

4th FCC / DRD France Workshop Strasbourg, Nov. 222-24, 2023

Paolo Giacomelli **INFN Bologna**

The IDEA detector concept - Paolo Giacomelli

Innovative Detector for e+e- Accelerator

- New, innovative, possibly more costeffective concept
 - □ Silicon vertex detector
 - Short-drift, ultra-light wire chamber
 - Dual-readout calorimeter
- Thin and light solenoid coil inside
 - calorimeter system
 - Small magnet \Rightarrow small yoke
- \Box Muon system made of 3 layers of μ -RWELL detectors in the return yoke

https://pos.sissa.it/390/

The IDEA detector concept - Paolo Giacomelli

Innovative Detector for e+e-Accelerator

 New, innovative, possibly more costeffective concept

- □ Silicon vertex detector
- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside
 - calorimeter system
 - Small magnet \Rightarrow small yoke
- \Box Muon system made of 3 layers of μ -
 - RWELL detectors in the return yoke

https://pos.sissa.it/390/

Acknowledgments I need to thank many colleagues, in particular: F. Bedeschi

Beam pipe: R~1.0 cm

FUTURE CIRCULAR Vertex detector: IDEA

Inspired by ALICE ITS based on MAPS technology, using the ARCADIA R&D program and AtlasPix3

 \Box Pixels 25 × 25 μ m² (with developments to even smaller pixels)

•Light

COLLIDER

 \Box Inner layers: 0.3% of X₀ / layer

- \Box Outer layers: 1% of X₀ / layer
- •Performance:
- \Box Point resolution of ~3 μ m
- \Box Efficiency of ~100%
- Extremely low fake rate hit rate

- Vertex design based on:
 - ARCADIA inner 3 layers
 - Air cooled

- Vertex design based on:
 - ARCADIA inner 3 layers
 - Liquid cooled

- Vertex design based on:

 - Liquid cooled

FUTURE CIRCULAR COLLIDER **IDEA:** integration of vertex detector Inner and outer vertex trackers

- Inner vertex detector supported by the beam pipe Outer vertex detector (2 barrel and 6 disks) fixed to the support tube
- Inside the same volume of the support tube that holds also the LumiCal Minimal number of detector module variants
- One module type only for the Vertex
- One module type only for the Outer barrel and disks

See talk by F. Fransesini for the interaction region layout

Momentum measurement

23/11/2023

Momentum measurement

Z or H decay muons in ZH events have rather low pt

Transparency more important than asymptotic resolution

σ_{pt}/pt

FUTURE CIRCULAR COLLIDER Drift chamber

- IDEA: Extremely transparent Drift Chamber
- □ Gas: 90% He 10% iC₄H₁₀
- Radius 0.35 2.00 m
- □ Total thickness: 1.6% of X₀ at 90°
 - Tungsten wires dominant contribution
- □ 112 layers for each 15° azimuthal sector
- max drift time: 350 ns

30% He/ 10% C₄H₁₀ – All stereo – $\sigma \sim 100 \ \mu m$ Small cells, max drift time ~ 400 ns

≫ ϑ=14°

tracking efficiency **ε** ≈ 1 for ϑ > 14° (260 mrad) 97% solid angle

30% He/ 10% C₄H₁₀ – All stereo – $\sigma \sim 100 \ \mu m$ Small cells, max drift time ~ 400 ns

FUTURE **Drift chamber** CIRCULAR COLLIDER

- In general, tracks have rather low momenta ($p_T \leq 50$ GeV) Transparency more relevant than asymptotic resolution
- Drift chamber (gaseous tracker) advantages
 - Extremely transparent: minimal multiple scattering and secondary interactions
 - \Box Continuous tracking: reconstruction of far-detached vertices (K⁰_S, Λ , BSM, LLPs)
 - Outstanding Particle separation via dE/dx or cluster counting (dN/dx)
 - \Rightarrow >3 σ K/ π separation up to ~35 GeV

FUTURE CIRCULAR COLLIDER **Cluster counting**

Cluster counting x2 better than dE/dx > Poisson vs . Landau \rightarrow no large tails Sample signal few $GHz \rightarrow$ on detector electronics R&D

counting peaks

08/02/2022

Drift chamber future plans

> Understand details of cluster counting performance Build large mechanical prototype (few years) Build full length functioning prototype with few cells (few years) Develop on-detector cluster counting electronics (few years)

Towards a drift chamber TDR

- \diamond Complete mapping of dN/dx data in all relevant $\beta\gamma$ regions (few years)

Recent new activity with INFN-GE/(TO)

