Allegro Noble Liquid calo: Design and R&D

Nicolas Morange, IJCLab

FCC France Workshop, 23/11/2023

Laboratoire de Physique des 2 Infinis

Noble liquid calorimeters

- Decades of success at particle physics experiments: from R806 to ATLAS
 - Mostly LAr, a bit of LKr
- An appealing option for FCC-ee
 - Good energy resolution
 - High(-ish) granularity achievable
 - Linearity, uniformity, long-term stability

Excellent solution for small systematics

- Lots of interesting studies / R&D to do
 - Optimization for PFlow reconstruction
 - Achieving very low noise
 - Lightweight cryostats to minimize X₀
 - Designing for improved energy resolution

Granularity of Noble Liquid Calorimeters

- Calo design:
 - granularity of the calorimeter
 ⇔ granularity of the electrodes

• ATLAS: copper/kapton electrode

- traces to read out middle cells take real estate on back layer
- cannot really increase granularity

• FCC-ee requirements

- High jet energy resolution needed
- Particle flow algorithms take advantage of much finer granularity
- Solution for Noble Liquid calo for FCC
 - Multi-layer PCB to route signals inside

Allegro Barrel Design

Design driven by the solution used for electrodes

- 1536 straight inclined (50°) 1.8mm Pb absorber plates
- Multi-layer PCBs as readout electrodes
- 1.2 2.4mm LAr gaps (LKr seriously considered)
- 40cm deep (22 X₀)
- $\Delta \theta = 10$ (2.5) mrad for regular (strip) cells, $\Delta \phi = 8$ mrad,

12 longitudinal layers

Copper electrodes: lots of flexibility

- Number of layers and granularity of layers fully optimizable
- Projective cells

Allegro detector concept

See presentation by Martin Aleksa in the afternoon !

- Allegro ECal at core of Allegro detector concept
- Gives typical boundary conditions for the ECal design
 - Overall envelope similar as that of IDEA
- Baseline solution: solenoid outside the ECal (in front of HCal)

Highlight from 2023

Simulation studies in key4hep

Lots of ground work in 2023!

- Correct cells geometry was used in simulation but not in digi/reco
 - Now proper θ/ϕ positions used consistently everywhere
 - Much more flexible fullsim geometry:
 - Can easily change cells and layers sizes
 - Can adapt the granularity per layer
- Improvements in clustering
 - Topo-clustering and fixed-size clusters adapted to new geometry
 - Super nice tool to visualize showers and clusters
 - Topo-clustering using ECal+HCal (Preliminary)

See Tong's talk today !

Simulation studies: next steps

Ground work done this year enables performance optimization based on physics

- Finer levels of calibration
 - "Rediscovery" of S-shape effects
- Optimization of cell sizes
 - Event displays show that position of "strip" layer is probably not correct for photon / π^0 separation

Designs for the endcaps: first ideas

Endcaps designs more complex than that of the barrel: very preliminary ideas !

- "Turbine" design
 - More similar to barrel design
 - Symmetric in ϕ
 - Issue: increase in the size of the LAr gaps
 - Need to stack several cylinders

- Less symmetry in ϕ
- Increase of LAr gaps under control
- Many types of electrodes to draw and produce

Electrode measurements @ IJCLab

Small-scale prototype designed for precision tests

- Detailed understanding of signal propagation and cross-talk effects
- Building knowledge of Sigrity simulation tool
 - Very good agreement with measurements after tuning !
- Fruitful discussions with PCB manufacturer to understand practical limitations of our design

Electrode measurements @ CERN

Full scale electrode !

- Took quite some time and effort to achieve good measurements
 - Fruitful collaboration with IJCLab
 - Proper grounding, terminations, short cables...
- Extraction of cross-talks in several cases
 - Impact of shielding and of shaping time
 - Few per-mille easily achievable

Next generation of prototype electrode

Learning from the previous generation

• Next prototype at IJCLab

- All layers, 3 towers
- Readout all cells at the back
 - Best for material budget in calo, worst for cross-talk
- Study options for additional shielding
- Connectors for easy readout/injection
- Possibility to merge several PCBs
- In fabrication

R&D on absorbers: simulations

Find mechanical solutions that could work for a full scale design

- Study thickness of steel sheets
- Numbers of spacers needed
- Support rings
- In warm and in cold

Absorbers: first prototypes

- Use FR4 frame to build the prototype
- Glue steel sheets on top of lead plate
- Then cut by CNC to final dimensions
- Mount absorbers around a fake electrode

