### The ATLAS experiment at CERN

Elisabeth Petit on behalf of the ATLAS-CPPM team



Visite des étudiants M1/M2 FunPhys

6<sup>th</sup> of October 2023



Energy frontier to address the big questions



# The LHC project

• Biggest accelerator ever!



- pp (and heavy ions) collisions
- ♦ Centre-of-mass energy: 13.6 TeV
- Collision every 25 ns  $\Rightarrow$  40 million collisions /s
  - 1 Higgs boson /h

# The ATLAS experiment (1)



# ATLAS experiment (2)





## **ATLAS** Collaboration



Afghanitan india Romania Argentia indonesia Russia Argentia Indonesia Russia Argentia Iran Russia Argentia Iran Russia Aratha Iran Russia Bahan Japan Sosaka Bahan Japan Sosaka Bahan Kazahtan Sorenia Bahan Lubis Bahan Sosaka Bahan Kazahtan Sorenia Bahan Kazahtan Sorenia Bahan Madagasar Sosah Arata Badagasar Cada Mangatan Sosah Arata Badagasar Dana Mangatan Sosah Arata Badagasar Cada Mangatan Sosah Arata Badagasar Cada Mangatan Sosah Arata Badagasar Cada Mangatan Sosah Arata Cada Mangatan Sosah Arata Cada Mangatan Sosah Arata Cada Mangatan Jawa Cada Ma

#### ATLAS Collaboration member nationalities

Over 5900 members of 103 nationalities

CDG



- ♦ 14 researchers
- ♦ 27 engineers and technicians
- ♦ 2 post-docs
- ♦ 7 PhD students







