

CMOS TPSCo 65 nm technology R&D

Motivations ALICE ITS-3 R&D with CE65 prototypes Future R&D & plans

CMOS-MAPS for charged particle detection

Main features

- Monolithic, p-type Si
 - Signal created in low doped thin epitaxial layer ~O(10) μm
 - ~ 80 e- /µm ⇒ total signal ~ O(1000 e-) ⇒ low noise electronic
- ✓ Charge collection: diffusion of e- ⇒ N-Well diodes
 - Partial depletion ⇒Charge sharing ⇒ resolution
 - Possible full depletion ⇔Higher S/N & rad. tol.
- ✓ Continuous charge collection
- Main advantages
 - ✓ Granularity
 - Pixel pitch down to 10 x 10 μ m² \Rightarrow spatial resolution down to ~ 1 μ m)
 - ✓ Material budget
 - Sensing part ~ 10-20 μ m \Rightarrow whole sensor routinely thinned down to 50 μ m
 - \checkmark Signal processing integrated in the sensor
 - Compacity, flexibility, data flux
 - Flexible running conditions
 - From ≤ 0°C up to 30-40°C if necessary
 - Low power dissipation (~ 150-250 mW/cm²) ⇒ material budget
 - Radiation tolerance: >~ MRad and O(10¹³⁻¹⁴ n_{eq}) ⇒f(T,pitch)
 - Industrial mass production
 - Advantages on costs, yields, fast evolution of the technology,
 - Possible frequent submissions
 - Smaller feature size, adapted epitaxial layers, doping profile to enhance depletion
- Main limitations
 - Industry addresses applications far from HEP experiments concerns
 - Different optimizations on the parameters on the technologies
 - R&D costs
 - High expertise needed (from design to tests & characterizations)
 - Long R&D needed for a given application

Novembre 2023

FCC France, A.Besson, Université de Strasbourg

Synergies

ECFA recognizes the need for the experimental and theoretical communities involved in physics studies experiment designs and detector technologies at future Higgs factories to gather. ECFA supports a								K. Jakobs, FCC Physics Workshop, Feb 2022
ser	series of workshops with the aim to share challenges and expertise, to explore synergies in their							
еп	efforts and to respond coherently to this priority in the European Strategy for Particle Physics (ESPP).							
Goa	al: brina	the entire e ⁺ e ⁻ Hiaas	factorv efi	fort together, f	oster cooperatior	n across various proied	ets:	
colla	aborative	e research program	nes are to	emerge		· · · · · · · · · · · · · · · · · · ·	,	
								-
					Sel.			
				\$3 \$				
				\$ 8 %	33 M		\$	
				6 1 20 20 20 20 20 20 20 20 20 20 20 20 20	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Im	portant similarities between
				4 8 × 4 ÷	すずずをいろ			FCCee requirements &
			DRDT	< 2030	2030-2035	203 2040 2040-2045 >2045		i cece requirements &
		Position precision	3134					Heavy ions experiments
		Low X/X	3.1,3.4	ė š ė š č			1	LICE ITS2 ALICE2 ELC otc)
		Low power	3.1,3.4	T 🎽 🎽 🎽			- (A	ALICE ITSS, ALICES, EIC, etc.)
Vert	ex.	High rates	3.1,3.4				_	
dete	ector ²⁾	Large area wafers ³⁾	3.1,3.4	• • • • • •				
		Ultrafast timing4)	3.2	TT 🍐 T	i i 🌰 🎍 🎽 🍎			Contial resolution of Firm
		Radiation tolerance NIEL	3.3					spatial resolution < 5 um
		Radiation tolerance TID	3.3		• •	l l l l l l l l l l l l l l l l l l l		Low material budget (~0.15% X _o /layer)
		Position precision	3.1,3.4					Low Power (<100 mW/cm ²)
		Low X/X _o	3.1,3.4		Ö O Ö O		Í	
		Low power	3.1,3.4					
Tree	strau5)	High rates	3.1,3.4					
Irac	.Ker-	Large area wafers ³⁾	3.1,3.4					
		Ultrafast timing4)	3.2		• • •			
		Radiation tolerance NIEL	3.3					
		Radiation tolerance TID	3.3					
		Position precision	3.1,3.4					
		Low X/X _o	3.1,3.4					
		Low power	3.1,3.4					
Tim	e of flight ⁷⁾	High rates	3.1,3.4					
		Large area wafers ³⁾	3.1,3.4					
		Ultrafast timing ⁴⁾	3.2		• • • •			
		Radiation tolerance NIEL	3.3		•			
		Radiation tolerance TID	3.3		•			
_								