> Match time and position resolution

The IDEA detector concept - Paolo Giacomelli

FUTURE CIRCULAR **Resistive LGAD** COLLIDER

The IDEA detector concept - Paolo Giacomelli

FUTURE CIRCULAR COLLIDER Superconducting solenoid

- Ultra light 2 T solenoid:
 - ➤ Radial envelope 30 cm
 - \succ Single layer self-supporting winding (20 kA)

Cold mass: $X_0 = 0.46$, $\lambda = 0.09$

> Vacuum vessel (25 mm Al): $X_0 = 0.28$

Can improve with new technology

• Corrugated plate: $X_0 = 0.11$

 \bullet Honeycomb: $X_0 = 0.04$

C: Static Structural

Figure Unit: MPa Time: 1

Courtesy of H. TenKate

Alternate Cherenkov fibers Scintillating fibers

~2m long capillaries

Newer DR calorimeter bucatini calorimeter)

Scintillation fibers

Cherenkov fibers

- Measure simultaneously:
 - \succ Scintillation signal (S)
 - \succ Cherenkov signal (Q)

~2m long capillaries

Newer DR calorimeter bucatini calorimeter)

Scintillation fibers

Cherenkov fibers

FUTURE CIRCULAR COLLIDER **Dual Readout Calorimetry**

0.4 1.5 1.0 \bigcirc

Alternate Cherenkov fibers Scintillating fibers

Measure simultaneously:

- \succ Scintillation signal (S)
- \succ Cherenkov signal (Q)
- Calibrate both signals with e-

~2m long capillaries

Newer DR calorimeter bucatini calorimeter)

Scintillation fibers

Cherenkov fibers

FUTURE CIRCULAR COLLIDER **Dual Readout Calorimetry**

0.4 1.5 1.0 \bigcirc

Alternate Cherenkov fibers Scintillating fibers

- Measure simultaneously:
 - \succ Scintillation signal (S)
 - \succ Cherenkov signal (Q)
- Calibrate both signals with e-
- \clubsuit Unfold event by event f_{em} to obtain corrected energy

~2m long capillaries

Newer DR calorimeter bucatini calorimeter)

Scintillation fibers

Cherenkov fibers

FUTURE CIRCULAR COLLIDER **Dual Readout Calorimetry**

0.4 1.5 1.0

Alternate Cherenkov fibers Scintillating fibers

- Measure simultaneously:
 - \succ Scintillation signal (S)
 - \succ Cherenkov signal (Q)
- Calibrate both signals with e-
- \clubsuit Unfold event by event f_{em} to obtain corrected energy

$$S = E[f_{em} + (h/e)_{S}(1 - f_{em})]$$

$$C = E[f_{em} + (h/e)_{C}(1 - f_{em})]$$

$$E = \frac{S - \chi C}{1 - \chi} \quad \text{with:} \quad \chi = \frac{1 - (h/e)_{S}}{1 - (h/e)_{C}}$$

~2m long capillaries

Newer DR calorimeter bucatini calorimeter)

Scintillation fibers

Cherenkov fibers

Full GEANT4 implementation of the DR calorimeter

FUTURE CIRCULAR COLLIDER **Dual Readout Calorimeter**

International collaboration: ➤ TTU (USA), Sussex (UK), several universities (Korea – 2 M\$/5 yr), Chile > Princeton, Maryland (USA), CERN for crystal extension EM prototype built and tested on beams (DESY/CERN)

17

International collaboration: ➤ TTU (USA), Sussex (UK), several universities (Korea – 2 M\$/5 yr), Chile > Princeton, Maryland (USA), CERN for crystal extension EM prototype built and tested on beams (DESY/CERN)

23/11/2023

Full containment hadronic prototype in progress ≻Hidra2 call CSN5

1 Module: 5 MMs ~ 13 × 13 cm² 5120 fibres

1 MiniModule: $64 \times 16 = 1024$ fibres in total (512 S + 512 C)

The IDEA detector concept - Paolo Giacomelli

DR calorimeter COLLIDER

Full containment hadronic prototype in progress Hidra2 call CSN5

Full containment hadronic prototype in progress ≻Hidra2 call CSN5

1 readout board serves 64 front-end boards with grouping

FUTURE CIRCULAR **Dual readout future plans**

- Complete construction/test of Hidra2 prototype (two years) > Demonstrate resolution with full containment Develop scalable readout electronics (few years) Optimize metal matrix mechanics for large production (few years) Develop mechanical model of full system with services (few years)
- Towards a DR calorimeter TDR