### Physics at the LHC/ATLAS (2)

#### ATLAS Heavy Particle Searches\* - 95% CL Upper Exclusion Limits

Status: March 2023

 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ 

 $\sqrt{s} = 13 \text{ TeV}$ 

ATLAS Preliminary

|                         | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>ℓ</i> ,γ                                                                                                                                                                         | Jets†                                                                                                                                                                                                              | $E_{T}^{miss}$                                | ∫£ dt[fb                                                                          | <sup>1</sup> ] Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                       | Reference                                                                                                                                                                |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extra dimen.            | ADD $G_{KK} + g/q$<br>ADD non-resonant $\gamma\gamma$<br>ADD QBH<br>ADD BH multijet<br>RS1 $G_{KK} \rightarrow \gamma\gamma$<br>Bulk RS $G_{KK} \rightarrow WW/ZZ$<br>Bulk RS $g_{KK} \rightarrow tt$<br>2UED / RPP                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2\gamma \\ - \\ 2\gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$                                                      | $ \begin{array}{c} 1 - 4 j \\ - 2 j \\ \geq 3 j \\ - \\ \geq 1 b, \geq 1 J/2 \\ \geq 2 b, \geq 3 j \end{array} $                                                                                                   | Yes<br>–<br>–<br>–<br>–<br>–<br>žj Yes<br>Yes | 139<br>36.7<br>139<br>3.6<br>139<br>36.1<br>36.1<br>36.1                          | Mp         11.2 TeV         n =           Ms         8.6 TeV         n =3           Mth         9.4 TeV         n = 6           Mth         9.55 TeV         n = 6           GKK mass         4.5 TeV         k/Mp           gKK mass         2.3 TeV         k/Mp           KK mass         3.8 TeV         Tir (1                                                                                                                                                                          | = 2<br>3 HLZ NLO<br>6<br>6, $M_D$ = 3 TeV, rot BH<br>$P_I$ = 0.1<br>$P_I$ = 1.0<br>= 15%<br>(1,1), $\mathcal{B}(\mathcal{A}^{(1,1)} \rightarrow tt) = 1$                                                                                              | 2102.10874<br>1707.04147<br>1910.08447<br>1512.02586<br>2102.13405<br>1808.02380<br>1804.10823<br>1803.09678                                                             |
| Gauge bosons            | $\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to bb \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{SSM}\; W' \to tb \\ \mathrm{HVT}\; W' \to WZ \bmod \ell\nu \; \ell\ell' \\ \mathrm{HVT}\; W' \to WZ \to \ell\nu \; \ell\ell' \; \ell' \\ \mathrm{HVT}\; Z' \to WW \; \mathrm{model}\; B \\ \mathrm{HVT}\; Z' \to WW \; \mathrm{model}\; B \\ \mathrm{LRSM}\; W_R \to \mu N_R \end{array}$ | $\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ - \\ 0 \ 2 \ e, \mu \\ 0 \ del \ C \\ 3 \ e, \mu \\ 1 \ e, \mu \\ 2 \ \mu \end{array}$     | -<br>2 b<br>≥1 b, ≥2 J<br>-<br>2 j / 1 J<br>2 j / 1 J<br>2 j / 1 J<br>2 j / 1 J<br>1 J                                                                                                                             | –<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes   | 139<br>36.1<br>36.1<br>139<br>139<br>139<br>139<br>139<br>139<br>139<br>139<br>80 | Z' mass         5.1 TeV           Z' mass         2.42 TeV           Z' mass         2.1 TeV           Z' mass         2.1 TeV           W' mass         6.0 TeV           W' mass         5.0 TeV           W' mass         4.4 TeV           W' mass         4.3 TeV           W' mass         340 GeV           W' mass         3.9 TeV           We mass         5.0 TeV                                                                                                                 | $= 1.2\%$ = 3 , = 1, g_f = 0 = 3 , = 0, = 5 TeV, g_L = g_R                                                                                                                                                                                            | 1903.06248<br>1709.07242<br>1805.09299<br>2005.05138<br>1906.05609<br>ATLAS-CONF-2021-025<br>ATLAS-CONF-2021-043<br>2004.14636<br>2207.03925<br>2004.14636<br>1904.12679 |
| CI                      | Cl qqqq<br>Cl ℓℓqq<br>Cl eebs<br>Cl μμbs<br>Cl tttt                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 e, μ<br>2 e<br>2 μ<br>≥1 e,μ                                                                                                                                                      | 2 j<br>-<br>1 b<br>1 b<br>≥1 b, ≥1 j                                                                                                                                                                               | -<br>-<br>-<br>Yes                            | 37.0<br>139<br>139<br>139<br>36.1                                                 | Λ         21           Λ         1.8 TeV           Λ         2.0 TeV           Λ         2.57 TeV                                                                                                                                                                                                                                                                                                                                                                                            | <b>1.8 TeV</b> $\eta_{LL}^{-}$<br><b>35.8 TeV</b> $\eta_{LL}^{-}$<br>1<br>1<br>$= 4\pi$                                                                                                                                                               | 1703.09127<br>2006.12946<br>2105.13847<br>2105.13847<br>1811.02305                                                                                                       |
| DM                      | Axial-vector med. (Dirac DM)<br>Pseudo-scalar med. (Dirac D<br>Vector med. Z'-2HDM (Dirac<br>Pseudo-scalar med. 2HDM+                                                                                                                                                                                                                                                                                                                                                                                                             | <br>M) 0 e, μ, τ, γ<br>DM) 0 e, μ<br>a multi-channe                                                                                                                                 | 2 j<br>1 - 4 j<br>2 b                                                                                                                                                                                              | –<br>Yes<br>Yes                               | 139<br>139<br>139<br>139                                                          | m <sub>med</sub> 3.8 TeV         g <sub>q</sub> =0.2           m <sub>med</sub> 376 GeV         g <sub>q</sub> =1.           m <sub>z</sub> /         3.0 TeV         tanβ=           m <sub>a</sub> 800 GeV         tanβ=                                                                                                                                                                                                                                                                   | $\begin{array}{l} .25, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm TeV} \\ , \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ = 1, \ g_{\chi} = 0.8, \ m(\chi) = 100 \ {\rm GeV} \\ = 1, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm GeV} \end{array}$                | ATL-PHYS-PUB-2022-036<br>2102.10874<br>2108.13391<br>ATLAS-CONF-2021-036                                                                                                 |
