





#### **Tracking DRD – MPGD (Micro-Pattern Gaseous Detectors)**

Fabien Jeanneau

4th FCC/DRD France Workshop, Strasbourg (22-24 Nov. 2023)

### **MPGD** since 1996

•







Micromegas

#### Features:

- High gain (**10<sup>4</sup> to 10**<sup>6</sup>)
- Position resolution ~ 100 µm
- Time resolution < 10 ns
- Large area, low mass, low cost
- High rate capability (~1MHz/cm<sup>2</sup>) :
  - Uniform electric field and fast ion collection

- Excellent radiation hardness and aging
- Materials and manufacturing processes coming from PCB industry
- Versatile architecture and possible technological hybridation
- Very dynamic field of research, lots of applications

### **MPGD** since 1996







µ / MIP creating clusters of e-ion pairs along a

**Micromegas** 

(a) single electron

(I. Giomataris, 1996)

#### Features:

- High gain (**10**<sup>4</sup> to **10**<sup>6</sup>)
- Position resolution ~ 100 µm
- Time resolution < 10 ns
- Large area, low mass, low cost
- High rate capability (~1MHz/cm<sup>2</sup>) :
- Uniform electric field and fast ion collection

- Excellent radiation hardness and aging
- Materials and manufacturing processes coming from PCB industry
- Versatile architecture and possible technological hybridation
- Very dynamic field of research, lots of applications



Max.rate: Up to 100 kHz/cm<sup>2</sup> Spatial res.: ~70-100µm(strip), ~120µm (pixel) Time res.: ~ 8 ns

TOTEM





(d) X-ray y yielding a

UDRIF

GND



Max.rate:500 kHz/cm<sup>2</sup> Spatial res.: ~ cm Time res.: ~ 3 ns

Max.rate:20 kHz/cm<sup>2</sup> Spatial res.: ~120µm Time res.: ~ 12 ns



Cez

### **RD51 since 2009**



- RD51 have been created in 2009 in order to foster and mutualize the R&D effort on MPGD
- Proposal in 2008: « The proposed R&D collaboration, RD51, aims at facilitating the development of advanced gasavalanche detector technologies and associated electronic-readout systems, for applications in basic and applied research. »



### **Micromegas: Atlas NSW**

New Small Wheels (NSW) motivations, installed in 2021:

- Tracking: With an expected luminosity of 7.5x10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>, rate in NSW will be up to 15 kHz/cm<sup>2</sup> (>1.5 MHz / MDT\_tube)
- **Trigger**: reduction of the trigger rate and of the fake-track reconstruction in the  $1.3 < \eta < 2.7$  region of ATLAS











#### **GEM for CMS**



September 2020: 144 GEM GE1/1 chambers installed



Additional station GE2/1 and ME0 → same technical solution successfully

adopted for the GE1/1

#### GE21 Detector System

- 72 chambers arranged in 2 layers installed
- On-chamber and off-chamber
  - 4 triple GEM modules per chamber

ME0 Detector System

(2<h<2.8)

36 Stacks 6 layers each

20<sup>o</sup> Stacks, Module Size

comparable with GE1/1 chamber

but covering high eta region

Background ~ 10<sup>2</sup> higher that

performance point of view

GE2/1, very demanding from

- 20<sup>o</sup> Chambers, layout similar to GE1/1, but covering much larger surface. (1.62<h<2.43)</li>
- hit rate < 2 kHz/cm<sup>2</sup> (GE1/1 was up to 5 kHz/cm<sup>2</sup>)

#### **GE1/1 chamber**

- Triple-GEM chambers
- Gas mixture Ar/CO<sub>2</sub> (70/30%)
- Large area  $O(m^2)$
- Covering 1.5 <  $|\eta| < 2.2$
- 144 trapezoidal Long and Short chambers
- 24 readout sectors per chamber
- 128 radial strips for each sector
- Digital readout
- 72 Super Chambers (2 coupled chambers)
- Each Super Chamber covers 10.15° (overlap)





