

1

TPC in an FCC environment

results are all preliminary

Daniel Jeans / IPNS/ KEK

FCC/DRD-France meeting

Nov. 2023

study in the context of ILD 2003.01116

Time Projection Chamber 0.3m < r < 1.8m|z| < 2.4 m

- * highly-redundant pattern recognition
- * d(EorN)/dx measurement \rightarrow Particle ID
- * with silicon (strip/pixel) wrapper: \rightarrow p_T resolution for Higgs recoil

original concept for International Linear Collider

recently considering wider application e.g. circular e+e- colliders

TPC operation

at ILC: bunch trains at 5 Hz \rightarrow IBF ions disks separated by \sim 1m \rightarrow small distortions of ionisation electron trajectories 4

TPC operation

at FCCee-91 : quasi-continuous collisions at 30 MHz \rightarrow continuous ion cloud how thick is the cloud ? how big are the distortions?

$e+e- \rightarrow hadrons$

at FCCee-91, very large lumi and x-sec

most track multiplicity (TPC activity) from e+ e- \rightarrow hadrons (@ ~50 kHz)

simulated TPC hits in one e+ e- \rightarrow hadrons event

around 1M primary ions per event

estimate steady state ion density

model the 2d (z-r) ion distribution

calculate electron trajectory distortion (code by K. Fujii)

r-φ distortion as function of radius and drift length

stability of distortions

 $\rightarrow\,$ if distortions are static, should be easy to correct

in general, r- ϕ distortions of trajectories in the TPC due to e+e- \rightarrow hadrons seem stable within a few μ m at FCCee-91

beam induced backgrounds \rightarrow beamstrahlung

beam backgrounds : usually small $p_T \rightarrow$ particles do not reach TPC directly

very different bunch structure, MDI at ILC and FCCee \rightarrow major effect on beamstrahlung backgrounds?

11

GuineaPig : program to simulate beamstrahlung

beamstrahlung pairs @ ILC-250 (from ILD/Mikael Berggren) FCCee-91, FCCee-240 (from FCCee/Andrea Ciarma)

simulate in various DD4hep ILD detector models: using ddsim/DD4hep/Geant4 some special parameters to correctly track low p_T particles

ILD @ ILC :

uniform 3.5T

uniform 2.0T field map with and without anti-DID

ILD @ FCCee : uniform 2.0T

field map for central region

X0 Y= 0.001 [cm]

L*

400

Z [cm]

13

400

estimate number of primary ions produced in the TPC per bunch crossing \rightarrow geant4 energy deposit / effective ionisation potential of Ar [26 eV]

			FCCee-91	FCCee-240	ILC-250
model	B-field	MDI	thousand ions / bunch crossing		
ILD_15_v02	3.5 (uniform)	ILC	6.5	14	960

bunches less focused @ FCCee \rightarrow beamstrahlung much weaker

estimate number of primary ions produced in the TPC per bunch crossing

			FCCee-91	FCCee-240	ILC-250
model	B-field	MDI	thousand ions / bunch crossing		
ILD_15_v02	3.5 (uniform)	ILC	6.5	14	960
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9	15	4700
ILD_15_v03	3.5 (map)	ILC	5.7	14	1100
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6	3.7	450
ILD_15_v11	2.0 (uniform)	FCCee	390	1000	110000

FCCee MDI system induces x~50 increase in TPC activity compared to ILC-MDI

estimate number of primary ions produced in the TPC per bunch crossing

			FCCee-91	FCCee-240	ILC	C-250
model	B-field	MDI	thousand ions / bunch crossing			
ILD_15_v02	3.5 (uniform)	ILC	6.5	14		960
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9	15		4700
ILD_15_v03	3.5 (map)	ILC	5.7	14		1100
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6	3.7		450
ILD_15_v11	2.0 (uniform)	FCCee	390	1000	11	0000
ILD_15_v11γ	2.0 (map)	FCCee	270	800	10	0000

"realistic" situations : a few 100k \rightarrow 1M primary ions / BX ions / BX at ILC and FCCee are similar

(reminder e+e- \rightarrow hadrons ~ 1M primary ions in TPC)

TPC integrates over many collisions; maximum ion drift time ~ 0.44 s

roughly estimate number of primary ions in the TPC volume (42 m³) at any time, taking account of different collision rates

number of ions ~ primary ions/BX * BX freq * 50% [ions already reached cathode]

Collider	FCCee-91	FCCee-240	ILC-250
Detector model	ILD_15_v11 γ	ILD_15_v11 γ	ILD_15_v05
BX frequency (average)	30 MHz	800 kHz	6.6 kHz
primary ions / BX	270 k	800 k	450 k
primary ions in TPC at any time	$4.1 imes 10^{12}$	$3.2 imes 10^{11}$	$1.5 imes 10^9$
average primary ion charge density nC/m^3	15	1.2	0.006

primary ion density in TPC: 2500 times higher at FCCee-91 than ILC-250 200 times higher at FCCee-240 than ILC-250

c.f. e+e- → hadrons @ FCCee-91 : ~1M primary ions @ 50 kHz beamstrahlung dominates by 2~3 orders of magnitude

Summary

TPC background from beamstrahlung: same order **per BX** at ILC250 and FCCee average BX frequency: **4.5k times higher at FCCee**

TPC ions from **beamstrahlung** dominate those from $ee \rightarrow qq$ @ FCCee-91 \rightarrow dominated by **MDI**: can it be redesigned to reduce back-scatter?

FCCee-91 ion cloud density looks similar to ALICE-TPC

- \rightarrow expect similar level of distortions O(cm)
- \rightarrow distortion **fluctuations** at FCCee not known

what TPC/momentum precision is needed at Z-pole ?

 \rightarrow requirement at ZH is driven by negligible Higgs width & beam energy spread

ion cloud fluctuations can in principle be measured and **corrected** \rightarrow machine learning ?