Pixel detector requirements

past		st	I	oresent					f	uture		
	MIMOSA28 STAR	ALPIDE ITS2	MIMOSIS CBM	OBELIX Belle II	MOSS ITS3 ALICE	ITK R&D ATLAS	Vertex ALICE3	vertex FCCee	Tracker ALICE3	tracker ee-type	Up. Tracker LHCb	Tracker hh-type
$Power(m) M/cm^2)$	170	25	70	200	20	200.0	20	20	10	10	100	100
Postion res (um)	170	5	5	9	5	10.0	25	20	10	5-10	10	15
Mat_budget X/X ₀ (%)	0.37	0.3	0.3	0.15	0.05	1.0	0.05	0.15	0.5	0.5	0.3	1
Hit rate (MHz/cm ²)	0.1	1	70	120	10	120.0	35	50	0.005	10-100	200	200
Time resolution (ns)	200000	5000	5000	100	5000	25,0	100	500	100	1-500	1	0,1
Rad. tolerance (10 ¹⁵ n _{eq} /cm ²)	0,001	0,05	0,05	0,5	0,05	2,0	1	0,0011	0,01	0,001-1	3	9
Sensor size (cm ²)	4,6	4,5	5,4	5,7	300,0	5,0	300,0	6,0	100,0	100,0	6,0	100,0
Figure made by J.Baudot					_							
Power [250-5] (mW/cm^2))	high g 11MO	granul SIS, Al	arity v LICE IT	vertex S-3, F	» CCee vt	x, ALI	CE3 vtx
Radiation tolerance [0.01-1] (10^15 n_eq/cm^2)		Postion resolution (μm)	[15-2]						GRA	AM Ma	ster p	roject
Time resolution [500-0.1]				 « outer trackers » (Belle-II trk, ALICE-3 trk, FCCee trk) 								
(ns)		Material budget X	/X0 [1-			(2011		() / (2) @		.,		
(ns)		Material budget X 0.01] (%)	/xo [1-			(201		() / (2) (DE	PHY M	aster	_ Project
(ns) Hit MIMOSIS / CBM # OB	rate [0.1-150] MHz/cm^2] EELIX / Belle II	Material budget X 0.01] (%)	/x0 [1-			« high ATLA	n flux 8 S, LHC	& rad. b upg	DE tol. » rades,	PHY M FCChh	aster	_ Project

Novembre 2023

FCC France, A.Besson, Université de Strasbourg

180 nm: MIMOSIS roadmap

	Sch	werionenforschur
Physics parameter	Requirements	
Spatial resolution	~ 5 um	_
Time resolution	~ 5 us	0
Material budget	0.05% X ₀	ب ک
Power consumption	< 100 – 200 mW/cm ²	S.
Operation temperature	- 40 °C to 30 °C	Ó
Temp gradient on sensor	< 5K	Σ
Radiation tol* (non-ion)	~ 7 x 10 ¹³ n _{eq} /cm ²	=
Radiation tol* (ionizing)	~ 5 MRad	<u> </u>
Data flow (peak hit rate)	@ 7 x 10 ⁵ / (mm ² s) > 2 Gbit/s	