Final dimensions

Bars gluing

FCC France Workshop, 23/11/2023

2 absorbers and the fake PCB

Final assembly

Absorbers: mechanical tests in the cold

- Put structure (2 absorbers + 1 electrode) in cold bath
 - Study deformations and defects
- Many interesting lessons learned !
 - Deflection of the assembly in both directions
 - Measured deformation fits with the calculated for the absorbers but not for the PCB and the bars

- No cracks found in the steel or the bars and they stayed glued together
- Some defaults found in the internal part of the lower absorber
- More spacers needed, and should improve clamping

Plans for the R&D

Allegro ECal in DRD6

Only project in WP2: the community is united behind this project !

- DRD6: opportunity to build up the community
 - New Europeans partners
 - Inclusion of US institutes
 - IN2P3: involvement of more labs
- Main objective: do R&D up to a prototype that can be put in testbeam
 - Realistic timescales give 2028 as target

1. General design and expected performance

Workplan

• Understand the required granularity

- Study photon/pion ID (tau physics)
- Axion searches
- Jet energy reconstruction
- Using 4D imaging techniques, ML, PFlow

Optimize design for EM resolution

- Electron and photon resolutions
- Pions, b-physics
- gap size, sampling fraction, active and passive material...

• Investigate possibility to readout Cerenkov light

- Design feasibility
- Possible gains for timing or for DR measurements

2. Readout electrodes

Workplan

• Barrel electrodes

- Optimize granularity based on physics simulations
- Minimise noise (aim for photons down to 300 MeV and S/N>5 for MIP) and cross-talk
- Readout everything at the back
- Connectors
- HV layer, including resistors
- Aim for "final" prototype end of 2024

Endcap electrodes

- Investigate possible geometries
- Optimize granularity
- Design prototypes

3. Readout electronics

Workplan

• Both Frontend options

- Take advantage of synergies with existing chips or planned chips for other DRDs
- Develop frontend boards
- Warm Frontend electronics option
 - Specific work on cables inside the cryostat
- Cold Frontend electronics option
 - Could allow for much lower noise

$$N\sim C_d\sqrt{rac{4kT}{g_m au_p}}$$

- Adapt 'regular' chips to LAr temperatures, or start from Dune experience
- Specific work on power consumption
- Backend electronics and DAQ
 - Requirements not yet defined

4. Mechanics, and Towards a prototype

Workplan

• Absorbers

- Find best compromise in feasibility, between thickness, rigidity, support structures
- Prototypes in 2024 and 2025
- Small module
 - Requires to put everything together
 - Design in 2024 and 2025
 - Assemble and test at warm temperatures in 2027
 - Cold tests and testbeam in 2028

Infrastructure

- Use of common tools (EUDAQ...) would facilitate the integration in a testbeam facility
- Strong testbeam expertise from some institutes

• R&D on Allegro ECal is progressing well

 2023 very productive in simulation studies, electrodes measurements, and first absorbers prototypes

• DRD6 is the opportunity to scale up the project

- Build a community towards a first prototype in testbeam
- Clear R&D path to get there

Sampling Noble liquid calorimeters

Working principles in 30 seconds

- LAr gap between electrodes with HV
- Incoming particle shower develops in the absorbers and ionize the liquid
- Ionization electrons drift in the gap
- Induce current on the readout plane below the electrode
- Proportionality between deposited energy and induced current over orders of magnitude

High granularity electrodes

Aiming for ~ ***10** ATLAS granularity

- High granularity required for better PFlow performance (few million cells)
- >6 compartments to compensate LAr gap widening

Implementation: multi-layer PCBs

- 7-layer PCB
 - Signal collection on **readout planes**
 - Transmission through via
 - Signal extraction on trace
 - **Ground shields** to mitigate cross-talk
- Challenges
 - Trade-off capacitance (noise) / cross-talk
 - Maximum density of signal traces ?
- Studies on simulations and prototypes

Geometry

Transverse

Longitudinal

Optimizing the energy resolution

Materials

 $LAr \rightarrow LKr$: 8%/√E to 5%/√E

$Pb \rightarrow W$:

- No improvement in resolution
- Expected impact on PID to be studied

Energy Resolution CorrectedCaloClusters

Geometry

- Straight planes \rightarrow trapezoidal absorbers
 - Better sampling fraction in first layers
 - Small gain in resolution

glue

Pb

steel

FCC France Workshop, 23/11/2023

Feasibility to be evaluated

Software

- MVA calibration
 - improves constant term
- Clustering
 - Large effect, to be studied further

