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m “Machine learning is the field of study that gives computers the ability to learn without
being explicitly programmed” attributed to Arthur Samuel (1959)
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Supervised learning

m Labelled training events with feature variables and class labels
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Supervised learning

m Labelled training events with feature variables and class labels

Reinforcement learning

m Instead of labels, some sort of reward system (e.g. game score)
m Goal: maximise future payoff by optimising decision policy
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m “Machine learning is the field of study that gives computers the ability to learn without
being explicitly programmed” attributed to Arthur Samuel (1959)

Supervised learning

m Labelled training events with feature variables and class labels

Reinforcement learning

m Instead of labels, some sort of reward system (e.g. game score)
m Goal: maximise future payoff by optimising decision policy

Unsupervised learning

m Find similarities in training sample, without predefined categories (no labels)
m Discover good internal representation of the input
m Not biased by pre-determined classes = may discover unexpected features!
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» machine learning or deep learning or multivariate in InspireHEP
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to-date review of papers

» https://github.com/iml-wg/HEPML-LivingReview
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https://inspirehep.net/literature?q=machine learning or deep learning or multivariate
https://github.com/iml-wg/HEPML-LivingReview
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m Reduce data dimensionality to allow analysis

Raw Sparsified  Reco Select  Physics Ana
1e7 led 100-ish* 50 10 1
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m Losing information at each simplification step
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m Losing information at each simplification step

m Improve each step with ML?
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m Reduce data dimensionality to allow analysis

Raw Sparsified  Reco Select  Physics Ana

le7 led 100-sh* 50 10 1

m Losing information at each simplification step
m Improve each step with ML?

m Skip one or more steps with ML?
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Decision trees
Boosted decision trees
Support vector machines (not today)

Neural networks

Deep neural networks

m convolutional NN
m recurrent NN (see Georges' slides)
m autoencoders (not today)

m graph NN

m generative models

L]
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> CMS—PAS HIG-13-001

Hard to use more BDT in an analysis:
m vertex selected with BDT
m 2" vertex BDT to estimate probability to be within 1cm of interaction point
m photon ID with BDT
m photon energy corrected with BDT regression
E event-by-event energy uncertainty from another BDT
m several BDT to extract signal in different categories

CMS preliminary, Vs = 8 TeV, L =19.6 fb™
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http://cds.cern.ch/record/1530524
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m Match jets and partons in high-multiplicity final state

m BDT trained on all combinations e
m New inputs to classification BDT

m Access to Higgs pr, origin of b-jets
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https://dx.doi.org/10.1103/PhysRevD.97.072016
https://arxiv.org/abs/2111.06712
http://www.theses.fr/s189750
http://www.theses.fr/s189455
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m Many possible network structures
® Moving away from feature engineering (hand-crafted variables, e.g. with physics

knowledge) to model design (data representation and structure of network)
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https://www.asimovinstitute.org/
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m Distinguish highly boosted W jets from QCD jets

m CNN really appropriate with images = transform inputs into images

5
S 150
P A g “~asi
Super Cells " o+ mass+AR
T .
o —r,+AR
s £ 100 Maxout
©
w3 g — Convnet
® R - - Random
;
—{20
P AR " %
ayer 5
> e = 01101
250 < p /GeV <260 GeV, 65 < mas/GeV <95 B |
AT, 82 0.6 08

s s

K 8 Signal Efficiency

E o

1

o

2

:

H

g

10°

05 0 5 1
[Translated) Pseudorapidity (n)

Yann Coadou (CPPM) — ML in HEP FunPhys visit CPPM, 6 October 2023

10/18


https://arxiv.org/abs/1511.05190

m Data structure not always “simple” sequence
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m Data structure not always “simple” sequence
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m May have more complex structure

were
TouchGraph
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m Data structure not always “simple” sequence

{Xﬁ [ ]
) B Gl B Gl

m May have more complex structure

were
TouchGraph

m Google trends and InspireHEP for “graph neural network”

1989 2023
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% edge

/

vertex/node

m Each node has features
m Each edge can have features

m Define adjacency matrix: Ajj = d(edge between i and j)
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hits to tracks
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calorimeter cells clustering

m Object classification, event classification, node classification, edge classification, etc.

Yann Coadou (CPPM) — ML in HEP

FunPhys visit CPPM, 6 October 2023 13/18


https://arxiv.org/abs/2007.13681
https://arxiv.org/abs/2007.13681

LHC Olympics 2020

m Common training sample with dijet QCD

and Z’ — XY new physics
m Tested on unknown black box

e Bl

3 Unsupervised

m Similar to training set but with different

Z'/X]Y masses
m or background only
m or QCD + different signal
m Report as complete description of new
physics as possible (masses, decay
modes, number of signal events, etc)

nn Coadou (CPPM) in HEP

'S

Anomalous Jet Identification via Variational Recurrent Neural Network
Anomaly Detection with Density Estimation

BuHuLaSpa: Bump Hunting in Latent Space

GAN-AE and BumpHunter

Gaussianizing Iterative Slicing (GIS): Unsupervised In-distribution Anomaly
Detection through Conditional Density Estimation

