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Machine learning: how to learn?Machine learning: how to learn?

“Machine learning is the field of study that gives computers the ability to learn without
being explicitly programmed” attributed to Arthur Samuel (1959)

Supervised learning

Labelled training events with feature variables and class labels

Reinforcement learning

Instead of labels, some sort of reward system (e.g. game score)

Goal: maximise future payoff by optimising decision policy

Unsupervised learning

Find similarities in training sample, without predefined categories (no labels)

Discover good internal representation of the input

Not biased by pre-determined classes ⇒ may discover unexpected features!
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Machine learning and particle physicsMachine learning and particle physics

LHC Computing Grid 
200k cores pledge to 
CMS over ~100 sites

CMS Detector 
1PB/s

CMS L1 & High-
Level Triggers 

50k cores, 1kHz

Large Hadron Collider 
40 MHz of collision

CERN Tier-0
 Computing Center 

20k cores

CERN Tier-0/Tier-1
 Tape Storage 
200PB total

LHC  Grid 
Remote Access 
to 100PB of data

Rare Signal 
Measurement 
~1 out of 106

AI

AI

AI

AI

AI

AI

Role of AI: accelerator control, data acquisition, 
event triggering, anomaly detection, new physics 
scouting, event reconstruction, event generation, 
detector simulation, LHC grid control, analytics, signal 
extraction, likelihood free inference, background 
rejection, new physics searches, ...

AI AI

©J.-R. Vlimant

machine learning or deep learning or multivariate in InspireHEP

Up-to-date review of papers

https://github.com/iml-wg/HEPML-LivingReview
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https://inspirehep.net/literature?q=machine learning or deep learning or multivariate
https://github.com/iml-wg/HEPML-LivingReview


Machine learning and particle physicsMachine learning and particle physics

Reduce data dimensionality to allow analysis

Losing information at each simplification step

Improve each step with ML?

Skip one or more steps with ML?
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Machine learning algorithmsMachine learning algorithms

Decision trees

Boosted decision trees

Support vector machines (not today)

Neural networks

Deep neural networks

convolutional NN
recurrent NN (see Georges’ slides)
autoencoders (not today)
graph NN
generative models
. . .
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(Boosted) Decision trees(Boosted) Decision trees

x < 1.53

fail pass

fail pass

y < 0.004

fail pass

0.910.13
fail pass

0.29

z < 30

x < 1.8

passfail

y < 0.1
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BDT in HEP: CMS H → γγ resultBDT in HEP: CMS H → γγ result

CMS-PAS-HIG-13-001

Hard to use more BDT in an analysis:

vertex selected with BDT

2nd vertex BDT to estimate probability to be within 1cm of interaction point

photon ID with BDT

photon energy corrected with BDT regression

event-by-event energy uncertainty from another BDT

several BDT to extract signal in different categories
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http://cds.cern.ch/record/1530524


BDT in HEP: reducing combinatoricsBDT in HEP: reducing combinatorics

tt̄H(bb̄) reconstruction

Match jets and partons in high-multiplicity final state

BDT trained on all combinations

New inputs to classification BDT

Access to Higgs pT, origin of b-jets

Phys. Rev. D 97, 072016 (2018) arXiv:2111.06712 [hep-ex]
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https://dx.doi.org/10.1103/PhysRevD.97.072016
https://arxiv.org/abs/2111.06712
http://www.theses.fr/s189750
http://www.theses.fr/s189455


Neural network zooNeural network zoo

https://www.asimovinstitute.org/

Many possible network structures

Moving away from feature engineering (hand-crafted variables, e.g. with physics
knowledge) to model design (data representation and structure of network)
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https://www.asimovinstitute.org/


Using convolutional neural network in HEPUsing convolutional neural network in HEP

