The GRAiNITA project: status report with a focus on the cosmic test bench

S. Barsuk¹,). Beschyko⁴, D. Breton¹, A. Boyarintsev², I. Boyarintseva^{2,1}, H. Chanal³, A. M. Dubovik², G. Hull¹, A.Kotenko⁴, J. Lefrancois¹, S. Monteil³, M-H Schune¹, N.Semkiv⁴, I. Tupitsyna², M. Yeresko³

¹ Université Paris-Saclay, CNRS-IN2P3, IJCLab, Orsay, France
² Institute of Scintillation Materials of the National Academy of Science of Ukraine, Kharkiv, Ukraine
³ Université Blaise Pascal, CNRS-IN2P3, LP-Clermont, Aubiere, France
⁴ Kyiv National Taras Shevchenko University Ukraine

+ Carlos Dominguez Goncalves, Brice Geoffroy, Miktat Imre, Bernard Mathon, Sebastien Olmo, Denis Reynet (Mechanics)

The overall idea (in a nutshell)

Inspired by LiquidO technique for neutrino detector (A. Cabrera et al. LiquidO Commun Phys 4, 273 (2021))

Typical sampling calorimeters: $\frac{\sigma_E}{E} \sim \frac{10\% - 15\%}{\sqrt{E}}$

Crystal calorimeters :

$$\frac{\sigma_E}{E} \sim \frac{1\% - 2\%}{\sqrt{E}}$$

Requirements:

- fine sampling
- scintillation light locally contained

A possible candidate: ZnWO₄

	BGO	ZnWO ₄
Effective Z	74	61
Density (g/cm^3)	7.13	7.87
Refractive index	2.15	2.0 - 2.3
Light yield (photons/MeV)	~ 9000	~ 9000
Peak emission wavelength (nm)	480	480
Decay time (μs)	0.3	20
Radiation length (cm)	1.12	1.20
Molière radius (cm)	2.26	1.98

ISMA has done specific R&D and has produced grains & plates of ZnWO₄

- "flux method" production of ZnWO₄ is under control
- ~ 1kg of $ZnWO_4$
- grains of BGO (200 g)
- small plates of BGO & of ZnWO₄

Price reduction ~ 2.5 for ZnWo4 wrt crystal

WLS fiber selection

Absorption spectra for Y-11, O-2 and R-3 fibers from Kuraray and emission spectra for BGO and ZnWO₄

	Relative effic)	
Fiber type	ZnWO ₄ grains	BGO grains	
	(~ 9 mm)	(~ 9 mm)	
O-3(300)	100	100	
O-2(200)	104	104	preferred choice
Y-11(200)	44	98	
R-3(100)	60	n.a.	

Cosmic rays test bench

determine the number of photo-electrons

- Active volume = $2.8 \times 2.8 \times 6 \text{ cm}^3$ (~200 g of ZnWO₄)
- Fibers spacing: 7 mm
- o 16 fibers read-out by SiPM
- o Possibility to repeat the study with BGO
- o Blue/Green LED injected in the middle
- o Cosmic rays triggering

Real object and test bench !

No reflective material at the end of the fibers

Prototype characterization

Centrality =
$$\frac{4 \ central \ channels}{Sum}$$

dark current noise subtracted (about 2% for the central fibers)

Sum

External medium	Mean	
	(Sum)	
Air (n=1)	1052.9 ± 1.1	
Water (n=1.33)	1232.8 ± 1.1	
Ethylene-glycol (n=1.43)	1196.1 ± 1.1	

- Larger signal with liquids
- Small difference between EGL & H2O is of no concern for the cosmic test

Total signal depends upon :

- amount of light emitted by the depolished part of the fiber (measured to be lower with liquids than in air)
- better matching between the medium and the ZnWO4 refractive indices → smaller impact of the absorption in the grains
- efficiency of the WLS fibers for the signal collection varies with the medium refractive index.

Centrality

External medium	Mean	
	(Centrality)	
Air (n=1)	0.6866 ± 0.0005	
Water (n=1.33)	0.5886 ± 0.0005	
Ethylene-glycol (n=1.43)	0.5590 ± 0.0005	

ZnWO4 and medium refractive indices more different \rightarrow light is more confined (the photons have higher probability to bounce back and to stay closer of the emission point)

First cosmic rays results

Rate is low (~4 cosmics per hour)

 $+ H_2O$

ZnWO₄

+ EGL

Larger signal when the refractive index is better matched with ZnWO4

Fit : G⊗Landau

Expected energy deposit by a cosmic muon in this 6 cm high device: 40 MeV

→ ~ 10 000 photo-electrons/GeV
opens the road to a statistical fluctuation of 1% /sqrt(E) due to photon statistics

What's next ?

- Study of the heavy liquid
- Similar study with BGO
- Another test bench to characterize the uniformity of response (μ close to a fiber or half-way) and the angular dependence of response. Constant term in the energy resolution

- Test beam with muons
- \circ A full-size module demonstrator (17 × 17 × 40 cm3) (25X0 in depth)