

Physique des saveurs

Justine Serrano serrano@cppm.in2p3.fr

The standard model of particle physics

The standard model of particle physics

What we do know

• 4% of the Universe content: matter, described by the Standard Model

What we do know

What we don't know

• 4% of the Universe content: matter, described by the Standard Model

- 96% of the Universe content: dark matter and dark energy
- Why is Universe made of matter and not antimatter
- Why 3 families in the SM

....

•

Direct search for new particles (LHC experiments ATLAS and CMS)

Direct search for new particles (LHC experiments ATLAS and CMS)

Indirect effects through high precision tests of SM (LHCb, Belle II,...)

$$\Delta t \times \Delta E \approx h/2\pi$$
 —

New particles can appear during a short time, modifying the property of a decay

Indirect effects through high precision tests of SM (LHCb, Belle II,...)

New particles can appear during a short time, modifying the property of a decay

In practice, we can

• Measure quantities precisely predicted by the SM, ex : $B_s \rightarrow \mu \mu$

 $SM = (3.65 \pm 0.23) \times 10^{-9}$

LHCb latest measurement:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46}_{-0.43}^{+0.15}) \times 10^{-9},$$

Look for forbidden decays

Ex: lepton number violating, lepton flavor violating

Observation would be a clear sign of NP!

In practice, we can

• Test properties of SM Ex: lepton flavor universality

$$R_K = \frac{\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^+ \to K^+ e^+ e^-)}$$

The experiments

Belle II at SuperKEKB

SuperKeKb in Japan

- e⁺e⁻ collider, located at KEK, 60km from Tokyo
- Working at 10.58 GeV to produce b quark pairs
- Started in 2019
- Most intense accelerator!

Belle II

Experiment restarting after 1.5 year of shutdown

Belle II collaboration

~1000 physicists In France: Orsay, Strasbourg, Marseille

Belle II collaboration

~1000 physicists In France: Orsay Strasbourg, Marseille

Belle II @CPPM

- Group created in 2019
- 3 seniors / 2 postdocs / 3 PhD
- Activities:
 - Search for lepton flavor violating decays of τ lepton and B meson
 - Tracking performance studies, improvement of tracking algorithms
 - Operation of the silicon vertex detector
 - Development of new vertex detector
 - ...

https://www.cppm.in2p3.fr/Belle2/en/

If interested, contact Justine Serrano (serrano@cppm.in2p3.fr)

LHCb experiment (2011-2018)

Upgraded LHCb (2022-)

LHCb group at CPPM

Main activities of the group:

- Analyses: charged anomalies (semileptonic B decays)
- DAQ electronics (PCI readout boards)
- Trigger (HLT1 on GPU and HLT2 on CPU)
- Preparation for Upgrade II: vertex detector sensors

Lepton flavour universality: $b \rightarrow clv$

Study charged weak current: e.g. $R(D^*) = \frac{BR(B^0 \rightarrow D^{*-}\tau^+\nu_{\tau})}{BR(B^0 \rightarrow D^{*-}\mu^+\nu_{\mu})}$

- Tricky: neutrinos are not reconstructed
- Use event topology for kinematic constraints
- Use machine learning algorithms trained on simulated signal and backgrounds

Lepton flavour universality: $b \rightarrow clv$

Study charged weak current:

$$R(D^*) = rac{BR(B^0
ightarrow D^{*-} au^+
u_ au)}{BR(B^0
ightarrow D^{*-} \mu^+
u_\mu)}$$

All measurements are systematically above SM!

Semileptonic B decays: other than R(D*)

Investigating other observables sensitive to NP:

• Angular distributions:

- LFU observables with electrons: $R_{et}(D^*)$, $R_{eu}(D^*)$
- Decay with other D states: orbital D excitations
 - Master internship and PhD project in 2024
 - Contact Anton Poluektov (<u>Anton.Poluektov@cern.ch</u>)

LHC long-term schedule

Thanks!