Distinguish highly boosted W jets from QCD jets arXiv:1511.05190

CNN really appropriate with images ⇒ transform inputs into images

Yann Coadou (CPPM) — ML in HEP FunPhys visit CPPM, 6 October 2023 10/18

https://arxiv.org/abs/1511.05190


Graph neural networksGraph neural networks

Data structure not always “simple” sequence

May have more complex structure

Google trends and InspireHEP for “graph neural network”
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Graph structureGraph structure

Each node has features

Each edge can have features

Define adjacency matrix: Aij = δ(edge between i and j)
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GNN in HEP arXiv:2007.13681 [hep-ex]GNN in HEP arXiv:2007.13681 [hep-ex]

hits to tracks calorimeter cells clustering

event classification jet classification

Object classification, event classification, node classification, edge classification, etc.
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https://arxiv.org/abs/2007.13681
https://arxiv.org/abs/2007.13681


New physics as anomaly detectionNew physics as anomaly detection

LHC Olympics 2020

Common training sample with dijet QCD
and Z ′ → XY new physics

Tested on unknown black box

Similar to training set but with different
Z ′/X/Y masses
or background only
or QCD + different signal

Report as complete description of new
physics as possible (masses, decay
modes, number of signal events, etc)

arXiv:2101.08320 [hep-ph]

3 Unsupervised

3.1 Anomalous Jet Identification via Variational Recurrent Neural Network

3.2 Anomaly Detection with Density Estimation

3.3 BuHuLaSpa: Bump Hunting in Latent Space

3.4 GAN-AE and BumpHunter

3.5 Gaussianizing Iterative Slicing (GIS): Unsupervised In-distribution Anomaly

Detection through Conditional Density Estimation

3.6 Latent Dirichlet Allocation

3.7 Particle Graph Autoencoders

3.8 Regularized Likelihoods

3.9 UCluster: Unsupervised Clustering

4 Weakly Supervised

4.1 CWoLa Hunting

4.2 CWoLa and Autoencoders: Comparing Weak- and Unsupervised methods

for Resonant Anomaly Detection

4.3 Tag N’ Train

4.4 Simulation Assisted Likelihood-free Anomaly Detection

4.5 Simulation-Assisted Decorrelation for Resonant Anomaly Detection

5 (Semi)-Supervised

5.1 Deep Ensemble Anomaly Detection

5.2 Factorized Topic Modeling

5.3 QUAK: Quasi-Anomalous Knowledge for Anomaly Detection

5.4 Simple Supervised learning with LSTM layers
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https://arxiv.org/abs/2101.08320


Generative adversarial network (GAN)Generative adversarial network (GAN)

Train jointly two networks
generator: tries to produce synthetic data that looks as real as possible, starting from
(simple) fixed distribution
discriminator: tries to distinguish between real and fake data

Antagonistic objectives (adversarial training):
generator tries to trick discriminator, producing fake data that looks real
discriminator wants to minimise misclassification

Train each alternatively, with combined loss function

“real”
sample D

Z

G
“fake”

D

ar
X
iv
:1
4
0
6
.2
6
6
1
[s
ta
t.
M
L
]

Yann Coadou (CPPM) — ML in HEP FunPhys visit CPPM, 6 October 2023 15/18

https://arxiv.org/abs/1406.2661


Fast simulation with generative modelsFast simulation with generative models

Heavy CPU cost of simulation (> 50% of grid
resources)

MC stats becoming limiting factor in analyses

Replace “full simulation” with approximation

already routinely done, using parameterisation of
showers or library of pre-simulated objects
use GAN to simulate medium-range hadrons in
ATLFAST3 arXiv:2109.02551 Comput Softw Big Sci 6 (2022) 7

also tested VAE ATL-SOFT-PUB-2018-001
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https://arxiv.org/abs/2109.02551
https://doi.org/10.1007/s41781-021-00079-7
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001/


ChatGPT and ML algorithms biasesChatGPT and ML algorithms biases

Typical answer about advantage of machine over human being: unbiased, does not care about
gender, religion, skin colour, etc.