Estimating PID performance

Benchmark for ECAL: π°/γ separation

- Use of PCB as readout electrode
 ⇒ large flexibility on granularity
- Many cells: use of ML techniques for improved performance
 - Based on shower shapes and on raw cells energies
 - Investigate CNN and DNN
 - Investigate role of "strips" layer
- Very promising results !
 - \sim 95% γ efficiency for 10% π^0
- Next is use of GNN
 - Probably better suited for our use-case

High density feedthroughs

vpe: Displacement

Signal extraction from cryostat

- High density feedthroughs needed in case readout electronics outside of cryostat
- Aim for ~ ×5 density and ~ ×2 area wrt ATLAS

Successful R&D on connector-less feedthrounds at CERN

- Prototypes of 3D-printed epoxy resins structures with slits for strip cables, glued to the flange Leak tests and pressure tests at 300 K and 77 K Suitable materials identified: G10 structure with slits +
- **indium seal + Epo-Tek glued Kapton strip cables** Stress simulations of complete designs at 300 K and 77 K

Next generation cryostats

Minimizing dead material in front of calo

- Crucial for low energy measurements at FCCee
- Ongoing R&D for cryostats using new materials and sandwiches
 - Generic R&D at CERN as cryos will be used for solenoids in all experiments
 - Synergy with progress in aerospace
 - Test microcrack resistance, sealing methods, leak and pressure tests
 - Address CFRP/Metal interfaces
- Promises for "transparent" cryostats: few % of X₀ !

Sandwich Shell Skin [0,45,-45,90]s Core : Al Honeycomb Skin [0,45,-45,90]s					Radiation length X ₀ [mm] Al = 88.9 HM CFRP = 260 Honeycomb Al= 6000			
Criteria: Safety Factor = 2	Sandwich shell				Solid shell			
	HM CFRP		Al		HM CFRP		Al	
	owc	ICC	owc	ICC	owc	ICC	owc	ICC
Material budget X/Xo	0.03	0.043	0.094	0.17	0.092	0.12	0.34	0.44
Xo % savings	-68%	-75%	REF	REF	-2%	-29%	262%	159%
Skin Th. [mm]	3.2	4.8	3.9	7.5				
Core Th. [mm]	32	38	40	40				
Total Th. [mm]	38.4	47.6	47.8	55	24	30.4	30	39
Thickness % savings	-20%	-13%	REF	REF	-50%	-45%	-37%	-29%

NASA's lineless cryotank

Sealing with Belleville washers

Noise and cross-talk considerations

Goals

- Low noise to measure photons down to 200 MeV
- Measure MIPs with good S/N
- Sub-percent cross-talk

Performance estimation

- Performance depends on electrodes and transmission line properties, and on choices made for readout electronics
- Cell capacitances computed using FEM tools (ANSYS)
- Electronics noise from analytical description of readout
- Cross-talk from FEM calculations (Cadence Sigrity or ANSYS HFSS)

Results

- Long (200 ns) shaping times help a lot
- Suitably low noise and cross-talk achievable

Cold electronics?

Noise master formula:

- Cold electronics: gain on C_{d} , T and g_{m}
- Extremely low noise easily achievable

$C_{cable} = \frac{\tau_{delay}}{Z}$	ENC (keV)	Peaking time = 500 ns			
Warm electronics L = 5 m C _{cable} = 500 pF / 1 nF	Cd = 100pF – 50/25 Ω	1400 / 2500 keV			
	Cd = 200pF – 50/25 Ω	1600/2800 keV			
	Cd = 400pF – 50/25 Ω	2100/3200 keV			
	Cd = 800pF – 50/25 Ω	2900 / 4100 keV			
Cold electronics L=10 cm C _{cable} = 10 pF / 20 pF	Cd = 100pF – 50/25 Ω	140 / 150 keV			
	Cd = 200pF - 50/25 Ω	250 / 260 keV			
	Cd = 400pF – 50/25 Ω	470 / 470 keV			
	Cd = 800pF - 50/25 Ω	910/910 keV			

How?

- **Challenges:**
 - Heat dissipation
 - Difficulty for repair
- We know how to do it:
 - DUNE example
- Very first studies
 - HGCROC in Liquid N at IJCLab
 - Check behaviour of analogue and digital parts

