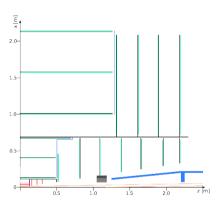
## CLD Tracker and HNL studies

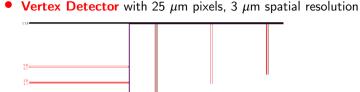
Jeremy Andrea, Gaelle Sadowski, Auguste Besson, Ziad El Bitar

Thanks to Leonhard Reichenbach, Andre Sailer, Juraj Smiesko

4th FCC / DRD France Workshop, November 2023

# Introduction and motivation


## **Objectives**:


- Define different geometries and design options of Vertex Detector
- Candle for physics performance : increasing level of complexity (Tracking, Vertexing, flavour tagging, full analysis)
- Chosen approach: full simulation, for more precise results, use of CLD here.

## • Outline:

- Study of tracking resolution for different geometries
- ► First attempts for long lived particle reconstruction (Heavy Neutral Lepton)

# CLD tracker geometry





125 126 159 160

• Inner and Outer Silicon Tracker, mostly 50  $\mu$ m pitch strips

- 3 short and 3 long barrel layers, 7 inner and 4 outer endcaps
- 200 μm Silicon thickness, 50 μm × 0.3 mm cell size, 7 μm × 90 μm single point resolution (except first inner tracker disk, 5 × 5 μm<sup>2</sup>)

More details on CLD\_o1\_v04 geometry CLD Paper

More information on CLD goemetries see this talk by A.Sailer

BeamPipe geometry - CLD\_o1\_v04 & CLD\_o2\_v05

• Difference between CLD\_o1\_v04 and CLD\_o2\_v05 = smaller BeamPipe with different material and adapted Vertex Detector

## CLD\_01\_v04

- BeamPipe radius: 15 mm
- BeamPipe material: Beryllium
- BeamPipe thickness: 1.2 mm + 5  $\mu$ m gold
- X/X0 = 0.45 %

## CLD\_02\_v05

- BeamPipe radius: 10 mm
- BeamPipe **material**: AlBeMet 0.35 mm + paraffin 1 mm + AlBeMet 0.35 mm
- BeamPipe thickness: 1.7 mm + 5  $\mu$ m gold
- X/X0 = 0.61 %

More details on CLD\_o1\_v04 geometry CLD Paper

More information on CLD goemetries see this talk by A.Sailer

# **Tracking resolution**

- Simulate particle gun events
  - Only done with muons here, but needs to be done with electrons and pions
- Matching reconstructed tracks simulated particle
- Calculation of resolution:  $\sigma(\Delta = \text{reco} \text{true})$ 
  - For p and pT, resolution: σ( (Δ = reco - true) / true<sup>2</sup>)

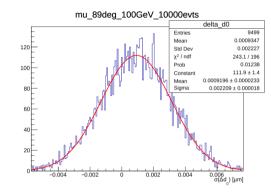
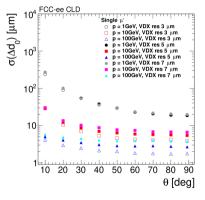




Figure:  $\Delta d0$  distribution

- Calculate resolutions by changing VTX resolution
  - ► defined as the smearing for simulated hits with resolution VTX values (3  $\mu$ m, 5  $\mu$ m,...) as the Gaussian width, see code here

D0 resolution – single  $\mu^-$  – CLD o1 v04



### Comparison with plot made in arXiv:1911.12230v3

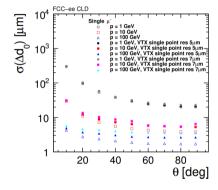
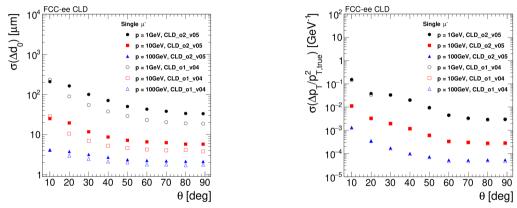
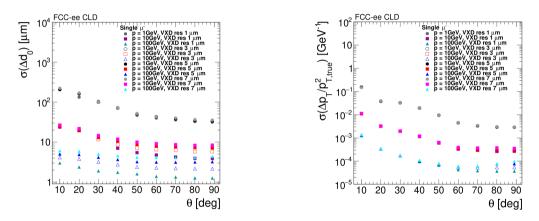




Figure: CLD paper

Figure: D0 resolution (10k events)