## **RD51 to DRD1 (MPGD to Gaseous Detectors)**

- DRD1 for MPGD is in the continuity of the existing RD51 with the same kind of organisation
- Inclusion of other technologies (Wire chambers, RPCs, ...)  $\rightarrow$  larger community
- 7 french labs interested: Irfu, Ganil, IJCLab, Polytechnique, Grenoble, LSSB, Lyon
- Scientific organization in **Working Groups**: knowledge, expertise sharing
- R&D projects:
  - **Common projects** → short-term blue-sky R&D (Collaboration Common Funds)
  - Work Packages → long-term projets following strategic ECFA R&D Detector Roadmap (dedicated fundings)



|                                                                                    | #  | Task                                                                                   | Performance Goal                                                                                                                                                                  | DRD1<br>WGs                                      | ECFA     | Comments                                                                                                                                                                                   | Deliv. next 3y                                                                                                                                                                                                                 | Interested Insti-                                                                                                                                                                           |                                                                                         |
|------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| RD5 <sup>4</sup>                                                                   | T1 | Increase pho-<br>tocathode<br>efficiency and<br>develop robust<br>photoconvert-<br>ers | Improve:<br>- Longevity<br>- QE<br>- Extend to the visible<br>range<br>- Rad-hardness up to<br>10 <sup>11</sup> n <sub>eq</sub> /cm <sup>2</sup>                                  | WGS<br>WG3<br>(3.1C),<br>WG6,<br>WG7<br>(7.1-4)  | 1.1      | <ul> <li>Study hydrogenated nanodia-<br/>monds</li> <li>Study diamond-like carbon (DLC)</li> </ul>                                                                                         | <ul> <li>Demonstrate the performance of nanodiamond-powder photocathodes in terms of their chemical reactivity and ageing</li> <li>Provide a detailed characterization of QE of new photocathode materials, and DEC</li> </ul> | INFN-TS, CERN,<br>HIP, IRFU/CEA,<br>NISER<br>Bhubaneswar,<br>U Coimbra,<br>LMU, U Aveiro,<br>RBI, Wigner,<br>BNL                                                                            | ors)                                                                                    |
| <ul> <li>Scienti</li> <li>R&amp;D pi</li> <li>Con</li> <li>Wor<br/>fund</li> </ul> | T2 | IBF suppres-<br>sion, discharge<br>protection                                          | <ul> <li>IBF reduction down to 10<sup>-4</sup> and below</li> <li>Stable, high gain operation up to 10<sup>5</sup>-10<sup>6</sup></li> <li>Operation in magnetic field</li> </ul> | WG1,<br>WG4,<br>WG7<br>(7.1,5)                   | 1.2      | <ul> <li>Multi-MICROMEGAS detectors</li> <li>Zero IBF detectors</li> <li>New structures (Cobra, M-THGEM,) and coating materials (Mo)</li> <li>Grids: bi-polar grids, gating GEM</li> </ul> | <ul> <li>Demonstrate a small-area<br/>new structure or stack of<br/>structures providing stable<br/>operation at high gains and<br/>low IBF performance</li> </ul>                                                             | USTC, RIKEN,<br>INFN-TS, INFN-<br>PD, INFN-PV,<br>TUM, WIS,<br>U Bonn, HIP,<br>IRFU/CEA,<br>NISER<br>Bhubaneswar,<br>CERN, MSU,<br>SBU, JLab, U<br>Coimbra, IPPLM,<br>U Aveiro, RBI,<br>BNL | ap (dedicated                                                                           |
| Inclusio     ECFA Roadman                                                          | T3 | Gas studies                                                                            | <ul> <li>Develop eco-friendly<br/>gas radiators and, in<br/>particular, explore alter-<br/>natives to CF<sub>4</sub></li> </ul>                                                   | WG1,<br>WG3<br>(3.2A),<br>WG4,<br>WG7<br>(7.2,4) | 1.1, 1.3 | <ul> <li>Identification of eco-friendly gas<br/>mixtures free from greenhouse<br/>gases</li> <li>Alternatives to CF<sub>4</sub> for optical<br/>readout</li> </ul>                         |                                                                                                                                                                                                                                | CERN, NISER<br>Bhubaneswar,<br>HUJI, GSSI,<br>INFN-PD,<br>INFN-TS, AGH-<br>Krakow, IPPLM,<br>USC/IGFAE, U<br>Aveiro                                                                         | Packages<br>R&D tasks                                                                   |
| DETECTOR RE<br>DETECTOR CO                                                         | T4 | FEE                                                                                    | <ul> <li>Stability at high input<br/>capacitance</li> <li>Low noise</li> <li>Large dynamic range</li> </ul>                                                                       | WG5                                              | 1.2      |                                                                                                                                                                                            | - Present an ASIC con-<br>cept/prototype                                                                                                                                                                                       | IFUSP, NISER<br>Bhubaneswar,<br>INFN-PD,<br>INFN-TS, AGH-<br>Krakow, IPPLM,<br>U Manchester,<br>MSU, SBU, JLab,<br>DIPC                                                                     | s, simulations and<br>gaseous detectors<br>ction<br>acilities<br>acilities              |
| DRDT1.3 Develop er<br>areas with<br>DRDT1.4 Achieve hig                            | T5 | Enhance me-<br>chanics                                                                 | <ul> <li>High-pressure opera-<br/>tion</li> <li>Improve gas tightness</li> </ul>                                                                                                  | WG6                                              | 1.3      | MDCD: DICOSEC                                                                                                                                                                              |                                                                                                                                                                                                                                | NISER<br>Bhubaneswar,<br>HUJI, GSSI,<br>USC/IGFAE,<br>CERN, MSU,<br>JLab, DIPC,<br>IPPLM, RBI                                                                                               | Detector physic<br>software tools<br>Electronics for<br>Detector produ<br>Common test f |
| cea                                                                                | 10 | surements                                                                              | $\sim$ 100 ps<br>- Spatial resolution $\leq$<br>1 mm                                                                                                                              | wG7.2                                            |          | - MPGD: PICOSEC                                                                                                                                                                            |                                                                                                                                                                                                                                | BNL                                                                                                                                                                                         | 11                                                                                      |