- ECAL layer:
 - PbWO crystals
 - front segment 5 cm (\sim 5.4 X₀)
 - rear segment for core shower
 - $(15 \text{ cm} \sim 16.3 \text{ X}_0)$
 - I0x10x200 mm³ of crystal
 - 5x5 mm² SiPMs (10-15 um)

1x1x5 cm³ PbWO

1x1x15 cm³ PbWO

The IDEA detector concept - Paolo Giacomelli

FUTURE CIRCULAR COLLIDER Crystal option

- 20 cm PbWO_4
- $\circ \sigma_{\rm EM} \approx 3\% / \sqrt{E}$
- **DR** w. filters
- Timing layer
 - > LYSO 20-30 ps
- PF for jets

Jet resolution

The IDEA detector concept - Paolo Giacomelli

FUTURE CIRCULAR COLLIDER **Crystal option future plans**

- Optimize crystal choice (few years)
- Develop scalable readout electronics (few years)
- Re-optimize fiber DR calorimeter (few years)
- Develop mechanical model of full system with services (few years)

Towards an EM calorimeter TDR

The IDEA detector concept - Paolo Giacomelli

FUTURE CIRCULAR COLLIDER μ-RWELL technology

The μ -RWELL is composed of only two elements:

- µ-RWELL_PCB
- drift/cathode PCB defining the gas gap

 μ -RWELL PCB = amplification-stage \oplus resistive stage ⊕ readout PCB

μ-RWELL operation:

- A charged particle ionises the gas between the two detector elements
- Primary electrons drift towards the μ-RWELL PCB (anode) where they are multiplied, while ions drift to the cathode
- The signal is induced capacitively, through the DLC layer, to the readout PCB
- HV is applied between the Anode and Cathode PCB electrodes
- HV is also applied to the copper layer on the top of the kapton foil, providing the amplification field

(*) G. Bencivenni et al., "The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD", 2015_JINST_10_P02008)

The IDEA detector concept - Paolo Giacomelli

Preshower and muon detector

Preshower Detector

High resolution before the magnet to improve cluster reconstruction

Efficiency > 98% Space Resolution < 100 μm Mass production Optimization of FEE channels/cost

Endcap Preshower

Similar design for the Muon detector

Similar design for the Muon detector

Muon Detector

Identify muons and search for LLPs

Efficiency > 98% Space Resolution < 400 μm Mass production Optimization of FEE channels/cost

Detector technology: µ-RWELL

50x50 cm² 2D tiles to cover more than 4330 m²

Preshower

pitch = 0.4 mm FEE capacitance = 70 pF 1.3 million channels

<u>Muon</u>

pitch = 1.2 mm FEE capacitance = 220 pF 5 million channels

Ongoing R&D Click here for more R&D information

01/06/2022

FUTURE CIRCULAR COLLIDER **ARCADIA MD3 test**

♦ 3 engineering runs with:

- full-scale DMAPS
- sensor R&D (monolithic FD-strips and readout, fast sensors with gain layer)
- **Main Demonstrator chip:**

Cosmic ray data

High rate capability (100 MHz/cm²) architecture on a scalable 512x512 pixel matrix (25 μm pitch) MD3

• measured 30 mW/cm² at full-speed (16 data Tx active) and 10 mW/cm² on low-rate mode (1 data Tx active)

FUTURE CIRCULAR COLLIDER Silicon detectors: ATLASPix3

- Based on ATLASPIX3 R&D
 - **50x50** μm²
 - ► Up to 1.28 Gb/s downlink
 - TSI 180 nm process
 - ► 132 columns of 372 pixels
- Active length (r-phi x z)
 - ▶ 18.6 mm x 19.8 mm
- Module is made of 2x2 chips
- Power goal 100 mW/cm² (175 now)

The IDEA detector concept - Paolo Giacomelli

FUTURE CIRCULAR **Resistive LGAD** COLLIDER

Recent new activity with INFN-GE/(TO)

Match time and position resolution

The IDEA detector concept - Paolo Giacomelli

FUTURE CIRCULAR **Resistive LGAD** COLLIDER

Recent new activity with INFN-GE/(TO)

Match time and position resolution

Cost reduction is major area of R&D

FUTURE CIRCULAR COLLIDER **2020 Dual Readout prototype**

Electromagnetic dimensions of 10x10x100 cm³ 9 towers containing 16x20 capillaries (160 C and 160 S) Capillary tube with outer diameter of 2 mm and inner diameter of 1.1 mm 1-mm-thick fibers

Fiber guiding system

01/06/2022

Full prototype - 9 towers

Single tower

"Bucatini calorimeter"

Front end board housing 64 SiPM

SN D 2 64 SIPM to FERS-5200 Board v1.0

Hamamatsu SiPM: S141 **PS Cell size:** 15 μ*m*

Readout Boards CAEN A5202

60-1	315
------	-----

M. Lucchini

optimized for scintillation light detection

cherenkov detection resp.

