"LIGO, the Path to Detection": Watch the trailer for this new film.

NEWS

PRESS RELEASE

 Feb 24, 2016
 LIGO members to testify on the discovery at US Congress

 Feb 17, 2016
 LIGO-India approved

Feb 11, 2016 Gravitational Waves Detected 100 Years At Einstein's Prediction

2015: first detection of gravitational waves

GW150914: the first gravitational wave detection

GW150914: the first gravitational wave detection

GW170817: the first multi-messenger detection

GW170817: the first multi-messenger detection

Multiple detectors allow for a better skylocalisation thanks to triangulation

Helping telescopes to find the associated electromagnetic signal

GW200115: a neutron star - black hole merger

Neutron star - black hole binaries

~3 neutron star black hole binaries detected so far

No electromagnetic counterpart

All LIGO-Virgo detections so far

All LIGO-Virgo detections so far

CTESTED AND												
015 - 2016	GZ		02 2016 - 2017			- In					03a+b 2019 - 2020	
• • 31	• • 23 14	• • 14 7.7 •	• • 31 20	11 7.6	50 • 34	35 24	31 25	1.5 1.3	• • 35 27	40 29	88 22	• 25 18
63 GW150914	36 GW151012	21 GW151226	49 GW170104	18 GW170608	80 GW170729	56 GW170809	53 GW170814	≤ 2.8 GW170817	60 GW170818	65 GW170823	105 GW190403_051519	41 GW190408_181802
• 30 8.3	• • 35 24	• • 48 • ³²	41 32	• • 2 1.4	107 77	• • 43 28	23 13	36 18	• • 39 28	• 37 25	66 41	95 69
37 GW190412	56 GW190413_052954	76 GW190413_134308	70 GW190421_213856	3.2 GW190425	175 GW190426_190642	69 GW190503_185404	35 GW190512_180714	52 CW190513_205428	65 GW190514_065416	59 GW190517_055101	101 GW190519_153544	156 GW190521
• • 42 • 33	• • 37 23	69 48	57 36	35 24	• • 54 • 41	67 38	12 8.4	18 13	• • 37 21	13 7.8	12 6.4	• • 38 29
71 GW190521_074359	56 cw190527_092055	111 GW190602_175927	87 GW190620_030421	56 GW190630_185205	90 GW190701_203306	99 CW190706_222641	19 GW190707_093326	30 GW190708_232457	55 GW190719_215514	20 GW190720_000836	17 GW190725_174728	64 _cw190727_060333
12 8.1	• • 42 29	• • 37 27	• • 48 ³²	23 2.6	• • 32 26	• • 24 10	• • 44 36	• • 35 24	• • 44 24	9.3 2.1	8.9 5	21 16
20 GW190728_064510	67 GW190731_140936	62 GW190803_022701	76 GW190805_211137	26 GW190814	55 GW190828_063405	33 GW190828_065509	76 GW190910_112807	57 GW190915_235702	66 GW190916_200658	11 GW190917_114630	13 GW190924_021846	35 GW190925_232845
• • 40 23	81 • 24	12 7.8	12 7.9	11 7.7	65 47	• 29 5.9	12 8.3	53 24	11 6.7	27 19	12 8.2	• • 25 18
61 CW190926_050336	102 GW190929_012149	19 GW190930_133541	19 GW191103_012549	18 cw191105_143521	107 GW191109_010717	34 GW191113_071753	20 GW191126_115259	76 GW191127_050227	17 GW191129_134029	45 CW191204_110529	19 CW191204_171526	41 GW191215_223052
12 7.7	• • 31 1.2	• • 45 • 35	49 3 7	9 1.9	36 28	• 5.9 1.4	42 33	• • • 34 29	10 7.3	• • • • • • • • • • • • • • • • • • •	• • 51 12	• • 36 27
19 GW191216_213338	32 GW191219_163120	76 GW191222_033537	82 GW191230_180458	11 GW200105_162426	61 GW200112_155838	7.2 GW200115_042309	71 GW200128_022011	60 GW200129_065458	17 GW200202_154313	63 GW200208_130117	61 GW200208_222617	60 GW200209_085452
• • 24 2.8	51 3 0	• • 38 28	87 GI	39 28	40 33	19 14	• • 38 20	28 15	• • • 36 14	34 28	13 7.8	• • • • • • • • • • • • • • • • • • •
27 GW200210_092254	78 GW200216_220804	62 cw200219_094415	141 GW200220_061928	64 GW200220_124850	69 GW200224_222234	32 CW200225_060421	56 GW200302_015811	42 GW200306_093714	47 GW200308_173609	59 GW200311_115853	20 GW200316_215756	53 GW200322_091133

than the primary plus the secondary mass. The events listed here pass one of two thresholds for detection. They either have a probability of being anterproduction of all cards (20%) as they are an allocal allocal cards therefore there have a probability of being

All LIGO-Virgo detections so far

Astrophysical sources of gravitational waves

SOURCES ALREADY DETECTED BY THE LVK DETECTORS:

Binary neutron stars

Binary black holes

Neutron star - black hole binaries

OTHER TARGETS FOR THE LVK DETECTORS:

Supernovae

Single (asymmetric) neutron stars

Stochastic GW background

CAN WE DETECT OTHER SOURCES?