Latent Dirichlet Allocation

Particle Graph Autoencoders

Regularized Likelihoods

UCluster: Unsupervised Clustering

‘Weakly Supervised

4.1
4.2

43
14
45

CWoLa Hunting

CWoLa and Autoencoders: Comparing Weak- and Unsupervised methods
for Resonant Anomaly Detection

Tag N Train

Simulation Assisted Likelihood-free Anomaly Detection
Simulation-Assisted Decorrelation for Resonant Anomaly Detection

(Semi)-Supervised

5.1
5.2
5.3

5.4

Deep Ensemble Anomaly Detection

Factorized Topic Modeling

QUAK: Quasi-Anomalous Knowledge for Anomaly Detection
Simple Supervised learning with LSTM layers
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https://arxiv.org/abs/2101.08320
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m Train jointly two networks
m generator: tries to produce synthetic data that looks as real as possible, starting from
(simple) fixed distribution
m discriminator: tries to distinguish between real and fake data
m Antagonistic objectives (adversarial training):
® generator tries to trick discriminator, producing fake data that looks real
m discriminator wants to minimise misclassification

m Train each alternatively, with combined loss function
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https://arxiv.org/abs/1406.2661
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Real / Fake
m Heavy CPU cost of simulation (> 50% of grid P T -----
resources) ANEA

m MC stats becoming limiting factor in analyses
m Replace “full simulation” with approximation

m already routinely done, using parameterisation of
showers or library of pre-simulated objects

m use GAN to simulate medium-range hadrons in Cahmii
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m also tested VAE (- aull o sllseiiianins ¢._ et s ?

ROOT

Detector . a
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https://arxiv.org/abs/2109.02551
https://doi.org/10.1007/s41781-021-00079-7
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001/
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m Typical answer about advantage of machine over human being: unbiased, does not care about

gender, religion, skin colour, etc.

m Repeatedly shown to be utterly false (see e.g. Weapons of Math Destruction by Cathy O'Neil)

m Why?
m data scientist biases in coding algorithm
® training data

m Example: ChatGPT

m 175 billion parameters network, trained
on large fraction of all available texts on
the web (300G tokens)

m ChatGPT-4: 1.8T parameters, 13T
tokens, trained on 25k Nvidia A100
GPUs for ~90 days
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m Typical answer about advantage of machine over human being: unbiased, does not care about
gender, religion, skin colour, etc.
m Repeatedly shown to be utterly false (see e.g. Weapons of Math Destruction by Cathy O'Neil)

ut good scientists
cef
m Why?

m data scientist biases in coding algorithm
m training data

m Example: ChatGPT

m 175 billion parameters network, trained
on large fraction of all available texts on
the web (300G tokens)

m ChatGPT-4: 1.8T parameters, 13T
tokens, trained on 25k Nvidia A100
GPUs for ~90 days

m Also keep in mind the environmental cost of ML algorithm training and usage
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Artificial Intelligence for High Energy Physics
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« Introduction (Paolo Calafiura, David Rousseau and Kazuhiro Terao)

. inative Models for Boosting:
| N | E L L | E N E Boosted Decision Trees (Yann Coadou)

Deep Learning from Four Vectors (Pierre Baldi, Peter Sadowski and Daniel Whiteson)
FOR Anomaly Detection for Physics Analysis and Less Than Supervised Learning (Benjamin Nachman)
« Data Quality Monitoring:

Data Quality Monitoring Anomaly Detection (Adrian Alan Pol, Gianluca Cerminara, Cecile Germain and
Maurizio Pierini)

« Generative Models:
Generative Models for Fast Simulation (Michela Paganini, Luke de Oliveira, Benjamin Nachman, Denis
Derkach, Fedor Ratnikov, Andrey Ustyuzhanin and Aishik Ghosh)
Generative Networks for LHC Events (Anja Butter and Tilman Plehn)

« Machine Learning Platforms:
Distributed Training and Optimization of Neural Networks (ean-Roch Viimant and jungi Yin)
Machine Learning for Triggering and Data Acquisition (Philip Harris and Nhan Tran)

« Detector Data Reconstruction:
End-to-End Analyses Using Image Classification (Adam Aurisano and Leigh H Whitehead)
Clustering (Kazuhiro Terao)
Graph Neural Networks for Particle Tracking and Reconstruction (avier Duarte and Jean-Roch
Viman)

« Jet Classification and Particle Identification from Low Level:
Image-Based Jet Analysis (Michael Kagan)
Particle Identification in Neutrino Detectors (Ralitsa Sharankova and Taritree Wongjira)
Sequence-Based Learning (Rafael Teixeira de Lima)

« Physics Inference:

i Simulation-Based Inference Methods for Particle Physics fohann Brehmer and Kyle Cranmer)

o . Al 5 Dealing with Nuisance Parameters (T Dorigo and P de Castro Manzano)

Paolo Calafiura - David Rousseau. - Kazuhiro Terao Bayesian Neural Networks (Tom Chamo(:uulents Perreault-Levasseur and Francois Lanusse)
Parton Distribution Functions (Stefano Forte and Stefano Carrazza)

« Scientific Competitions and Open Datasets:

i
B world scientific

Machine Learning Scientific Competitions and Datasets (David Rousseau and Andrey Ustyuzhanin)
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https://doi.org/10.1142/12200