### Possible use of MPGDs in future detectors at FCC-ee



2T field
Muon stations: 6 layers RPC



#### MPGD for muon systems: example of µ-RWELL



#### **Requirements for future collider experiments :**

- Muon identification with highest efficiency (98%) and at least 3 points along a muon track
- Resolve bunch crossings → time resolution ~ 1 ns
- Fast Level-1 trigger response should be achievable
- Momentum resolution:  $\sigma p_T / p_T^2 \sim 1-2 \times 10^{-5} \text{ GeV}^{-1}$  (1 to 2% at 1 TeV)
  - Magnetic field of 2 to 4 Tesla  $\rightarrow$  spatial resolution of a few hundred microns
- Production of detector parts in industry.
- Eco friendly gas mixtures

Example of the IDEA detector (>2030):

- 3 muons stations in the return yoke
- Total area → 3000 m<sup>2</sup> (225 m<sup>2</sup> for PS)
- Performance:
  - Max. rate  $\rightarrow$  <1 kHz/cm<sup>2</sup> (10 kHz/cm<sup>2</sup> for PS)
  - Spatial res.  $\rightarrow$  ~150 µm (60-80 µm for PS)
  - Time res.  $\rightarrow$  5-7 ns





### **Muon detectors for FCC-hh**



• Forward Muon System (4 layers): 320 m<sup>2</sup>

|                                 |                          |      | Hum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | State of the state | 2 B       | and the second     | 8     |        |    |  |
|---------------------------------|--------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|-------|--------|----|--|
|                                 |                          | DRDT | Sol of the | 2030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2030-2035 | 2035- 1<br>2035- 1 | 9 3 E | K CCAN | 45 |  |
|                                 | Bad-hard/loopevity       | 11   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 2040               |       |        |    |  |
|                                 | Time resolution          | 1.1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                    |       |        |    |  |
| -                               | Fine granularity         | 1.1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                    |       |        |    |  |
| hnologies:<br>M, resistive GEM, | Gas properties (eco-gas) | 1.3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                    |       |        |    |  |
| scropixel<br>Rwell, µPIC        | Spatial resolution       | 1.1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                    |       |        |    |  |
|                                 | Rate capability          | 1.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                    |       |        |    |  |

Current MPGD technologies used for the HL-LHC Muon System will be applicable for most of the FCC detector areas

| Atlas Muon System @ HL-LHC (kHz/cm²) |          |  |  |  |  |  |
|--------------------------------------|----------|--|--|--|--|--|
| MDTs Barrel                          | 0.28     |  |  |  |  |  |
| MDTs Endcap                          | 0.42     |  |  |  |  |  |
| RPCs                                 | 0.35     |  |  |  |  |  |
| TGCs                                 | 2        |  |  |  |  |  |
| NSW (Micromegas + sTGCs)             | Up to 25 |  |  |  |  |  |



Muon syste Proposed te PC, Multi-Gi Acromegas,

More R&D studies are needed for the very forward region:

- Radiation hardness
- Hydrocarbon-free gas mixtures

#### **Trackers: examples**

- 4 m<sup>2</sup> of Micromegas detectors (resistive, bulk)
- Forward Detectors (Disks)
  - High particle rate (30MHz)  $\rightarrow$  ~30 kHz/cm<sup>2</sup>
  - 0.7% X/X0
  - $\bullet$  Spatial resolution better than 200  $\mu m$
  - Time resolution better than 20 ns