| ГО                      | Scalar LQ 1 <sup>st</sup> gen<br>Scalar LQ 2 <sup>nd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Vector LQ mix gen<br>Vector LQ 3 <sup>rd</sup> gen                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2 \ e, \mu, \geq 1 \ \tau \\ 0 \ e, \mu, \geq 1 \ \tau \\ \text{multi-channe} \\ 2 \ e, \mu, \tau \end{array}$ | $ \begin{array}{c} \geq 2  j \\ \geq 2  j \\ 2  b \\ \geq 2  j, \geq 2  b \\ r \geq 1  j, \geq 1  b \\ 0 - 2  j, 2  b \\ \geq 1  j, \geq 1  b \\ \geq 1  b \end{array} $                                           | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 139<br>139<br>139<br>139<br>139<br>139<br>139<br>139<br>139                       | LQ mass         1.8 TeV $\beta = 1$ LQ mass         1.7 TeV $\beta = 1$ LQ" mass         1.49 TeV $\mathcal{B}(LQ)$ LQ" mass         1.24 TeV $\mathcal{B}(LQ)$ LQ" mass         1.24 TeV $\mathcal{B}(LQ)$ LQ" mass         1.24 TeV $\mathcal{B}(LQ)$ LQ" mass         1.26 TeV $\mathcal{B}(LQ)$ LQ" mass         1.26 TeV $\mathcal{B}(LQ)$ LQ" mass         2.0 TeV $\mathcal{B}(LQ)$ LQ" mass         1.96 TeV $\mathcal{B}(LQ)$                                                       | $1$ $1$ $2_{3}^{U} \rightarrow b\tau) = 1$ $2_{3}^{U} \rightarrow t\nu) = 1$ $2_{3}^{U} \rightarrow t\nu) = 1$ $2_{3}^{U} \rightarrow b\nu) = 1$ $1 \rightarrow t\mu) = 1, Y-M \text{ coupl.}$ $2_{3}^{V} \rightarrow b\tau) = 1, Y-M \text{ coupl.}$ | 2006.05872<br>2006.05872<br>2303.01294<br>2004.14060<br>2101.11582<br>2101.12527<br>ATLAS-CONF-2022-052<br>2303.01294                                                    |
| Vector-like<br>fermions | $ \begin{array}{l} VLQ\;TT \rightarrow Zt + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;T_{5/3}\;T_{5/3}\;T_{5/3} \rightarrow Wt + \\ VLQ\;T \rightarrow Ht/Zt \\ VLQ\;T \rightarrow Hb \\ VLQ\;B \rightarrow Hb \\ VLL\;\tau' \rightarrow Z\tau/H\tau \end{array} $                                                                                                                                                                                                                                                               | $\begin{array}{c} 2e/2\mu/\geq 3e,\mu\\ \text{multi-channe}\\ X  2(SS)/\geq 3e,\mu\\ & 1e,\mu\\ & 1e,\mu\\ & 0e,\mu\\ \text{multi-channe} \end{array}$                              | $\begin{array}{l} u \geq 1 \ b, \geq 1 \ j \\ u \geq 1 \ b, \geq 1 \ j \\ \geq 1 \ b, \geq 1 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 1 \ j \\ \geq 2b, \geq 1j, \geq 1 \\ s \mid \geq 1 \ j \end{array}$ | -<br>Yes<br>Yes<br>J -<br>Yes                 | 139<br>36.1<br>36.1<br>139<br>36.1<br>139<br>139                                  | T mass         1.46 TeV         SU(2)           B mass         1.34 TeV         SU(2)           T g <sub>1</sub> mass         1.64 TeV         B(Ts <sub>2</sub> )           T mass         1.8 TeV         B(2)           Y mass         1.8 TeV         SU(2)           Y mass         1.8 TeV         SU(2)           Y mass         1.8 TeV         SU(2)           Y mass         2.0 TeV         SU(2)           r' mass         898 GeV         SU(2)                                 | t) doublet<br>b) doublet<br>b) doublet<br>c) doublet, $\kappa_T = 0.5$<br>c) singlet, $\kappa_T = 0.5$<br>c) $Wb = 1$ , $c_R(Wb) = 1$<br>c) doublet, $\kappa_B = 0.3$<br>c) doublet                                                                   | 2210.15413<br>1808.02343<br>1807.11883<br>ATLAS-CONF-2021-040<br>1812.07343<br>ATLAS-CONF-2021-018<br>2303.05441                                                         |
| Exctd<br>ferm.          | Excited quark $q^* \rightarrow qg$<br>Excited quark $q^* \rightarrow q\gamma$<br>Excited quark $b^* \rightarrow bg$<br>Excited lepton $\tau^*$                                                                                                                                                                                                                                                                                                                                                                                    | -<br>1 γ<br>-<br>2 τ                                                                                                                                                                | 2 j<br>1 j<br>1 b, 1 j<br>≥2 j                                                                                                                                                                                     | -<br>-<br>-<br>-                              | 139<br>36.7<br>139<br>139                                                         | q* mass         6.7 TeV<br>only μ         only μ           q* mass         5.3 TeV<br>only μ         only μ           b* mass         3.2 TeV<br>τ* mass         A = 4                                                                                                                                                                                                                                                                                                                       | $u^*$ and $d^*, \Lambda = m(q^*)$<br>$u^*$ and $d^*, \Lambda = m(q^*)$<br>4.6 TeV                                                                                                                                                                     | 1910.08447<br>1709.10440<br>1910.08447<br>2303.09444                                                                                                                     |
| Other                   | Type III Seesaw<br>LRSM Majorana $\nu$<br>Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$<br>Multi-charged particles<br>Magnetic monopoles                                                                                                                                                                                                                                                                                                                               | 2,3,4 e, $\mu$<br>2 $\mu$<br>2,3,4 e, $\mu$ (SS<br>2,3,4 e, $\mu$ (SS<br>-<br>-<br>-<br>$\sqrt{s} = 13 \text{ TeV}$                                                                 | 22j $2j$ $3) various$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$                                                                                                                                                          | Yes<br><br>Yes<br><br><br>                    | 139<br>36.1<br>139<br>139<br>139<br>34.4                                          | Nº mass         910 GeV         m(Wr,<br>3.2 TeV         m(Wr,<br>DY protection           H** mass         350 GeV         DY protection         DY protection           H** mass         1.08 TeV         DY protection         DY protection           multi-charged particle mass         1.59 TeV         DY protection         DY protection           monopole mass         2.37 TeV         DY protection         DY protection           100 <sup>-1</sup> 1         100         100 | $V_R$ ) = 4.1 TeV, $g_L = g_R$<br>roduction<br>roduction, $ q  = 5e$<br>roduction, $ g  = 1g_D$ , spin 1/2                                                                                                                                            | 2202.02039<br>1809.11105<br>2101.11961<br>2211.07505<br>ATLAS-CONF-2022-034<br>1905.10130                                                                                |
|                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | partial uata                                                                                                                                                                        | iuil d                                                                                                                                                                                                             | aid                                           |                                                                                   | 10 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mass scale [TeV]                                                                                                                                                                                                                                      |                                                                                                                                                                          |

