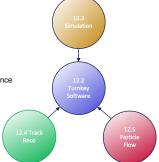
Summary of Software development in AIDAinnova

Gérald Grenier material taken from J. Back, G. Cibinetto, F. Gaede, T. Madlener, A. Zaborowska

Institut de Physique des 2 Infinis de Lyon (IP2I)

4th FCC/DRD France Workshop, Strasbourg Nov 22-24, 2023

WP12 Structure

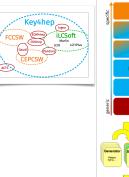

Task 12.2. Turnkey Software

- Turnkey Software Stack, for physics and performance studies, EDM4hep, PODIO and Digitisation toolkit
- · R&D study on frameworks to manage heterogeneous resources
- Task 12.3. Simulation

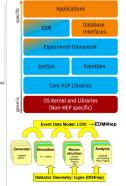
٠

- · Fast simulation techniques integrated into Giant
- · Machine learning based calorimeter simulation toolkit for training and inference
- Task 12.4. Track Reconstruction
 - complete track reconstruction with ACTS composable algorithms and for heterogeneous computing
 - · Machine learning reconstruction algorithm for MPGD detectors
- Task 12.5. Particle Flow Reconstruction
 - PFA algorithms for DUNE and dual-readout calorimeters, APRIL PFA for hadronic jets

DESY. Frank Gaede, AIDAinnova Annual Meeting 2023, 26.04.23



AIDAinnova turnkey software


Task 12.2 Turnkey Software

turnkey software stack for all future collider projects

- take existing tools where possible reuse existing software from the shared iLCSoft developed by ILC and CLIC
- all major players involved: CEPC, CLIC, FCC, ILC, EIC
- · provide a complete data processing framework
 - · shared components reduce overhead for all users
- make things as easy to use as possible for everybody (librarians, developers, users)
- supported by HSF, CERN EP R&D and AIDAinnova

DESY, Frank Gaede, AIDAinnova Annual Meeting 2023, 26.04.23

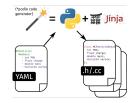
6

AIDAinnova data model

PODIO

The event data model toolkit

- · Generate code from simple yaml definition of EDM
- · Based on using and storing POD (plain old data) structures
- · Make it possible to target different I/O backends

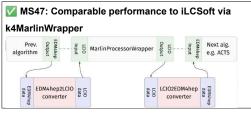

 $\begin{array}{l} \mbox{PODIO} \rightarrow \mbox{C++, pyROOT, Julia} \\ \mbox{EDM4hep} \rightarrow \mbox{LCIO, JSON, } ... \end{array}$

EDM4hep

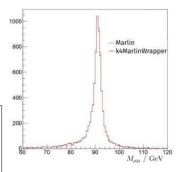
The common event data model

- EDM4hep defines the common *language* for all Key4hep components to communicate
- Heavily inspired by LCIO that has been successfully shared by ILC and CLIC
 - · Additional novel ideas from fcc-edm
- · Generated by the PODIO EDM toolkit
 - · EDM4hep and EICD main customers of PODIO

github.com/AIDASoft/podio

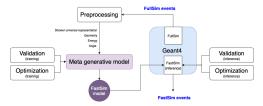

EDMAhep DataModel Overview (v0.6)

github.com/key4hep/EDM4hep edm4hep.web.cern.ch


Framework

Key4hep Framework

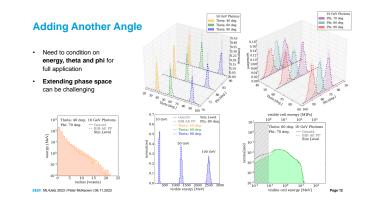
- · Gaudi based core framework
 - k4FWCore provides I/O for PODIO based EDMs
 - · k4SimDelphes for Delphes integration
 - k4MarlinWrapper for calling Marlin processors
 - k4geo for detector models (rebranded from lcgeo)
 - k4SimGeant4 for Geant4 based simulation
 - · k4Gen for generator integration
 - ...


