

Effects of gamma irradiation on the behavior of radioactive waste containment matrices: MKPC

MOSCHETTI ILARIA Lola SARRASIN, Abdesselam ABDELOUAS

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 945098.

PREDIS Project

Low & intermediate level waste types

Characterisation & classification of waste

New treatments, conditioning & monitoring

Develop a new reference solution for the storage and final disposal

Modelling & performance evaluation of new solutions

Environmental & economic evaluations

WP5

WP4

approaches

Innovative R&D

WP6

WP7

Why Magnesium Potassium Phosphate Cement (MKPC)?

Experimental Protocol - MKPC Formulation

Ratio	Value
MgO/KH_2PO_4 (molar)	1
Fly Ash/(MgO + KH_2PO_4) (mass)	1
Sand/(MgO + KH_2PO_4) (mass)	1
$H_3BO_3/(MgO + KH_2PO_4)$ (mass)	0.02
Water/(MgO + KH_2PO_4) (mass)	0.51

$$MgO + KH_2PO_4 + 5H_2O \rightarrow \underline{MgKPO_4} + 6H_2O$$

K-Struvite

Chartier, D. et al. Journal of Nuclear Materials 541, (2020).

12/10/2023

Experimental Protocol - MKPC Formulation

Chartier, D. et al. Journal of Nuclear Materials 541, (2020).

after ~6h

12/10/2023

Experimental Protocol - MKPC Curing and Irradiation

12/10/2023

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945098.

Each solution is analyzed to obtain the amount of **element released** from the sample

Ion Chromatography (Mg, K)
ICP-MS (Si)

training programme 2019-2020 under grant agreement No 945098.

Experimental Set-up

Experimental Set-up

Curing time	Total Dose	Water content	
1, 2, 4, 7, 11, 18 and 28 days	200 kGy	0%	Real Application
28 days	50, 100, 200, 500, 1000 kGy	0%	Possible Applicability

Experimental Set-up

	Curing time	To	tal Dose	Water content	
(1, 2, 4, 7, 11, 18 and 28 days		200 kGy		0%	Real Application
B	28 days	50, 500,	100, 200, , <mark>1000</mark> kGy	0%	Possible Applicability
	28 days	2	200 k G y	± 5%	In-Situ Variation
	Ratio	Value			
MgO/	<i>KH</i> ₂ <i>PO</i> ₄ (molar)	1			
Fly Ash/(Mg	$gO + KH_2PO_4$) (mass)	1			
Sand/(MgO + KH_2PO_4) (mass)		1			
$H_3BO_3/(MgO + KH_2PO_4)$ (mass)		0.02			
Water/(Mg	$O + KH_2PO_4$) (mass)	0.51	←		

9

12/10/2023

Aim: Understand the water resistance

Higher is the total absorbed dose, lower is the element release

Mg	REF	50kGy	100kGy	200kGy
Leachability Index	9.5	9.3	9.4	9.3
Si	REF	50kGy	100kGy	200kGy
Leachability Index	12.9	12.8	12.7	12.9

*Measure of K were also performed and the LI was over the standard requirement.

12/10/2023

Aim: Understand the possible morphology modification Particularly variation on struvite-K

- \checkmark No major changes between samples
- ✓ Struvite-K peaks still visible after 200kGy

Outcome: Morphology of struvite-K does not change with a difference in water content

Bykov, G.L., et al. Radiation Physics and Chemistry Vol. 190 (2022): p. 109822.

12

12/10/2023

13 12/10/2023

Outcome

Geopolymer

- ▶ New type of matrixes for the encapsulation of Liquid Organic Waste (WP5)
- Same characterization techniques

New Techniques

➢ Nano-Indentation (for local compression strength)

Tomography (for porosity and density)

Hall E

12/10/2023

Thanks for your attention

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945098.

Annex 1: Needle and Prismatica Shape

Table 2Mix proportions of the MKPC mortars.

Series	M/P molar ratio	Binder components				s/b	w/b
		Magnesia	KDP	FA ^a	Borax ^b		
M8 M8-FA-C ^c M4.5-FA-R ^c M4.5	8.0 8.0 4.5 4.5	1.00 0.70 0.57 0.82	0.43 0.30 0.43 0.61	0.00 0.43 0.43 0.00	0.080 0.056 0.046 0.065	0.25 0.25 0.25 0.25	0.15 0.15 0.15 0.15

^a The replacement levels of FA in both M8-FA-C and M4.5-FA-R are both 30 wt%, by weight of the sum of magnesia and KDP in M8.

 $^{\rm b}$ For all the MKPC mortars, the addition level of borax is 8 wt%, by weight of the magnesia.

^c C the conventional design method, where FA is treated as inert and used to replace both magnesia and KDP; R: the other design method, where FA is treated as reactive and used to replace magnesia only.

Prism shape

Needle shape

Xu, B.; Ma, H.; Shao, H.; Li, Z.; Lothenbach, B. Influence of Fly Ash on Compressive Strength and Micro-Characteristics of Magnesium Potassium Phosphate Cement Mortars. *Cement and Concrete Research* 2017, *99*, 86–94. <u>https://doi.org/10.1016/j.cemconres.2017.05.008</u>.

Annex 2: Raw Material

Chartier, D. et al. Journal of Nuclear Materials 541, (2020).

Fly Ash

Sand