GW sources across the spectrum

Gravitational Wave Observatories

OUTLINE

- Main concepts and detections strategy of GWs
- GW observations: the story so far
- GWs from theory to observations
- The scientific potential of GIA
 astronomy

How do we detect and characterise the signal?

No general analytical solution to the 2-body problem has (yet) been found in general relativity!

Different approximated or numerical techniques must be used in different regimes:

No general analytical solution to the 2-body problem has (yet) been found in general relativity!

Different approximated or numerical techniques must be used in different regimes:

Analytical methods based on expansion in small velocities / weak gravitational field over a flat spacetime

Very efficient in the *inspiral*, large separation phase, of a binary

Can be expanded to include information from other regimes using the *Effective One Body* approach

Credit: L. Barack

No general analytical solution to the 2-body problem has (yet) been found in general relativity!

Different approximated or numerical techniques must be used in different regimes: No analytical approach available

No expansion over flat spacetime possible

No

in g Need complex analytical techniques

Diff Still an "unsolved" problem (very relevant for future detectors, in particular LISA)

We must find the signal that better reproduce the observed data

Signal parameters are varied until the best match is found

Efficient sampling methods (MCMC, Nested Sampling, ...) must be applied in order to find the best value of the single parameters and their statistical uncertainties

Efficient sampling methods (MCMC, Nested Sampling, ...) must be applied in order to find the best value of the single parameters and their statistical uncertainties

Credit: O. Burke / L2IT

Efficient sampling methods (MCMC, Nested Sampling, ...) must be applied in order to find the best value of the single parameters and their statistical uncertainties

Algorithms must be:

- Fast to find results as soon as possible (esp. for EM alert)
- Accurate to retrieve parameters close to true values

Much improvement over the last decades thanks to technological progress

Ample space for AI application in the near future (esp. Machine Learning)

Credit: Dreamstime

OUTLINE

- Main concepts and detections strategy of GWs
- GW observations. the story so far
- GWs from theory to observations
- The scientific potential of GW astronomy

The first GW detection allowed us to discover stellar-mass black holes

Black holes with masses $\gtrsim 10 M_{\odot}$ were discovered

The first GW detection allowed us to discover stellar-mass black holes

With many detections we can now start constraining the population properties and investigate their formation and evolution mechanisms

Credit: LIGO-Virgo-KAGRA

The first GW detection allowed us to discover stellar-mass black holes

With many detections we can now start constraining the population properties and investigate their formation and evolution mechanisms

1.0Related to pair-instability supernovae?

Credit: LIGO-Virgo-KAGRA

GW observational science: neutron stars

Credit: NASA

GW observational science: neutron stars

Credit: NASA

GW170817

GW data from binary neutron star mergers allow us to probe the internal structure of neutron stars and its associated nuclear physics

GW observational science: neutron stars

Credit: J. Johnson / SDSS

Credit: LIGO-Virgo

GW observational science: fundamental physics

Multi-messenger event can be used to test the speed of propagation of GWs

GW observational science: fundamental physics

Multi-messenger event can be used to test the speed of propagation of GWs

GW170817 constrained the speed of GWs to be equal to the speed of light with a relative precision of 10^{-15}

GW observational science: fundamental physics

GWs data can be used to test general relativity in the strong field regime

Tests can be performed with all phases of the GW waveform using different methods

> All observations in agreement with general relativity so far

Credit: LIGO-Virgo

GW observational science: cosmology

An EM counterpart to a GW events provides a direct way to probe the expansion of the Universe and possibly solve the *Hubble tension*

Credit: LIGO-Virgo

Credit: J. M. Ezquiaga & M. Zumalacarregui

GW observational science: cosmology

An EM counterpart to a GW events provides a direct way to probe the expansion of the Universe and possibly solve the *Hubble tension*

Without an EM counterpart cosmological information can still be extracted from GW data with the help of galaxy catalogues

Credit: J. Tinker / SDSS

GW observational science: cosmology

Credit: NASA

An EM counterpart to a GW events provides a direct way to probe the expansion of the Universe and possibly solve the *Hubble tension*

Without an EM counterpart cosmological information can still be extracted from GW data with the help of galaxy catalogues

Future GW observations will provide information on the nature of *dark energy*

THANK YOU!