Parameter

Technology

Epi layer

Epi layer resistivity

Sensor thickness

Pixel size

Matrix size

Matrix area

Matrix readout time

Power consumption

- MIMOSIS-0: Tests (2018-2019)
- MIMOSIS-1: 1st full size prototype
 - Elastic buffer, SEE hardened \checkmark
 - Fabricated in 2020
 - Intense test campaign in 2021-22
 - Lab and beam tests
 - Irradiations
 - Latchup tests
- MIMOSIS-2:
 - **On-chip clustering**
 - **Triplication added**
 - Back from foundry Q2 2023
 - Issues ⇒ resubmission of MIMOSIS 2.1 Q4 2023
- MIMOSIS-3: final pre-production sensor

✓ ≥2025

 \Rightarrow architecture adaptable to a fast sensor for a future e^+e^- collider vertex detector

GSI Helmholtzzentrum für

Value

TowerJazz 180 nm $\sim 25 \, \mu m$

 $> 1k\Omega cm$

60 µ m

 $26.88 \,\mu m imes 30.24 \,\mu m$

 \approx 4.2 cm²

5 µs (event driven)

 $40-70 \,\mathrm{mW/cm^2}$

- Know-how maintained for large scale sensors
- ⇒ Opportunity to study different designs/options

Moving from 180 nm to 65 nm

Technology	TowerJazz 180 nm	TPSCo 65 nm			
Available since	2013 (mature technology)	2020 (access through CERN)			
Large surface projects	 ALPIDE for ALICE ITS-2 MIMOSIS for CBM-MVD OBELIX for Belle-II upgrade 	 MOSAIX for ALICE ITS-3 DRD3/7 R&D ? 			
Price	affordable	More expensive			
Wafer	• 8 inches (20 cm)	 Larger: 12 inches (30cm) ⇒ stitching + bent sensors 			
Epitaxial layer thickness	• 18/25/30/40/50 μm	• 10			
Process options	 « standard » « modified », « gap » 	 « standard » « modified », « gap » 			
Technology	 Feature size (180 nm) V (1.8V) 6 Metal Layers 	 Feature size (65nm) Lower V (1.2 V) 7 Metal layers ⇒Pitch reduction, power saving, more functionnalites, etc. 			

Strong motivations to switch to a smaller feature size to increase the performances space

ALICE ITS-3 (Run4)

CMOS sensor CMOS sensor CMOS sensor CMOS sensor

R=18 mm

ITS2:

- 7 layers of MAPS
- TJ 180 nm CMOS
- 12.5 Giga pixels
- Pixel size: 27×29 μm²
- Water cooling
- 0.3 % X₀ / inner layer

ITS3:

- 4 outer layers of ITS2
- 3 new fully cylindrical inner layers
 - Sensor size up to 27×9 cm
 - Thickness 30-40 μm
 - No FPCs
 - Air cooling in active area
- + 0.05 % X_0 / inner layer

⇒ ALICE ITS-3 paves the road for the stitched sensor approach

FCC France, A.Besson, Université de Strasbourg

How to adapt ITS-3 approach to FCCee ?

- ALICE-ITS3/CERN drives the R&D on stitching + bent sensors:
 - ✓ Sensor part ~15% of total material budget
 - \checkmark Sensors thinned down to 50 μm or less ?
 - Tests performed by ALICE
 - Minimizing overlapping regions,
 - ✓ minimizing minimal radius around the beam pipe
- Challenges and caveats (for e⁺e⁻ colliders)
 - ✓ Mechanics ? Bonding ? Air cooling only ?
 - ✓ Design: Minimizing peripheral circuits (Fill factor ~90%)
 - Bent sensor performances ? Yield ? Radiation hardness ?
 - \Rightarrow design rules constraints the minimal pitch (~22 μ m)
 - ITS-3 do not have disk (chip periphery adds Z position constraint)
 - Approach validated in a limited radius range (R> 18mm) ?
 - Trials performed by ALICE down to R = 10mm
 - ALIC ITS-3 Significant contributions from IPHC (C4PI, ALICE, PICSEL)
 - ✓ MOSS
 - Read-out line
 - Standard cells designs
 - DACs
 - ✓ MOSAIX
 - Feasibility studies
 - Matrix assembly (pixel analog + digital + readout
 - Column read-out in the matrix
 - Digital & Analog pixel (driven by CERN)
 - Standard cells with low leakage current
- Biasing blocks (DACs)
 Novembre 2023

Figure 4.42: Setup for the bending strength measurements.