Repeatedly shown to be utterly false (see e.g. Weapons of Math Destruction by Cathy O’Neil)

Why?

data scientist biases in coding algorithm
training data

Example: ChatGPT

175 billion parameters network, trained
on large fraction of all available texts on
the web (300G tokens)
ChatGPT-4: 1.8T parameters, 13T
tokens, trained on 25k Nvidia A100
GPUs for ∼90 days
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175 billion parameters network, trained
on large fraction of all available texts on
the web (300G tokens)
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Also keep in mind the environmental cost of ML algorithm training and usage
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Reference book (March 2022)Reference book (March 2022)

Artificial Intelligence for High Energy Physics https://doi.org/10.1142/12200
Sample Chapter(s)

Chapter 1: Introduction

Contents:

• Introduction (Paolo Cala�ura, David Rousseau and Kazuhiro Terao)

• Discriminative Models for Signal/Background Boosting:

◦ Boosted Decision Trees (Yann Coadou)

◦ Deep Learning from Four Vectors (Pierre Baldi, Peter Sadowski and Daniel Whiteson)

◦ Anomaly Detection for Physics Analysis and Less Than Supervised Learning (Benjamin Nachman)

• Data Quality Monitoring:

◦ Data Quality Monitoring Anomaly Detection (Adrian Alan Pol, Gianluca Cerminara, Cecile Germain and

Maurizio Pierini)

• Generative Models:

◦ Generative Models for Fast Simulation (Michela Paganini, Luke de Oliveira, Benjamin Nachman, Denis

Derkach, Fedor Ratnikov, Andrey Ustyuzhanin and Aishik Ghosh)

◦ Generative Networks for LHC Events (Anja Butter and Tilman Plehn)

• Machine Learning Platforms:

◦ Distributed Training and Optimization of Neural Networks (Jean-Roch Vlimant and Junqi Yin)

◦ Machine Learning for Triggering and Data Acquisition (Philip Harris and Nhan Tran)

• Detector Data Reconstruction:

◦ End-to-End Analyses Using Image Classi�cation (Adam Aurisano and Leigh H Whitehead)

◦ Clustering (Kazuhiro Terao)

◦ Graph Neural Networks for Particle Tracking and Reconstruction (Javier Duarte and Jean-Roch

Vlimant)

• Jet Classi�cation and Particle Identi�cation from Low Level:

◦ Image-Based Jet Analysis (Michael Kagan)

◦ Particle Identi�cation in Neutrino Detectors (Ralitsa Sharankova and Taritree Wongjirad)

◦ Sequence-Based Learning (Rafael Teixeira de Lima)

• Physics Inference:

◦ Simulation-Based Inference Methods for Particle Physics (Johann Brehmer and Kyle Cranmer)

◦ Dealing with Nuisance Parameters (T Dorigo and P de Castro Manzano)

◦ Bayesian Neural Networks (Tom Charnock, Laurence Perreault-Levasseur and François Lanusse)

◦ Parton Distribution Functions (Stefano Forte and Stefano Carrazza)

• Scienti�c Competitions and Open Datasets:

◦ Machine Learning Scienti�c Competitions and Datasets (David Rousseau and Andrey Ustyuzhanin)

• Index

Readership: Graduate students and physicists interested in AI/ML applications to HEP; data scientists and ML

researchers interested in "big science" data analysis and simulation.

We recommend

Chapter 5: Data Quality Monitoring Anomaly Detection

Adrian Alan Pol et al., World Scientific Book

ULTRA-FAST TIMING AND THE APPLICATION OF

HIGH ENERGY PHYSICS TECHNOLOGIES TO

BIOMEDICAL IMAGING

World Scientific Book

Oxygen Consumption and Metabolite Flux of Bovine

Portal-Drained Viscera and Liver

Gerald B. Huntington et al., The Journal of Nutrition,

1987
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https://doi.org/10.1142/12200