New implementation of the performance plots gives comparable results than the CLD paper

D0 & pT resolution – single  $\mu^-$  – CLD o1 v04 & CLD o2 v05



 Degradation of the d0 resolution in the new geometry observed (o2\_v05), differences being investigated

D0 & pT resolution – single  $\mu^-$  – CLD\_o2\_v05 (10k events)



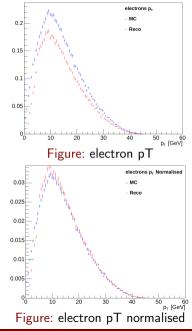
Digitisation is currently made by smearing simulated hits with resolution values (3  $\mu$ m, 5  $\mu$ m,...) as the Gaussian width, see code here

Summary

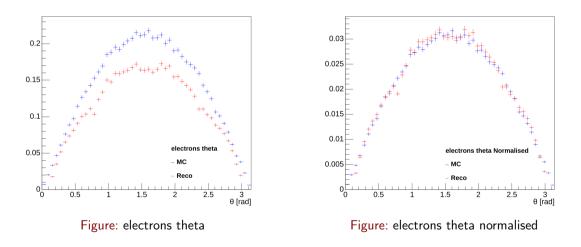
- Study track resolution with different single point resolution and tracker (beam pipe) geometries
- Code validated by reproduced CLD paper results (geometry o1\_v04)
- Also for 1 micron resolution, to test extreme case (while probably not realistic)
- Degradation of the d0 resolution in the new geometry observed (o2\_v05), differences being investigated
- Need to investigate the effect of material budget

The procedure used to produce these plots: Sim & Rec Plots

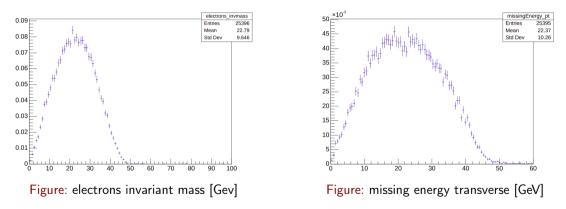
See talk by J.Andrea G.Sadowski


- Generation of Long Lived Particle within the Heavy Neutral Lepton model
- Inherits from FCCee paper (Alimena&al arXiv:2203.05502v4)




- Production made in the di-electron channels ( $m_N = 50$  GeV)
  - ▶ Allows for some comparisons with fastsim potentially
  - Benefits from existing expertise
  - Analysis possibly to be ported on other LLP models,
  - Some events to play with...

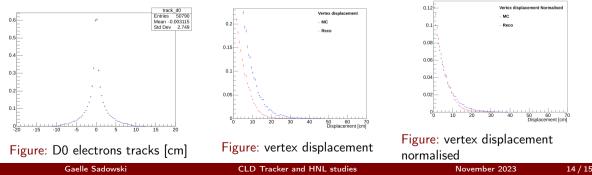
Selection steps


- HNL generated with **MadGraph** and simulation/Reconstruction with **CLD full** simulation
- Isolated electrons with minimum pT cuts
  - ▶ P cut 5 GeV
- Exactly two opposite signs electrons
- Di-electron invariant mass incompatible with a Z boson
  - ▶  $m_{ee} > 96$  &&  $m_{ee} < 86$  GeV
- Attempts for reconstruction of vertex from electron pairs
- The shape of reconstructed electron pT matched the MC distribution, while the normalisation is lower ⇒ electron reconstruction efficiency to be investigated



### First results




#### First results



• di-electron invariant mass and missing Et coherent with what is expected for the signal

Simulation issue

- We had issues to simulate displaced vertices, HNL vertices were simulated at IP (0,0,0)
- We have tried with HEPMC2 format with MadGraph, but simulation compatible with HEPMC3
- Madgraph is not interfaced with HEPMC3. Solution : generate lhe event (parton) with MadGraph, then run pythia standalone to produce HEPMC3 file
  - Simulation of displaced vertex require status code 2 for the HNL, while it is status 22 out of pythia => script to change by hand the status in HEPMC3



# Summary

- Method to generate HNL events with correct displacement implemented and tested
- Degradation of the d0 resolution in the new geometry observed (o2\_v05), differences being investigated
- Next steps
  - Study electron/track reconstruction efficiencies
  - Study displaced vertex reconstruction efficiency
  - ▶ Generate more signal benchmark points and backgrounds
  - Reproduce fastsim analysis
  - Study impact of tracker geometry on physics performance