Event display

Sensible improvement in jet resolution using dual-readout information combined with a particle flow approach \rightarrow 3-4% for jet energies above 50 GeV M. Lucchini

crystals + IDEA w/ DRO + pPFA

μ-RWELL: Test beam 2021

140-180 GeV/c muon and pion beam Operated in $Ar/CO_{2}/CF_{4}$ (45/15/40)

> 1- Signal shape (cluster charge, cluster size) 2 - Detector performance (efficiency, space resolution)

- a) Design optimization:
- different HV filter applied
- b) Detector characterization
- HV scan at 0°
- HV scan at different angles and drift field

New µ-RWELL prototypes with 40 cm long strips

strips

7 μ -RWELL prototypes with resistivity varying between 10 and 80 MOhm/□ will allow to define best resistivity for final 50x50 cm² detector

LNF BOLOGNA **FERRARA** TORINO

FUTURE CIRCULAR Muon and pre-shower future plans

Complete test of large 2D chamber design (50x50 cm²) Complete readout electronics based on TIGER chip (next years) Develop chamber production plan with industry (few years) Develop plan for layout on detector with services (few years)

Towards a Muon/pre-shower TDR

(next year)

Status of Simulation of IDEA concept

FASTSIM Delphes IDEA card used for performance studies FCCSW

Very sophisticated compared to default. Latest additions: Vertexing, LLP, PID, dN/dx, dE/dx

FULLSIM: standalone GEANT4 description

- Fully integrated geometry
- Output hits and reco tracks converted to EDM4HEP
- Ready for PFlow development and other reconstruction frameworks/algorithms (ACTS, Pandora etc) in FCCSW

FUTURE CIRCULAR COLLIDER Some considerations

Finally The IDEA detector concept was originally conceived by several Italian groups

The IDEA detector concept - Paolo Giacomelli

Finally The IDEA detector concept was originally conceived by several Italian groups

collaboration

Clearly if this detector will be built, it will have to be a <u>large international</u>

The IDEA detector concept - Paolo Giacomelli

UTURE **Some considerations**

The IDEA detector concept was originally conceived by several Italian groups

- collaboration
 - France could provide a fundamental contribution to several areas:

Clearly if this detector will be built, it will have to be a <u>large international</u>

The IDEA detector concept - Paolo Giacomelli

The IDEA detector concept was originally conceived by several Italian groups

- Clearly if this detector will be be collaboration
 - France could provide a fundamental contribution to several areas:
 - Silicon detectors: silicon sensors, readout electronics, mechanics

Clearly if this detector will be built, it will have to be a large international

The IDEA detector concept was originally conceived by several Italian groups

- Clearly if this detector will be be collaboration
 - France could provide a fundamental contribution to several areas:
 - Silicon detectors: silicon sensors, readout electronics, mechanics
 - Wire chamber: lots of expertise available in France

Clearly if this detector will be built, it will have to be a large international

- The IDEA detector concept was groups
 - Clearly if this detector will be be collaboration
 - France could provide a fundamental contribution to several areas:
 - Silicon detectors: silicon sensors, readout electronics, mechanics
 - Wire chamber: lots of expertise available in France
 - ** DR calorimeter, and in particular the EM crystal DR calorimeter: lots of past experience from CMS, etc.

Figure Figure 19 Figure 19

Clearly if this detector will be built, it will have to be a large international

- groups
 - \bigcirc collaboration
 - France could provide a fundamental contribution to several areas:
 - * Silicon detectors: silicon sensors, readout electronics, mechanics
 - * Wire chamber: lots of expertise available in France
 - * DR calorimeter, and in particular the EM crystal DR calorimeter: lots of past

experience from CMS, etc.

* Other areas (Simulation, DAQ&Trigger, software, etc.) ...