Questions potentially adressed by GRAM with MIMOSIS

- CE_65v1 (MLR1 submission)
 - ✓ prototype designed @IPHC
 - CE65_v1 Analog output, various designs (pitch, \checkmark amplification)
 - CE_65v2 (ER1 submission)
 - 18/22 μm pitch, hex design
 - Test beam next week @ DESY
- More results: PSD13, Oxford, El Bitar \checkmark

Prevent circuitry's nwells from

Variant	Process	Pitch	Matrix	Sub-matrix
CE65-A	std	$15 \mu \mathrm{m}$	64×32	AC/21, DC/21, SF/22
CE65-B	mod_gap	$15 \mu m$	64×32	AC/21, DC/21, SF/22
CE65-C	mod	$15 \mu m$	64×32	AC/21, DC/21, SF/22
CE65-D	std	$25 \mu { m m}$	48×32	AC/16, DC/16, SF/16

HV_RESET

12

Comparing the processes

Entries (normalised)

Serhiy Sényukov el al, Exploration of the TPSCo 65 nm CMOS imaging process for building wafer-scale, thin and flexible detection layers for the ALICE Inner Tracking System upgrade (ITS3), IWORID 2022 https://indico.cern.ch/event/1120714/

Comparing the processes

Serhiy Senyukov el al, Exploration of the TPSCo 65 nm CMOS imaging process for building wafer-scale, thin and flexible detection layers for the ALICE Inner Tracking System upgrade (ITS3), IWORID 2022 https://indico.cern.ch/event/1120714/

Comparing the pitch/pixel

Serhiy Senyukov el al, Exploration of the TPSCo 65 nm CMOS imaging process for building wafer-scale, thin and flexible detection layers for the ALICE Inner Tracking System upgrade (ITS3), IWORID 2022 https://indico.cern.ch/event/1120714/

CE65_v2 (ER1 fabrication)

- New variants (x 15 !)
 - ✓ Back from foundry summer 2023
 - ✓ 48 col x 24 rows = 1152 pixels
 - ✓ 5 pixel geometries :
 - 15 μm, 18 μm squared & hexagonal, 22.5 μm squared & hexagonal

✓ 3 process options (« standard », « Blanket », « Gap »)

First beam test next week (5 GeV e⁻ @ DESY)

 ALPIDE telescope (DPTS trigger)

• Added value of CE65_v2: Charge collection model, resolution, efficiency, etc.

Deep understanding of the charge collection allows pixel optimization for various applications

CMOS 65 nm submissions and connexion with DRD3/DRD7

- 2 lines of submissions
 - ✓ Submissions dedicated to ALICE ITS-3 (ER2 & ER3)
 - Submissions for generic R&D, supported by CERN EP R&D WP1.2 (« MLR2 » and beyond)
 - Motivations to gather the Higgs factory community
- Solid state detector R&D framework = DRD3/7
- Generic R&D possible contributions
 - ✓ One expression of interest submitted with

future e+e- collider vertex detectors as the main driver

- Goal: gather groups to reach a critical size
- Targets 3 μm spatial resolution, improved time resolution (5-500 ns), controlled Power (< 50 mW/cm²), data flow (10-100 MHz/cm²) and low material budget (50 μm thickness)
- Demonstrator to equip new generation beam telescope
- Proposing Institutes: CERN, DESY, IPHC, APC, etc.
- Open to other participations
- Other projects in discussion (tracking, timing, calorimeters)
- MLR2 submission model ?
 - ✓ R&D submissions: ~ end 2025 (another expected > 2027)
 - ✓ Cost to be shared between EP R&D WP 1.2 and participating projects
 - Multi-year plan needed to allow significant contributions to the targeted submissions

DRD project: Fine-pitch CMOS pixel sensors with precision timing for vertex detectors at future Lepton-Collider experiments

DRD technology area

DRDT 3.1 - Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.