#### Cylindrical Barrel (Curved Tiles)

- High magnetic field (5T)
- Less than 0.5% X/X0 per layer (6 layers, 10 cm)
- $\bullet$  Spatial resolution better than 200  $\mu m$
- Time resolution ~20 ns



### **Trackers: examples**

- 4 m<sup>2</sup> of Micromegas detectors (resistive, bulk)
- Forward Detectors (Disks)
  - High particle rate (30MHz)  $\rightarrow$  ~30 kHz/cm<sup>2</sup>
  - 0.7% X/X0
  - Spatial resolution better than 200 μm
  - Time resolution better than 20 ns

#### Cylindrical Barrel (Curved Tiles)

- High magnetic field (5T)
- Less than 0.5% X/X0 per layer (6 layers, 10 cm)

CLAS12

- Spatial resolution better than 200 μm
- Time resolution ~20 ns

#### COMPASS

- Too high flux for strips in center
  - Expected particle flux > 10 MHz/cm<sup>2</sup>
  - > 500 kHz/channel with strip read-out  $\rightarrow$  would lead to 10% electronics inefficiency
- **Rectangular pixels + strips in periphery** 
  - 400  $\mu$ m pitch pixels, like strips  $\rightarrow$  same spatial resolution
  - 1280 pixels + 1280 strips
  - 40x40 cm2 total active area
  - Material budget ~0.38% X0 per plane



#### Hybrid structure: GEM + Micromegas







80 cm

Active area

pixels 05 cm

1280

6.25x0.4 mm2



50 mm

..... .....

25 mm

128 ch.

onnector



### **MPGD R&D axes**

- Spatial resolution: typical 100 µm
  - Fine granularity  $\rightarrow$  large elx channels
  - Charge spreading → resitivity vs rate
  - Capacitive sharing (2D readout)
- Limitations to time resolution: typical few ns
  - Gas mixture (greenhouse gases issue)
  - Field homogeneity (flat electro-formed meshes for MM vs woven meshes)
- Simplified architecture  $\rightarrow$  single-stage design
  - Resistive anodes needed (trade-off with rate capability)
  - Less material budget
  - Advantage for assembly, mass production and cost (Mosaic)
  - Cylindrical shape
- Aging studies
  - Material aging (DLC)
  - Resistivity vs time and radiations





17

https://doi.org/10.1016/j.nima.2022.167782

Cylindrical low-mass µRWELL (for Super Charm Tau Factory)

### Industrialization: example of Atlas NSW

- Large area (~1000 m<sup>2</sup>)
- Mass production: 2800 boards / 32 references
- Large element size: up to 45 x 220 cm<sup>2</sup>
- PCB manufacturing technology
- Quality Control

Full production in industry 2 companies: ELVIA (FR), ELTOS (IT)





See P. lengo (https://indico.cern.ch/event/1219224/contributions/5130760/)





- In the face of concerns about climate change, we need to find alternatives to greenhouse gases (CF<sub>4</sub>, C<sub>4</sub>F<sub>10</sub>, SF<sub>6</sub>, ...) extensively used for time resolution, mitigation of aging phenomena, etc.
- Reduction of industrial production will make procurement difficult
- Aging and performance studies are fondamental  $\rightarrow$  dedicated WG in DRD1
- R&D axes:
  - Recirculation
  - Recuperation
  - Alternative gas mixtures
  - Destruction

Long term irradiation studies on MM (NSW) @ GIF++

137Cs 662 keV Gammas ~11.6 TBq

## **Aging effects**

See talks by

F. Sauli, M. Titov and V. D'Amico in 3rd International Aging Conference 2023 https://indico.cern.ch/event/1237829/contributions/5637200/ https://indico.cern.ch/event/1237829/contributions/5637193/ https://indico.cern.ch/event/1237829/contributions/5609449/

- Aging studies are needed on:
  - New components (frame, oring, insulators, ...)
  - New architecture
  - Gas mixtures
- Different radiation types (X, n, gammas, ...)
- Very difficult to extrapolate a necessarily short aging period compared to long-term experience near future accelerators.









#### Conclusion

- MPGD technologies are suitable to the future FCC environment and are very good options for muon chambers and, possibly, next-generation trackers (or time detector around Drift Chamber or TPC).
- Very large unity modules, as in Atlas NSW, is not mandatory and a mosaic geometry is certainly a good option to study (wrt production, cost, maintenance, ...)
- Aging studies are a first importance as well as problematics related to the greenhouse gas mixture
- Scaling from small prototypes to large areas need a strong development plan (prototype policy)
- A lot of proposals for µRWELL technology → very good results but newest MPGD technology (never installed in an experiment...)





# Merci !