\*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

# Physics at the LHC/ATLAS (3)

- ♦ Higgs boson discovered 11 years ago
- Couplings measured with a 10-50% precision

- Spin/parity:  $J^{PC} = 0^{++}$ 
  - spin 1 and 2 excluded at > 99% CL





126

127

128

124

125

123

10









# CHC program





- Talented researchers make the difference
  - top-Higgs coupling
    - 2013: expected precision with the HL-LHC: 7-10%
    - 2019, with innovated experimental and theoretical techniques: 4%
  - charm-Higgs coupling
    - until recently thought it was not measurable
    - now prospects thanks to new c-tagging

## Why we need upgrades for the HL-LHC

- Expected number of interactions /bunch crossing (pile-up): 200
  - ATLAS design value: 25
  - better detector needed to maintain tracking, vertexing, b-tagging performance
- Much higher radiation environment
  - total ionisation dose: 7.7 MGy
  - end of Run 3: 1.5 MGy  $\rightarrow$  ATLAS design
- Trigger rate
  - Run 2-3: 100 kHz
  - HL-LHC: 1 or 4 MHz





# Upgrade projects at CPPM

#### • LAr calorimeter

- the detector itself can sustain the growing amount of radiation
- replacement of the entire data acquisition electronics



 use the best available (future) technologies: AIDAQ:
 Development of neural networks for energy reconstruction in the LASP board

- ♦ ITk (new Inner Tracker)
  - micro-electronics



 development of mechanical parts, module loading, participation to production





 development of new pixel sensors (depleted CMOS)

# Performance program at CPPM

- b-tagging
  - distinguish b-jets from c-jets or light-jets
  - b-hadron lifetime of 1.5 ps
    - $\Rightarrow$  flight path of a few mm
    - $\Rightarrow$  secondary vertex



at trigger-level



- Electrons/photons
  - distinguish from jets
  - shower shape in the calorimeter



local expertise on electron reconstruction and photon identification



towards HL-LHC: impact of new calorimeter energy reconstruction on photons and electrons

# Physics program at CPPM (1)



- very rare process:  $\sigma(HH)/\sigma(H) = 0.1\% \Rightarrow 100$ k HH events at the end of HL-LHC

Relationship to electroweak phase transition: matter-antimatter asymmetry, gravitational waves, etc

# Physics program at CPPM (2)

- Two main decay channels for HH:
- ♦ HH → bbγγ (since 2019) Small BR ☺
   Good diphoton resolution ☺
   Relatively small background ☺



- Run 3: ZH and HH measurement



•  $HH \rightarrow b\overline{b}\tau\tau$ 

Sizeable BR <sup>(c)</sup> Relatively small background <sup>(c)</sup>



- New involvement for Run 3
  - concentrate on VBF production



Physics program at CPPM (3)

- ♦ HH spin-off analysis
  - high-mass (250-1000 GeV) scalar particle decaying to bbγγ



#### Charged Higgs

- spin-off analysis of previous ttH analysis
- many models predict additional Higgs bosons: H<sup>±±</sup>, H<sup>±</sup>, A<sup>0</sup> (CP odd), H<sup>0</sup> (CP even), h<sup>0</sup> (SM Higgs)
  - neutrino masses through the type-II seesaw mechanism



- Low m<sub>bb</sub> resonances
  - new!
  - many of these models predict resonances in di-quark events



- regions below 100 GeV are still unexplored
- needs trigger-level analysis



2020

2030

2040



2050

2070

2060

2080

2090

- 2020 update of the European Strategy for Particle Physics and IN2P3 priorities:
  - the highest-priority: FCCee (Higgs factory) next collider
  - feasability of FCChh ( $\sqrt{s} \ge 100$ TeV) by 2025

### <u> </u>K Thank you!





#### Back-up



- ♦ DeJongERC
- ♦ Ursula SFP
- ♦ 10ans Higgs
- ♦ IN2P3 prospects
- Cours Techniques base Détecteurs (eg LHC timeline)