DESY, 12.2 - Turnkey Software | T. Madlener | Apr 24, 2023

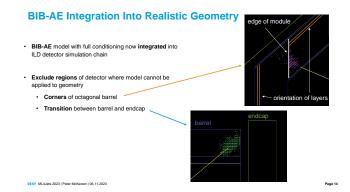
Integration of ML models

Integration of Machine Learning (ML) models into standard simulation toolkit (GEANT4)

- Demonstration of ML inference in C++ framework
- available in GEANT4 11.0 release, but can be also used with 10.7
- · Incorporation of few libraries: ONNX Runtime, LWTNN, Torch
 - Torch was integrated during the last AIDAinnova hackathon, thanks to everyone involved! (CERN, DESY, UniMan)
 - $\circ~$ available in $\rm GEANT4~11.1$ release
- Implemented as a Geant4 example Par04, includes a trained model: Variational Autoencoder (VAE)
- · Described in AIDAinnova milestone report

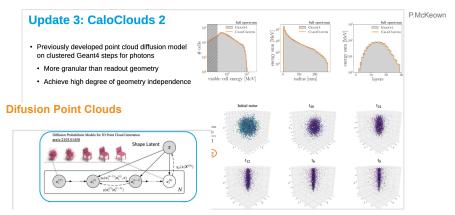

Various ML models are tested.

1/7


fastsim for Highly Granular Calorimeter

- LHCb Lamarr Gaussino \rightarrow key4hep.
- Test G4 photon fast sim on ILD with Bounded-Information-Bottleneck Auto Encoder.

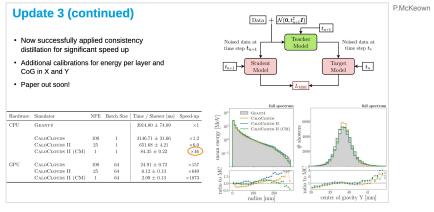
DESY


DESY

fastsim for Highly Granular Calorimeter (III)

Simulating photons in ILD

DESY


DESY, Frank Gaede, WP12 Meeting 2023, 20.09.23

10

fastsim for Highly Granular Calorimeter (IV)

Simulating photons in ILD

DESY

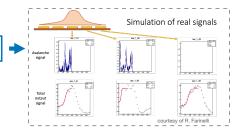
DESY. Frank Gaede, WP12 Meeting 2023, 20.09.23

11

Task 12.4 Track Reconstruction

Main work in track reconstruction task is framed inside the <u>ACTS project</u>

- A Common Tracking Software
- Project was spawned from ATLAS's tracking code
- Make this state-of-the-art track reconstruction experiment independent
 - Significant technical challenges!



Developed at IJClab.

tracking with MGPD

Aidainnova 4-year program

- simulation of the μ-RWELL resistive layer
- use of Machine Learning for cluster selection and track finding
- 3. track cleaning and refinement
- 4. application to IDEA framework

Task 2 started.

Software in AIDAinnova

Pandora Software Development Kit

https://github.com/PandoraPFA

A single clustering approach is unlikely to work for complex event topologies:

- Mix of track-like & shower-like clusters
- Use multi-algorithm approach using the Pandora SDK to build up events gradually:
 - Each step is incremental aim not to make mistakes (undoing mistakes is hard)
 - Deploy more sophisticated algorithms as picture of event develops
 - Algorithms: can use machine-learning methods & detector physics knowledge

- PandoraSDK used for PFA for ILD, SDHCAL, DUNE LArTPC, IDEA, LAr ECAL (ALLEGRO).
- ML in PFA : used in LArTPC. DeepNN for PFA in IDEA not enough, need physics guidance.

Gérald Grenier (IP2I Lyon)

Software in AIDAinnova

AIDAinnova software developement :

- a key item for future collider physics.
- covers :
 - experimental data format,
 - analysis framework,
 - (fast) simulations,
 - track recontruction,
 - calorimeter reconstruction (PFA).
- Deliverables and milestones are on time.