The IDEA detector concept was originally conceived by several Italian

Clearly if this detector will be built, it will have to be a <u>large international</u>

FUTURE CIRCULAR COLLIDER **CONCLUSIONS**

FUTURE CIRCULAR Conclusions COLLIDER

Ş measurements and Higgs couplings

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

UTURE Conclusions CIRCULAR

- Ş measurements and Higgs couplings
 - The IDEA detector concept could be an excellent choice for one of the IPs

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

UTURE Conclusions

- Ş measurements and Higgs couplings
 - The IDEA detector concept could be an excellent choice for one of the IPs
 - Very good momentum measurement

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

UTURE Conclusions

- Ş measurements and Higgs couplings
 - The IDEA detector concept could be an excellent choice for one of the IPs
 - Very good momentum measurement
 - Outstanding PID with cluster counting from the drift chamber

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

UTURE Conclusions

- Ş measurements and Higgs couplings
 - The IDEA detector concept could be an excellent choice for one of the IPs
 - Very good momentum measurement
 - Outstanding PID with cluster counting from the drift chamber
 - **Excellent calorimetry**

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

UTURE Conclusions

- Ş measurements and Higgs couplings
 - The IDEA detector concept could be an excellent choice for one of the IPs
 - Very good momentum measurement
 - Outstanding PID with cluster counting from the drift chamber
 - Excellent calorimetry
 - Precise and efficient muon detector

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

- Ş measurements and Higgs couplings
 - The IDEA detector concept could be an excellent choice for one of the IPs
 - Very good momentum measurement
 - Outstanding PID with cluster counting from the drift chamber
 - Excellent calorimetry
 - Precise and efficient muon detector
 - Very appealing upgrade options! (DR EM crystal calorimeter, LGADs for the Si wrapper)

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

- Ş measurements and Higgs couplings
 - The IDEA detector concept could be an excellent choice for one of the IPs
 - Very good momentum measurement
 - Outstanding PID with cluster counting from the drift chamber
 - Excellent calorimetry
 - Precise and efficient muon detector
 - Very appealing upgrade options! (DR EM crystal calorimeter, LGADs for the Si wrapper)
- Need for significant R&D in the next 4-5 years

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

- Ş measurements and Higgs couplings
 - The IDEA detector concept could be an excellent choice for one of the IPs
 - Very good momentum measurement
 - Outstanding PID with cluster counting from the drift chamber
 - Excellent calorimetry
 - Precise and efficient muon detector
 - Very appealing upgrade options! (DR EM crystal calorimeter, LGADs for the Si wrapper)
- Need for significant R&D in the next 4-5 years
 - A lot of ongoing activities on all IDEA sub-detectors Ş

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

- Ş measurements and Higgs couplings
 - The IDEA detector concept could be an excellent choice for one of the IPs
 - Very good momentum measurement
 - Outstanding PID with cluster counting from the drift chamber
 - Excellent calorimetry
 - Precise and efficient muon detector
 - Very appealing upgrade options! (DR EM crystal calorimeter, LGADs for the Si wrapper)
- Need for significant R&D in the next 4-5 years
 - A lot of ongoing activities on all IDEA sub-detectors Ş
 - Profiting from several national funding schemes, EU projects, etc. Ş

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

- Ş measurements and Higgs couplings
 - The IDEA detector concept could be an excellent choice for one of the IPs
 - Very good momentum measurement
 - Outstanding PID with cluster counting from the drift chamber
 - Excellent calorimetry
 - Precise and efficient muon detector
- Very appealing upgrade options! (DR EM crystal calorimeter, LGADs for the Si wrapper) Need for significant R&D in the next 4-5 years
 - A lot of ongoing activities on all IDEA sub-detectors Ş
 - Profiting from several national funding schemes, EU projects, etc. Ş
 - INFN was central in all these R&D activities and started many of them

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

- Ş measurements and Higgs couplings
 - The IDEA detector concept could be an excellent choice for one of the IPs
 - Very good momentum measurement
 - Outstanding PID with cluster counting from the drift chamber
 - Excellent calorimetry
 - Precise and efficient muon detector
- Very appealing upgrade options! (DR EM crystal calorimeter, LGADs for the Si wrapper) Need for significant R&D in the next 4-5 years
 - A lot of ongoing activities on all IDEA sub-detectors Ģ
 - Profiting from several national funding schemes, EU projects, etc. Ş
 - INFN was central in all these R&D activities and started many of them
 - Now several international colleagues have joined these efforts

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

- Ş measurements and Higgs couplings
 - The IDEA detector concept could be an excellent choice for one of the IPs
 - Very good momentum measurement
 - Outstanding PID with cluster counting from the drift chamber
 - Excellent calorimetry
 - Precise and efficient muon detector
- Very appealing upgrade options! (DR EM crystal calorimeter, LGADs for the Si wrapper) Need for significant R&D in the next 4-5 years
 - A lot of ongoing activities on all IDEA sub-detectors Ģ
 - Profiting from several national funding schemes, EU projects, etc. Ş
 - INFN was central in all these R&D activities and started many of them
 - Now several international colleagues have joined these efforts

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW

Lots of possibilities for French colleagues to join <u>IDEA</u> and help on all these developments!!

Backup