Proposing participants

Institute	Contact	Foreseen main areas of contribution			
APC Paris	M. Bomben	Simulations, testing			
CERN	D. Dannheim	Testing, DAQ, ASIC design support			
DESY	S. Spannagel	ASIC design, testing, DAQ, simulations			
IPHC Strasbourg	A. Besson	ASIC design, testing			
Oxford University	D. Hynds	Testing, simulations			
Zurich University	A. Macchiolo	Testing, DAQ, simulations			

Other R&Ds

• Generic R&D

✓ if fully generic ⇒ C4PI is the key player

- CMOS with Preamplification
 - Carried by C4PI & ANR APICS 2023 (J. Baudot, CPPM/IPHC/ICUBE)
 - ✓ Interest: amplification of primary charges in the sensitive layer
 ⇒ Spatial resolution, Fast time resolution & Power optimization
- layer zation

l evel 0

- Asynchronous read-out ✓ Carried by C4PI/ICUBE + PhD
 - Interest: power, fast read-out architecture & increased bandwidth
 - ✓ Challenge: make it compatible wit small pitchs
 - ✓ Goal : compare the performances with other architectures
- In pixel ADCs
 - ✓ with APC
 - ✓ Interest: optimize the spatial resolution vs pitch figure of merit
- Fast timing (ToF via TDC)
 - ✓ with IP2I/APC
 - ✓ Interest: ⇒ MAPS with 4D measurements

level1 level2 level3

0 2 4 6 8 10 12 N bits ADC

ANR 4D MAPS submitted in 2023 (IPHC/APC/IP2I, Bomben)

CMOS R&D for FCCee: Summary

- CMOS-MAPS technology:
 - ✓ After 20 years of R&D, the technology has reached a level of maturity which allows it to be widely used in HEP
 - \checkmark The technology has not yet reached its full potential
- Scientific goals:
 - Exploit fully the potential of the technology, targeting future Higgs factory (FCCee) and any applications where granularity is a leading requirement
- Strategy definition:
 - Synergies: Mid-term projects are still the way to go
 - Carried by GRAM : MIMOSIS OR carried by other MPs: ALICE ITS-3, Belle-2 upgrade (Obelix)
 - Provides invaluable milestones, maintains/develops the know-how for full size chips
 - ✓ Leading technology: 65nm TPSCo R&D
 - Supported by CERN and DRDs
- Strategy implementation:
 - ✓ Local:
 - Crucial role of C4PI (e.g. R&D strategy coordination between GRAM & C4PI, manpower)
 - Strategy for Higgs factories/ALICE-ITS3/Belle II endorsed by IPHC scientific council (2023), HCERES.
 - ✓ National:
 - GRAM extended to emerging activities (IP2I, APC) and to other applications (e.g. outer trackers)
 - Complementarity of the 2 master projects : GRAM / DEPHY
 - Complementarity with projects carried by experiments (ALICE ITS-3, Belle-II) (e.g. technical coordinator of ITS-3 @ in2p3)
 - Continue to strengthen the community targeting FCCee (e.g. ANR submitted (Bomben, APC/ IP2I/IPHC)
 - Find the right balance between generic R&D and specific requirements & mid-term vs long term
 - Develop simulations & physics studies dedicated to FCCee
 - ✓ International:
 - DRD3/DRD7 and program of submission in 65 nm technology
 - Exploit synergies and maintain the network of partners (CERN, DESY, KEK, Zurich, etc.)

Residual

Detection efficiency

CERN WP 1.2

https://indico.cern.ch/event/1339888/